EP0374011A1 - Verfahren und Vorrichtung unter Benutzung einer ECR-Quelle für die Herstellung von hochgeladenen, schweren Ionen - Google Patents

Verfahren und Vorrichtung unter Benutzung einer ECR-Quelle für die Herstellung von hochgeladenen, schweren Ionen Download PDF

Info

Publication number
EP0374011A1
EP0374011A1 EP89403384A EP89403384A EP0374011A1 EP 0374011 A1 EP0374011 A1 EP 0374011A1 EP 89403384 A EP89403384 A EP 89403384A EP 89403384 A EP89403384 A EP 89403384A EP 0374011 A1 EP0374011 A1 EP 0374011A1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrons
opening
frequency
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403384A
Other languages
English (en)
French (fr)
Other versions
EP0374011B1 (de
Inventor
Bernard Jacquot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0374011A1 publication Critical patent/EP0374011A1/de
Application granted granted Critical
Publication of EP0374011B1 publication Critical patent/EP0374011B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • H05H1/18Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields wherein the fields oscillate at very high frequency, e.g. in the microwave range, e.g. using cyclotron resonance

Definitions

  • the subject of the present invention is a method and a device using a source of electronic cyclotron resonance type for the production of highly charged heavy ions.
  • Heavy atoms are understood to mean atoms which include several electrons; the ions formed from these atoms are used in particular in atomic and nuclear physics.
  • the obtaining of ions can be carried out from a gas or a metallic vapor whose neutral atoms are ionized by impacts of energetic electrons.
  • the axial component has symmetry of revolution and has a gradient along an axis crossing the cavity.
  • the magnetic field is adjusted so that there is in the cavity at least one completely closed magnetic sheet and having no contact with the walls of the cavity.
  • the ions formed are extracted from the cavity by the effect of an electric field obtained by maintaining a potential difference between two electrodes. These electrodes are attached to the cavity and pierced with an opening allowing the passage of ions. A pumping circuit ensures the evacuation of the residual neutral atoms continuously. These electrodes are made of material that cannot be magnetized (generally stainless steel) so as not to disturb the distribution of magnetic field inside the cavity.
  • the closed sheet allows the ionization of the gas and the second favors the confinement of the plasma of ions and electrons.
  • Figure 1 shows an approximate Maxwell distribution.
  • the abscissas represent the energies of the electron populations noted in keV.
  • the ordinates represent the distribution D of the electron density H.
  • the asymmetrical bell curve in solid lines represents the energy distribution obtained with an electromagnetic excitation f1 (of the order of 10 GHz).
  • the curve passes through a maximum for an Eo value of low electronic energy.
  • the dashed curve in Figure 1 is obtained using a frequency f2 greater than f1.
  • the electrons favorable to the ionization of the strong states of charge are always located in the "tail" of the distribution which was slightly raised.
  • This technique involves a significant increase in the overall energy supplied to the plasma electrons by the electromagnetic wave, and raising the operating frequency quickly becomes very expensive (because of the need to use a higher power microwave generator).
  • the object of the present invention is to increase the number of energetic electrons favorable to the ionization of high charge states without resorting to an expensive increase in the frequency and the power of the microwave electromagnetic wave.
  • the present invention relates to a process for producing highly charged heavy ions.
  • This process consists in injecting a gas of atoms to be ionized into an ion source of the type "with several magnetic layers of electronic cyclotron resonance", a first fundamental magnetic layer being closed, a second harmonic magnetic sheet being open, this source comprising a microwave confinement cavity and injecting an electron beam inside the microwave confinement cavity, these electrons having an energy at least equal to the energy of the ionization threshold atoms making up the gas.
  • the energy of these electrons is in a range from three times to four times the energy of the ionization threshold of the atoms making up the gas.
  • these electrons when entering the cavity, are provided with a gyratory movement following a helix, so that these electrons emit an electromagnetic wave of frequency close to twice the resonance frequency fce substantially equal to fHF .
  • the Maxwellian distribution of the energy of the electrons confined in the cavity is enriched by the energetic electrons of the injected beam.
  • the latter increase the density of the population of electrons having the energy favorable to the ionization of the gas.
  • the ionization efficiency is improved by printing to the electrons of the beam injected a movement of gyration following a propeller.
  • the electrons then emit an electromagnetic wave (cyclotronic emission due to the gyrotron effect) in a frequency spectrum around f′ce.
  • the present invention also relates to a device for implementing the method.
  • This device comprises an ion source of the type "with several magnetic layers of electronic cyclotronic resonance".
  • This source includes a microwave confinement cavity inside which there is a magnetic field having an axial component and a radial component.
  • the source comprises a first electrode brought to a positive potential V1 and having an opening in the cavity.
  • the source is also provided, outside the cavity with a second electrode brought to a potential V2 lower than the potential V1 and pierced with an opening opposite the opening of the first electrode.
  • the second electrode is made of a material capable of being magnetized.
  • the magnetic field lines are then modified: it appears between the electrodes (outside the cavity) a sheet of magnetic field corresponding to an electronic cyclotron frequency f′ce double of fce. This layer closes the inner layer corresponding to the same frequency f′ce.
  • the potential difference V1-V2 between the electrodes allows the extraction of the ions formed inside the cavity.
  • the ions exit the cavity through the openings. In the process, electrons are torn off when peripheral ions collide with the edge of the opening in the second electrode.
  • the second electrode is made of iron, a material used when the magnetic fields present do not exceed 1 T.
  • the material capable of being magnetized is chosen from cobalt and an alloy of cobalt and iron.
  • the second electrode has the shape of a cone pierced by the opening at its pointed end.
  • the opening of the first electrode, the opening of the second electrode and the distance separating the electrodes are such that electrons traversing the distance separating the electrodes are provided with a movement of gyration following a helix so as to that these electrons emit an electromagnetic wave of frequency close to double the resonance frequency fce substantially equal to fHF.
  • the electrons are provided with a movement of gyration following a helix.
  • the presence of a radial acceleration component then produces the emission of an electromagnetic wave (gyrotron emission of electrons).
  • FIG. 2 schematically represents the distribution D of the energy of the electrons inside the microwave cavity, the energy being noted in keV. Thanks to the injection of an electron beam having an energy spectrum centered on Ei (value between three and four times the energy of the ionization threshold), the distribution is enriched without being forced to increase the electronic cyclotronic frequency of the injected wave.
  • FIG. 3A schematically represents an ion source according to the invention, seen in section and FIG. 3B the corresponding axial magnetic profile.
  • the invention uses an ion source of the "electron cyclotron resonance" (known) type and of which only the elements necessary for understanding the invention have been shown.
  • the atomic gas to be ionized is injected inside the microwave confinement cavity 10 in the direction symbolized by the arrow. There is shown inside this cavity a closed sheet of magnetic field corresponding to the electronic cyclotron frequency fce in agreement with the frequency fHF of the wave injected into the cavity 10.
  • fHF fce is equal to 10 GHz for example.
  • a second unclosed sheet of magnetic field associated with an electronic cyclotron frequency f′ce multiple of fce surrounds the closed sheet.
  • the frequency f′ce can be equal to 2fce for example.
  • the cavity 10 is provided with an electrode 12 pierced with an opening 14.
  • the electrode 12 is brought to a positive potential V1 of between 10 and 20 kV, for example.
  • the opening 14 has a diameter of 8 mm, for example.
  • the geometry of the electrode 12 is produced in a known manner so as to allow the extraction of the ions formed in the cavity 10.
  • a second electrode 16 in the form of a cone for example, is opposite the first electrode.
  • This electrode 16 is brought to a potential V2 lower than V1, zero volts for example.
  • An opening 18 is drilled in the pointed end of the cone.
  • the first electrode 12 and the second electrode 16 are separated by a distance of 40 mm for example.
  • the openings 14 and 18 are centered on the same axis which can be the axis of the cavity 10 for example.
  • the ions formed inside the cavity 10 are extracted through these openings 14 and 18 under the action of the electric field generated by the potential difference V1-V2.
  • the second electrode 16 is made of a material capable of being magnetized, preferably, of iron.
  • the opening 18 has a diameter of at least 15 mm, for example.
  • the opening 14 of the first electrode 12, the opening 18 of the second electrode 16 and the distance between the electrodes 12, 16 are adjusted so as to create a component of the B field perpendicular to the electric field generated by the potential difference V1 -V2, this in the vicinity of the second electrode 16.
  • the diameter of the opening 14 of the first electrode determines the quantity of ions which will lick the edge of the opening 18 of the second electrode 16.
  • the diameter of the opening 18 of the second electrode determines to what extent the lines of magnetic forces will flourish on the edges of the second electrode 16. It therefore determines the intensity and the location of the magnetic field gradient created in the vicinity of the second electrode. The magnetic field lines are therefore modified.
  • the electrode 16 is made of a material capable of being magnetized, the lines of force leaving the cavity 10 (magnetic leaks) terminate inevitably on the end of the electrode 16.
  • the magnetic induction B is very high just in front of the electrode 16 and between electrodes 16 and 12.
  • the magnetic induction B along the axis of the cavity, decreases and then increases, so as to form a bowl, the minimum of which is located in the center of the cavity.
  • peripheral ions extracted from the cavity 10 strike the edge of the opening 18 of the electrode 16; the latter then emits electrons which are channeled under the effect of the magnetic field and accelerated between the electrodes 16 and 12.
  • the energy communicated to these electrons allows them to strike the atoms of the gas and ionize them.
  • FIG. 4 schematically illustrates the injection of the electrons inside the cavity 10.
  • the electrons are torn from the electrode 16 and a kinetic energy is communicated to them due to the difference in potential V1-V2.
  • This energy is at least equal to the ionization threshold energy of the atoms of the gas.
  • this energy is close to Ei, energy having a value 3 to 4 times higher than the threshold energy and allowing optimal ionization.
  • the electrons are wound around the lines of magnetic forces and are accelerated in a spiral movement.
  • the electrons with a turning motion describe a straight or curved trajectory.
  • they emit an electromagnetic wave whose frequency is around 2fce. In this way the electrons are reflected on the open sheet of magnetic field associated with the frequency 2fce which forms a dynamic magnetic mirror.
  • High energy electrons can also be injected into the cavity using a simple electron gun.
  • the current of electrons must be around a hundred amperes since the electrons having no movement of gyration make only one passage in the cavity.
  • the method according to the invention makes it possible to strongly ionize atoms of a gas without having to resort to costly increases in the frequency of the injected wave.
  • the device described for the implementation of the method and compared to the known RCE sources, only the external electrode has been modified, the electrons injected into the cavity coming from the shocks occurring between the peripheral ions of the beam extracted from the source and the edges of this electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Particle Accelerators (AREA)
EP19890403384 1988-12-08 1989-12-06 Verfahren und Vorrichtung unter Benutzung einer ECR-Quelle für die Herstellung von hochgeladenen, schweren Ionen Expired - Lifetime EP0374011B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816141 1988-12-08
FR8816141A FR2640411B1 (fr) 1988-12-08 1988-12-08 Procede et dispositif utilisant une source rce pour la production d'ions lourds fortement charges

Publications (2)

Publication Number Publication Date
EP0374011A1 true EP0374011A1 (de) 1990-06-20
EP0374011B1 EP0374011B1 (de) 1994-04-06

Family

ID=9372718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890403384 Expired - Lifetime EP0374011B1 (de) 1988-12-08 1989-12-06 Verfahren und Vorrichtung unter Benutzung einer ECR-Quelle für die Herstellung von hochgeladenen, schweren Ionen

Country Status (3)

Country Link
EP (1) EP0374011B1 (de)
DE (1) DE68914421T2 (de)
FR (1) FR2640411B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003919A1 (de) * 1992-08-08 1994-02-17 Andrae Juergen Verfahren zur erzeugung von strahlen beliebiger, hochgeladener ionen niedriger kinetischer energie sowie vorrichtung zur durchführung des verfahrens
WO1995019640A1 (de) * 1994-01-13 1995-07-20 Ims Ionen Mikrofabrikations Systeme Gesellschaft M.B.H. Projektionssystem für geladene teilchen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634704A (en) * 1970-09-02 1972-01-11 Atomic Energy Commission Apparatus for the production of highly stripped ions
GB2069230A (en) * 1980-02-13 1981-08-19 Commissariat Energie Atomique Process and apparatus for producing highly charged large ions and an application utilizing this process
EP0238397A1 (de) * 1986-03-13 1987-09-23 Commissariat A L'energie Atomique Elektronenzyklotronresonanz-Ionenquelle mit koaxialer Injektion elektromagnetischer Wellen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634704A (en) * 1970-09-02 1972-01-11 Atomic Energy Commission Apparatus for the production of highly stripped ions
GB2069230A (en) * 1980-02-13 1981-08-19 Commissariat Energie Atomique Process and apparatus for producing highly charged large ions and an application utilizing this process
EP0238397A1 (de) * 1986-03-13 1987-09-23 Commissariat A L'energie Atomique Elektronenzyklotronresonanz-Ionenquelle mit koaxialer Injektion elektromagnetischer Wellen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PLASMA PHYSICS, vol. 23, no. 1, janvier 1981, pages 61-65, Institute of Physics and Pergamon Press Ltd, Belfast, IE; A. CAVALLO et al.: "Measurement of apparent turbulent temperature fluctuations on the TFR tokamak" *
REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 56, no. 9, septembre 1985, pages 1703-1705, American Institute of Physics, Woodbury, New York, US; H.J. HARTFUSS et al.: "Fast multichannel heterodyne radiometer for electron cyclotron emission measurement on stellarator W VII-A" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003919A1 (de) * 1992-08-08 1994-02-17 Andrae Juergen Verfahren zur erzeugung von strahlen beliebiger, hochgeladener ionen niedriger kinetischer energie sowie vorrichtung zur durchführung des verfahrens
WO1995019640A1 (de) * 1994-01-13 1995-07-20 Ims Ionen Mikrofabrikations Systeme Gesellschaft M.B.H. Projektionssystem für geladene teilchen

Also Published As

Publication number Publication date
DE68914421D1 (de) 1994-05-11
FR2640411B1 (fr) 1994-04-29
FR2640411A1 (fr) 1990-06-15
DE68914421T2 (de) 1994-11-10
EP0374011B1 (de) 1994-04-06

Similar Documents

Publication Publication Date Title
EP1496727B1 (de) Plasmabeschleuniger mit geschlossener Elektronenbahn
EP0238397B1 (de) Elektronenzyklotronresonanz-Ionenquelle mit koaxialer Injektion elektromagnetischer Wellen
US6896773B2 (en) High deposition rate sputtering
FR2799576A1 (fr) Source d'ions a haute frequence notamment moteur pour engin spatial
FR2485863A1 (fr) Dispositif a plasma d'arc sous vide
EP0711100B1 (de) Plasmaerzeugungsvorrichtung, ermöglichend eine Trennung zwischen Mikrowellenübertragung und -absorptionszonen
FR2671931A1 (fr) Dispositif de repartition d'une energie micro-onde pour l'excitation d'un plasma.
EP0145586B1 (de) Quelle von mehrfachgeladenen Ionen mit mehreren Elektronzyclotronresonanz-Zonen
EP0184475B1 (de) Verfahren und Vorrichtung zum Starten einer Mikrowellenionenquelle
Faircloth Ion sources for high-power hadron accelerators
EP0374011B1 (de) Verfahren und Vorrichtung unter Benutzung einer ECR-Quelle für die Herstellung von hochgeladenen, schweren Ionen
FR3071886B1 (fr) Propulseur a effet hall bi-etage
FR2580427A1 (fr) Source d'ions negatifs a resonance cyclotronique des electrons
US7081711B2 (en) Inductively generated streaming plasma ion source
EP0532411B1 (de) Elektronzyklotronresonanz-Ionenquelle mit koaxialer Zuführung elektromagnetischer Wellen
EP0483004B1 (de) Quelle starkgeladener Ionen mit polarisierbarer Probe und mit Elektronzyklotronresonanz
EP3574719B1 (de) System zur erzeugung eines plasmastrahls von metallionen
EP0946961B1 (de) Magnetische vorrichtung, insbesondere fuer elektronzyklotronresonanzionenquellen, die die erzeugung geschlossener oberflaechen mit konstanter magnetfeldstaerke b und beliebiger groesse ermoeglichen
EP2311061B1 (de) Elektronenzyklotronresonanzionengenerator
EP0813223B1 (de) Magnetfelderzeugungsvorrichtung und ECR Ionenquelle dafür
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
Poluektov et al. Study of plasma dynamics in a pulsed hollow cathode magnetron
WO2017115023A1 (fr) Système de génération de faisceau plasma à dérive d'électrons fermée et propulseur comprenant un tel système
EP0819314A1 (de) Verfahren und vorrichtung zur energiesteuerung mindestens einer der ladungsträgersorten, die einen in ein plasma gebrauchten körper bombardieren
FR2534276A1 (fr) Procede et dispositif pour revetir une piece par pulverisation cathodique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB LI NL

17P Request for examination filed

Effective date: 19901126

17Q First examination report despatched

Effective date: 19930303

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB LI NL

REF Corresponds to:

Ref document number: 68914421

Country of ref document: DE

Date of ref document: 19940511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971128

Year of fee payment: 9

Ref country code: BE

Payment date: 19971128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971216

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971227

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19981231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001