EP0373153A2 - Dispositif respiratoire - Google Patents
Dispositif respiratoire Download PDFInfo
- Publication number
- EP0373153A2 EP0373153A2 EP90101880A EP90101880A EP0373153A2 EP 0373153 A2 EP0373153 A2 EP 0373153A2 EP 90101880 A EP90101880 A EP 90101880A EP 90101880 A EP90101880 A EP 90101880A EP 0373153 A2 EP0373153 A2 EP 0373153A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- subsidiary
- pressure
- chamber
- shutter member
- chambers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims description 16
- 238000009423 ventilation Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 5
- 210000004072 lung Anatomy 0.000 claims description 4
- 210000000038 chest Anatomy 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 210000000779 thoracic wall Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration or heart stimulation, e.g. heart massage
- A61H31/02—"Iron-lungs", i.e. involving chest expansion by applying underpressure thereon, whether or not combined with gas breathing means
Definitions
- the present invention relates to ventilator apparatus incorporating fluid control valves, for controlling air flow in such ventilator apparatus.
- the present invention provides apparatus for use in ventilation of the lungs of a patient, comprising a ventilator enclosure for receiving at least the chest region of the patient's body, and means for varying the pressure in the enclosure to produce ventilation, said pressure varying means comprising a source of positive gas pressure, a source of negative gas pressure, and valve means connected between said sources and said housing, said valve means comprising a valve body, a main chamber and at least two subsidiary chambers in said valve body, a main port connected for gas flow to said housing and communicating with the main chamber in said valve body, at least two subsidiary ports, one subsidiary port being connected for gas flow to said source of positive pressure and the other said port being connected for gas flow to said source of negative pressure and each said port communicating with a respective said subsidiary chamber in said valve body, a valve seat in said valve body, said subsidiary chambers being mutually isolated and opening into the main chamber at respective openings in said valve seat, a rotary shutter member having a sealing face overlying said valve seat openings which controls fluid flow between said main and subsidiary chambers, and an electronic
- the enclosure for the patient may be as described and claimed in European Patent Application No. 0258302 from which the present Application is divided.
- the means for varying the pressure in the enclosure is preferably adapted to establish a sub-ambient pressure in the enclosure and to vary the pressure in the enclosure so as to superimpose on the sub-ambient pressure a cyclic variation, preferably having a frequency of above 1 Hz.
- the oscillator is adapted to produce a negative base line pressure of at least 196 Pa (2 cm H2O), e.g. from 196 Pa to 2940 Pa (30 cm H2O) more preferably from 196 Pa (2 cm H2O) to 1961 Pa (20 cm H2O).
- the oscillator is adjustable to provide a desired sub-ambient pressure and as the most preferred mean enclosure pressure is about -980 Pa (-10 cm H2O), preferably at least a range of from -490 Pa (5 cm H2O) to -1470 Pa (15 cm H2O) is available.
- the oscillator is adapted to produce a pressure variation amplitude of from 392 Pa (4 cm H2O) to 3136 Pa (32 cm H2O).
- the oscillator is adjustable to produce a desired amplitude of pressure variation such as from 785 Pa (8 cm H2O) to 1570 Pa (16 cm H2O).
- the oscillator is adjustable to provide a desired shape of waveform for said cyclic pressure variation. It may for instance be possible to vary the I/E ratio, to choose between two or more of a sine wave pattern, a square wave pattern or a saw tooth wave pattern for the whole of the pressure variation, or for parts of the wave form or to choose other wave forms.
- the source of positive pressure of gas may be, for example a pressurised air line in a hospital ward, or a locally-provided air compressor. Where a vacuum suction line is provided, for example adjacent the pressurised air source, the suction line may serve as the source of negative pressure.
- the vacuum source may be a vacuum pump, which pump may be driven by the source of air under pressure.
- the means for varying the pressure in the enclosure is adapted to produce cyclic variations in said pressure at a frequency of from 3 to 12 Hz.
- the frequencies most advantageously used are from 4 to 8 Hz, e.g. about 5 Hz.
- Isolation of the subsidiary chambers of the valve means from one another prevents air flow from the source of pressurised air to the vacuum source.
- the rate of flow between the main port and each subsidiary port preferably varies with the position of the shutter opening within the range of positions for that subsidiary port. This enables the fluid flow to be controlled cyclically in accordance with any desired flow sequence. For example to vary the I/E ratio, to choose between two or more of a sine wave pattern, a square wave pattern or a saw tooth pattern, for the whole of the pressure variation, or for parts of the wave form or to choose other wave forms.
- the shutter member preferably consists of a plate, the shutter opening being an aperture therein.
- the plate is a disc, the aperture being off-set from the centre of the disc, and the shutter member further comprising a spindle connected to the disc for controlled rotation of the aperture about an axis.
- the first and second subsidiary chambers are preferably spaced, e.g. parallel, bores in a body portion of the valve means, whose respective ends lie in said common plane sealing against the disc.
- the said bores are preferably shaped as spaced sectors of an annulus, when viewed in cross-section, the arrangement being such that the disc aperture overlaps successive sector-shaped ends of the bores as the disc is rotated.
- the minimum cross-section of the first subsidiary chamber is preferably substantially larger than that of the second subsidiary chamber.
- the valve is then capable of compensating for differences in the fluid pressures applied to the first and second subsidiary ports.
- the motor is controlled by an electronic processor in accordance with a predetermined program whereby the first and second subsidiary chambers are periodically and alternately connected to the main chamber.
- accumulator reservoirs are connected to either or to each of said first and second subsidiary ports, the or each accumulator reservoir being for connection to a source of gas pressure or vacuum.
- the apparatus includes a pressure sensor for sensing gas pressure at or adjacent said main port or in said ventilator enclosure.
- the apparatus includes electronic circuitry for controlling the movement of said shutter member to provide a desired pattern of pressure changes at or adjacent said main port or in said ventilator.
- said circuitry makes use of signals from said pressure sensor to control said shutter member.
- a ventilator enclosure includes a base member 10 providing a patient receiving upper surface 11 upon which is shown an infant patient being provided with artificial respiration by the ventilator.
- the ventilator further comprises a cover member 12 of a generally flattened U-shaped defining a tunnel over the trunk of the patient.
- the cover member comprises open ends provided with apertures 13 through which pass the body of the patient.
- Each aperture 13 is provided with a sealing member 14 in the form of a pleated rubber curtain attached along all three sides of the end of the cover member 12.
- the cover member is detachable from the base by releasing quick release latches 15 positioned one on each longitudinally running edge of the cover member.
- a pair of air inlet/outlet ports 16 are provided lying one either side of the longitudinal mid-line of the cover member and above an upper chest region of the patient.
- the ports 16 are connected to an oscillator for producing pressure changes in the enclosure via flexible tubes 17 meeting at a T-junction before being connected to the oscillator.
- the ports 16 are provided in a detachable hatch portion 18 of the cover member which is removable to provide access to the chest of the patient.
- This pressure oscillator is capable of producing oscillations in the pressure within the ventilator, and can be arranged to provide a negative mean enclosure pressure.
- the pressure oscillator 800 comprises a fluid control valve A whose output is connected to the ventilator enclosure by way of an output pipe 804.
- the valve A has two alternative inputs, connected respectively to a pressure chamber C and a vacuum enclosure D.
- the valve A is controlled by means of an electronic stepper motor B to connect the output either to the pressure chamber C or to the vacuum enclosure D.
- the pressure chamber C receives pressurised air through an air pipe 801, for example from a source located in the wall W of a hospital.
- the vacuum enclosure D may be connected, through an air pipe 802, to a suction pipe, for example in the hospital wall W.
- a suction pipe for example in the hospital wall W.
- the vacuum in the vacuum enclosure D can alterntively be provided by means of a vacuum pump E connected thereto, the vacuum pump E being driven by means of pressurised air conveyed to the vacuum pump E by way of a further air pipe 803 which is connected to the source of pressurised air.
- the electronic stepper motor B is controlled by a microprocessor M through a control line 807.
- the microprocessor M monitors the output air pressure, i.e. the pressure in the ventilator enclosure, by means of a pressure gauge F whose input is connected by way of a pressure line 805 to the interior of the ventilator enclosure, and whose output is connected by way of control line 806 to the microprocessor M.
- the pressure line 805 conveniently passes through the output air pipe 804 which links the fluid control valve A and the ventilator enclosure.
- the fluid control valve A comprises a valve body 809, an output port 812 a leading to an output chamber 812 in screw-threaded engagement with the valve body 809, a pressure port 815 at one side of the valve body, a vacuum port 814 at the opposite side of the valve body, and a shutter disc 810 retained by a bearing disk 811 and drivingly connected by a spindle 808 to the stepper motor B.
- the "output port” and “output chamber” will be so referred to for convenience but it will be apparent that the flow of gas therethrough is in fact oscillating and not solely or predominantly in the outward direction.
- the valve body 809 and output chamber 812 are coaxial, and the valve body 809 has an axial bore which receives the spindle 808 of the shutter disc 810.
- the shutter disc 810 consists of a circular disc from which depends axially the spindle 808.
- a shutter aperture 813 is formed in the disc off the centre thereof.
- the shutter aperture 813 subtends an angle of approximately 70°, and has the shape of a sector of an annulus.
- the bearing disc 811 35 consists of a circular disc 824 from which depends axially a short bearing shaft 825 on whose end is mounted a ball bearing 826.
- the disc 824 is formed with three large apertures, shaped as sectors of an annulus, to enable air to flow through the bearing disc 811.
- the bearing disc 811 is mounted coaxially within the output chamber 812.
- the upper peripheral surface of the disc 824 abuts against an annular shoulder between two sections of the output chamber of different internal diameters.
- the ball bearing 826 engages the centre of the upper surface of the shutter disc 810, ensuring that the shutter disc remains in its seating within the valve body 809, but allowing the shutter disc to rotate.
- the valve body 809 has a pressure input chamber 817 and a vacuum input chamber 816, these chambers being mutually isolated and communicating respectively with the pressure input and vacuum input ports 815, 814.
- the input chambers 816, 817 are formed as paraxial bores in the valve body 809, each having the shape of a sector of an annulus, when viewed in cross-section.
- the lower end of each input chamber is closed, while the upper ends, at the interface with the shutter disc 810, lie in a plane which is common to the disc of the shutter disc 810.
- the pressure input and vacuum input chambers 817, 816 are arranged relative to the shutter disc 810 such that the shutter aperture 813 registers with either or neither of the input chambers but never with both of them at the same time.
- the shutter disc 810 rotates, passes through a first range of positions, at which flow is permitted only through the shutter opening between the pressure input chamber and the output chamber and at a variable rate dependant on a precise position within the first range, and a second range at which flow is permitted only between the vacuum input chamber and the output at a variable rate dependent on the precise position within the second range at which the input and output chambers are all mutually isolated.
- the cross-sectional area of the vacuum input chamber 816 is approximately twice the cross-sectional area of the pressure input chamber 817. This is to provide an extra constriction in the flow of pressurised air to the output chamber, to compensate for the fact that there is a greater pressure difference between the pressure chamber C and the mean output pressure than between the vacuum enclosure D and the mean output pressure.
- the valve body 809 has a base portion 819, shaped as an irregular triangle with rounded vertices, from which depends from its centre an externally-threaded, cylindrical portion 820, for screw-threaded engagement with the output chamber 812.
- a shallow lip is cut into the upper surface of the cylindrical portion 820 of the valve body, at the interface with the shutter disc 810.
- the ledge 823 subtends an angle of approximately 140°, and is divided from the remainder 822 of the upper surface of the cylindrical portion 820 by a ridge 821.
- the purpose of the ledge 823 is to reduce friction between the undersurface of the shutter disc 810 and the adjacent upper surface of the cylindrical portion 820 of the body member, against which the shutter disc slides in use.
- the cyclic pressure oscillations applied to the ventilator enclosure are produced as follows.
- valves of the maximum and minimum pressures are determined by selecting the precise angular position of the shutter disc 810, so that the required proportion of the total area of the relevant input chamber 816 or 817 is opened by the shutter 813. This is achieved by the electronic stepping motor B, controlled by the microprocessor M. Further, the variation of pressure with time is controlled by precise timing of the movement of the shutter disc 810. For example, the shutter opening 813 could be moved rapidly or more slowly over the appropriate input chamber, and the dwell time could be small or a large proportion of the overall cycle.
- the electronic stepping motor B is preferably capable of moving the shutter disc back and forth in a reciprocating motion alternately over the two input chambers, at a frequency of from 1 to 1800 times per minute, thus causing air pressure oscillations in a corresponding frequency.
- the wave shape of the pressure oscillations can be controlled as required, for example to a saw tooth, square or sine wave.
- the jet of air into the chamber impinging upon the chest wall serves to start downward movement of the chest wall before the resulting increase of pressure in the enclosure as a whole takes effect.
- the suction produced by the outflow of air at the commencement of the falling-pressure phase of the cycle serves to start chest inflation before the resulting drop in pressure in the enclosure as a whole would do so.
- the coupling between the air flow to and from the chamber and chest wall movement can be much improved by disposing the air inlet/outlet ports so as to produce these local pressure effects.
- the pressure oscillator is preferably capable of delivering through the connection to the enclosure an air flow of at least twice the velocity that would be obtained by connecting the inlet port to atmosphere through an equivalent flow path, preferably 3 or more times the velocity.
- the ventilator described with reference to the drawing is of low cost since it does not seek to replace the incubator and allows the use of conventional incubator.
- the head, shoulders and arms and the lower part of the patients body are left accessible for routine or emergency procedures. There is therefore no need to interfere with the process of ventilation to keep the infant clean and dry or to install or maintain drips or other lines.
- the temperature of the infant can be controlled satisfactorily and this is made even easier by the fact that a substantial part of the patients body is not involved in the ventilator but is simply in the atmosphere of the incubator.
- the fluid control valve could take other forms than that illustrated.
- the cross-sectional areas of the two input chambers 816, 817 could be of any relative size, and these chambers could be formed at any circumferentially-spaced positions in the valve body.
- the valve could be provided with three or more inputs, with corresponding separate input chambers, each of which may be brought separately into communication with the output chamber.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Emergency Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Multiple-Way Valves (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT9090101880T ATE104539T1 (de) | 1986-02-04 | 1990-01-31 | Beatmungsgeraet. |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB868602646A GB8602646D0 (en) | 1986-02-04 | 1986-02-04 | Ventilator apparatus |
GB8602646 | 1986-07-25 | ||
GB8618254 | 1986-07-25 | ||
GB868618254A GB8618254D0 (en) | 1986-02-04 | 1986-07-25 | Ventilator apparatus |
EP19870901084 EP0258302B1 (fr) | 1986-02-04 | 1987-02-03 | Appareil de ventilation pulmonaire |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87901084.1 Division | 1987-08-18 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0373153A2 true EP0373153A2 (fr) | 1990-06-13 |
EP0373153A3 EP0373153A3 (en) | 1990-09-26 |
EP0373153B1 EP0373153B1 (fr) | 1994-04-20 |
Family
ID=10592450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90101880A Expired - Lifetime EP0373153B1 (fr) | 1986-02-04 | 1987-02-03 | Dispositif respiratoire |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0373153B1 (fr) |
JP (1) | JP2651686B2 (fr) |
GB (2) | GB8602646D0 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016663A1 (fr) * | 1995-10-31 | 1997-05-09 | Zamir Hayek | Clapets de commande de fluide |
WO1998003145A1 (fr) | 1996-07-18 | 1998-01-29 | Zamir Hayek | Ventilateur |
WO1998049993A1 (fr) | 1997-05-07 | 1998-11-12 | Zamir Hayek | Soupape et oscillateur permettant de produire une forme d'onde de pression |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2440274B1 (fr) * | 2009-06-09 | 2021-11-24 | Respinova Ltd. | Dispositif pour appliquer des protocoles thérapeutiques à des organes du système cardio-pulmonaire |
CN103932881B (zh) * | 2014-05-04 | 2015-10-07 | 无锡华纳医疗科技有限公司 | 一种高频脉冲压力波治疗仪 |
AU2015369567B2 (en) * | 2014-12-26 | 2020-05-14 | Glenn Fernandes | Innovations in mechanical ventilators |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2780222A (en) * | 1953-12-18 | 1957-02-05 | J J Monaghan Company Inc | Respirators |
BE645564A (fr) * | 1964-03-05 | 1964-07-16 | ||
FR2420157A1 (fr) * | 1978-03-16 | 1979-10-12 | Inst Nat Sante Rech Med | Dispositif selecteur d'ecoulement, notamment pour separer des gaz inspires et expires par un sujet |
-
1986
- 1986-02-04 GB GB868602646A patent/GB8602646D0/en active Pending
- 1986-07-25 GB GB868618254A patent/GB8618254D0/en active Pending
-
1987
- 1987-02-03 JP JP50108687A patent/JP2651686B2/ja not_active Expired - Lifetime
- 1987-02-03 EP EP90101880A patent/EP0373153B1/fr not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2780222A (en) * | 1953-12-18 | 1957-02-05 | J J Monaghan Company Inc | Respirators |
BE645564A (fr) * | 1964-03-05 | 1964-07-16 | ||
FR2420157A1 (fr) * | 1978-03-16 | 1979-10-12 | Inst Nat Sante Rech Med | Dispositif selecteur d'ecoulement, notamment pour separer des gaz inspires et expires par un sujet |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016663A1 (fr) * | 1995-10-31 | 1997-05-09 | Zamir Hayek | Clapets de commande de fluide |
AU713322B2 (en) * | 1995-10-31 | 1999-11-25 | Zamir Hayek | Fluid control valves |
US6182658B1 (en) | 1995-10-31 | 2001-02-06 | Zamir Hayek | Fluid control valves |
WO1998003145A1 (fr) | 1996-07-18 | 1998-01-29 | Zamir Hayek | Ventilateur |
WO1998049993A1 (fr) | 1997-05-07 | 1998-11-12 | Zamir Hayek | Soupape et oscillateur permettant de produire une forme d'onde de pression |
AU737215B2 (en) * | 1997-05-07 | 2001-08-09 | Zamir Hayek | Valve and oscillator for producing a pressure waveform |
US6708691B1 (en) | 1997-05-07 | 2004-03-23 | Zamir Hayek | Valve and oscillator for producing a pressure waveform |
Also Published As
Publication number | Publication date |
---|---|
GB8618254D0 (en) | 1986-09-03 |
JPS63502326A (ja) | 1988-09-08 |
EP0373153A3 (en) | 1990-09-26 |
EP0373153B1 (fr) | 1994-04-20 |
GB8602646D0 (en) | 1986-03-12 |
JP2651686B2 (ja) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4930498A (en) | Ventilator apparatus and fluid control valve | |
US5988166A (en) | Ventilator apparatus | |
US4770165A (en) | Ventilators and pressure oscillators thereof | |
US5299599A (en) | Valving arrangement for a negative pressure ventilator | |
AU737215B2 (en) | Valve and oscillator for producing a pressure waveform | |
EP0513213A4 (fr) | ||
US4495947A (en) | High speed medical ventilator | |
EP0373153B1 (fr) | Dispositif respiratoire | |
US20210212873A1 (en) | Combination respiratory therapy and mattress functionality system integrated into a patient bed | |
US3507297A (en) | Artificial respiration apparatus | |
GB2215218A (en) | Fluid control valve | |
JP2798257B2 (ja) | 人工呼吸器における呼吸振動発生装置 | |
CN110064115B (zh) | 一种用于呼吸机的频率调节阀 | |
WO1994027553A1 (fr) | Soupape de regulation fluidique destinee a un ventilateur pulmonaire | |
US3269388A (en) | Apparatus for producing cyclic pressure conditions | |
JP2668004B2 (ja) | 人工呼吸器の流量検出装置および人工呼吸器 | |
JPH02131765A (ja) | 人工呼吸器における呼吸振動発生装置 | |
JP2798255B2 (ja) | 人工呼吸器 | |
JPH07265426A (ja) | 人工呼吸器用呼吸振動発生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900208 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 258302 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19920828 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 258302 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 104539 Country of ref document: AT Date of ref document: 19940515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3789670 Country of ref document: DE Date of ref document: 19940526 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 90101880.4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980121 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19980122 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980213 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19980218 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980224 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19980225 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980429 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19980603 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990203 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 |
|
BERE | Be: lapsed |
Owner name: DRANEZ ANSTALT Effective date: 19990228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991029 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90101880.4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020128 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030203 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050203 |