EP0371475A1 - Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme - Google Patents

Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme Download PDF

Info

Publication number
EP0371475A1
EP0371475A1 EP89121985A EP89121985A EP0371475A1 EP 0371475 A1 EP0371475 A1 EP 0371475A1 EP 89121985 A EP89121985 A EP 89121985A EP 89121985 A EP89121985 A EP 89121985A EP 0371475 A1 EP0371475 A1 EP 0371475A1
Authority
EP
European Patent Office
Prior art keywords
tier
grids
strips
respect
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89121985A
Other languages
English (en)
French (fr)
Inventor
Lyuben Konstantinov Dipl.-Ing. Stambolov
Emilia Lyubenova Dipl.-Ing. Stambolova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DF "VODOKANALINGENERING"
Original Assignee
DF "VODOKANALINGENERING"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DF "VODOKANALINGENERING" filed Critical DF "VODOKANALINGENERING"
Publication of EP0371475A1 publication Critical patent/EP0371475A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • F28F25/085Substantially horizontal grids; Blocks

Definitions

  • the invention relates to a sprinkling device for heat and material exchangers, in particular cooling towers, with a dispersing device for a liquid which consists of strip grids made of polymeric material which are held in layers one above the other by means of connecting straps on hangers.
  • Such a sprinkler device for cooling towers is known from BG-A-41770, in which the dispersing device for the liquid is followed by at least two spaced-apart flow-around layers, each of which is formed by a series of cells which are detachably seated via holding members can be connected in small load-bearing beams.
  • the beams are arranged in rows on mounting brackets on hangers, which are separated by spacers.
  • Each stratified flow is positioned so that your cells are staggered with respect to the cells of the neighboring strata.
  • the known sprinkler is unsuitable for gas supply in cross flow. Their dimensions are relatively large and their energy requirements are high. The total evaporation area of the sprinkler system per unit volume is relatively small, since a passage of larger contaminants with the liquid must be ensured. Finally, the known sprinkler requires the production, transportation and assembly of a large number of polymer elements with large dimensions. The known sprinkler is also not suitable for the use of liquids that are contaminated with oils and other surface-active substances.
  • the object of the invention is now to design the generic sprinkler device so that it is suitable for gas supply in cross and countercurrent while ensuring a high volume coefficient of heat and material exchange, even if contaminants in the form of oils and other surface-active substances are present, and can be easily assembled from a small number of components that are simple to manufacture and transport.
  • each connecting strap has an opening for the holder on a hanger and holding members for the floor grille that the Opening of each connection plate is arranged eccentrically with respect to its center and its holding members, that the connection plates for holding the tier grids in two successive floors by 180 ° around a vertical Axis are rotated to each other and that the tier grids of every second tier are rotated by 180 ° to each other about a vertical axis, so that the strips of a tier grid are offset from the corresponding bars of the tier grid of the tier above and below.
  • the strips of a tiered grille are preferably arranged eccentrically in two directions, usually directions perpendicular to one another, with respect to its circumferential strip.
  • the profile height of the circumferential and the stiffening strips of the tier grille is 25mm to 400mm, while the other strips have a profile height of 10mm to 400mm.
  • prismatic W-shaped inserts made of polymeric material are arranged in the openings of the tier grids delimited by strips.
  • the eccentric arrangement of the strips relative to the peripheral strip in at least one direction means that the row of openings along a peripheral edge is narrower than the other openings of the same size. If the strips are arranged eccentrically in two directions with respect to the circumferential strip, this means that the openings located on two adjacent edges of the corresponding tier grid are narrower than the other openings of the tier grid, which are generally of equal size.
  • This makes it possible to join the storey grids into storeys in which the storey grids are mutually rotated with respect to a vertical axis, which means that the strips of the storey grids of adjacent storeys are offset from one another. This also enables the arrangement of more floors made up of stacked floor grids per volume unit with optimal drop impact energy and increased heat and mass transfer coefficient. Cut out grids can fill all shapes.
  • the sprinkler device Since the height of the tier grids is low, the sprinkler device also allows a gas to flow through in countercurrent and countercurrent, and homogenization of the gas stream can be achieved by compressing the tiers in the flow area. Due to the constant formation of droplets and droplet dispersion, a mist of oils and surface-active substances, if any, is torn open, which also promotes heat and mass transfer.
  • the tier grids can be quickly manufactured as one-piece polymer elements with large external dimensions. They are easy to transport, assemble, and easy to operate. By using prismatic inlays when using pure liquids with a high throughput, the homogenization of the gas flow can be improved, whereby the heat and mass transfer coefficient can be increased.
  • the sprinkler device 2 shown in FIG. 1 is arranged in a cooling tower 1 via openings 3 for the supply of a gas stream, not shown, and under nozzles 4 of a pipe-containing distribution device 5 for a liquid.
  • the sprinkler device 2 is suspended via connecting lugs 6 which are connected vertically one above the other with hangers 7 by plugging. Drip catchers 8 are arranged above the distribution device 5.
  • a dispersing device 18 for the liquid is attached under the distribution device 5, which consists of assembled tier grids 19 consists of polymeric material, each of which is made up of eccentrically arranged in relation to the circumference, extending in two directions perpendicular to each other, forming or dispersing strips, between each of which openings are formed, as shown in FIG. 1 for the top two floors and in Fig. 4 for the floor grid 19 is shown.
  • the profile height of the circumferential and stiffening strips of the floor grille 19 is 25mm to 400mm. The remaining strips have a height of 10mm to 400mm.
  • Prismatic polymer inlays 12 with a VVVV shape can be arranged in the openings between the strips of the tier grille 19, which is particularly advantageous for large throughputs of relatively pure liquids.
  • An opening 20 is provided eccentrically in each connecting lug 6 with respect to its center 30.
  • a guiding seat 21 Arranged around the opening 20 on each side of the connecting bracket 6 is a guiding seat 21 which projects perpendicularly therefrom and forms a peg-shaped holding member.
  • the connecting bracket 6 is also provided with connecting pins 13 arranged concentrically with its center.
  • the connecting straps 6 of the vertically successively arranged tier grids 19 are rotated from tier to tier by 180 ° about a vertical axis to one another, while the tier grids 19 in the configuration of the top two levels of FIG. 1 or in the configuration of the tier grating 19 of FIG. 4 are rotated 180 ° to each other on every second floor about a vertical axis.
  • connection of the tier grid 19 to the connecting straps 6 is made in that the corresponding connecting pins 13 of the connecting strap 6 are inserted into sockets 31 on the tier grids.
  • floor grids 19 can also be fixed, as shown as the third floor from above in FIG. 1, in which the drop-forming or dispersing strips extend only in one direction, with the exception of those on the circumference.
  • these floor grilles 19 are rotated by 90 °, 180 °, 270 ° and 360 °, so that they are offset diagonally due to the eccentrically suspended connecting plates 6, which are rotated by 180 ° on each adjacent floor about a vertical axis .
  • the sprinkling device 2 is associated with spatial polymer blocks 9 made of layers 11 with cells 10 around it, which cells have a hexagonal shape in plan view.
  • the flow-around layers 11 of a polymer block 9 are arranged vertically at a certain distance from one another. If the sprinkler device 2 is operated with pure liquids and high throughputs, prismatic inserts 12 with an MM shape can be provided in the cells 10.
  • the cells 10 in the flowed-around layers 11 are detachably attached to cylindrical openings 16 of connection openings 14 of supporting small beams 15 via holding members in the form of connecting pins 13.
  • the supporting beams 15 are attached to the connecting lugs 6 via the cylindrical walls 16 of the connection openings 14, which are attached to the hangers 7.
  • the vertical distance between the flow-around layers 11 of a polymer block 9 and between the individual polymer blocks 9 is determined by spacer bushes 17 which are fastened between the connecting straps 6 and attached to the hangers 7.
  • the flow around layers 11 of a spatial polymer block 9 can thus are arranged so that the cells 10 of each flow-around layer 11 can be displaced in two directions with respect to the cells 10 of their adjacent layers 11.
  • liquid is applied as a liquid mist through the distribution device 5 and the nozzles 4 to the dispersing device 18, which is composed of whole and cut-out tier grids 19 and is homogenized on the top floors.
  • the entire sprinkling device 2 is designed as a dispersing device 18, that is to say without polymer blocks 9, the gas stream being homogenized in the bottom floors of the vertically arranged floor grating 19 by virtue of the fact that the Floors are compacted locally, i.e. they are set with a smaller vertical distance from each other.
  • the profile height of the strips of the floor grid 19 made of polymeric material with dimensions from 25mm to 400mm for the peripheral and load-bearing strips and from 10mm to 400mm for the other strips enables a cross flow of the gas through the spaces between the floors.
  • the sprinkling device 2 works as a pure dispersing device 18.
  • the volume coefficient of the heat and material exchange increases as a result of evaporation processes along the walls of the strips of the tier grille 19 and, along with large throughputs, along the walls the prismatic inlays 12 made of polymeric material in VVVV form in the openings of the tier grille 19 delimited by the strips.
  • the draining of the liquid speed of the floors designed and arranged according to the invention and the impact of the drops on the floor grid 19 is shown in FIG. 7.
  • the displacement of the position of the drop-forming and dripping-dispersing strips in the tier grids 19 is carried out in two operations, namely by rotating the eccentric connecting plates 6 for each subsequent tier by 180 ° about a vertical axis and by rotating the tier grids 19 about a vertical axis by 180 ° on every second floor, the strips of these floor grilles 19 according to FIG. 4 being arranged eccentrically in two directions.
  • the sprinkling device 2 can be designed as a combined device, in which polymer blocks 9 in the form of flows flow vertically under the dispersing device 18 from assembled tier grids 19 made of polymeric material on the hangers 7 with the aid of connecting lugs 6 and spacers 17 Layers 11 with hexagonal cells 10 are held in a staggered or non-staggered shape with respect to the adjacent layers 11 arranged in tiers.
  • the sprinkling device 2 is surrounded by layers 11 of polymeric elements with hexagonal cells 10, or if the dispersing device 18 uses tiered grids 19 whose drop-forming or liquid-dispersing strips, with the exception of the strips, are arranged in parallel in one direction on the circumference, which is the configuration If the floor grid 19 corresponds to the third floor from above in FIG. 1, these are successively around 90 °, 180 °, 270 ° and 360 ° about a vertical axis arranged rotated. A displacement of the polymer elements of the cells 10 can also be provided. To clean the nozzles 4, the corresponding drip catchers 8 are lifted off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Die Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme, hat eine Dispergiereinrichtung (18) für eine Flüssigkeit, die aus Leisten aufweisenden Etagengittern (19) aus polymerem Material besteht. Die Etagengitter (19) sind übereinander angeordnet. Die Leisten eines Etagengitters (19) sind dabei bezogen auf seine Umfangsleiste wenigstens in einer Richtung, vorzugsweise in zwei Richtungen, exzentrisch angeordnet. Die Etagengitter (19) sind im Abstand übereinander mit Hilfe von Anschlußlaschen (6) an Aufhängern (7) gehalten, wofür jede Anschlußlasche (6) eine Öffnung (20) und Halteorgane (13) aufweist. Die Öffnung (20) jeder Anschlußlasche (6) für einen Aufhänger (7) ist bezogen auf ihre Mitte (30) und auf ihre Halteorgane (13) für die Etagengitter (19) exzentrisch angeordnet. Die Anschlußlaschen (6) zum Halten von Etagengitter (19) in zwei aufeinanderfolgenden Etagen sind um eine vertikale Achse um 180° zueinander gedreht. Ferner sind die Etagengitter (19) jeder zweiten Etage um eine vertikale Achse um 180° zueinander gedreht. Dadurch sind die Leisten eines Etagengitters (19) zu den entsprechenden Leisten des Etagengitters (19) der darüber und darunter befindlichen Etage versetzt.

Description

  • Die Erfindung betrifft eine Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme, mit einer Dispergiereinrichtung für eine Flüssigkeit, die aus Leisten aufweisenden Etagengittern aus polymerem Material besteht, welche in Etagen im Abstand übereinander mit Hilfe von Anschlußlaschen an Aufhängern gehalten sind.
  • Aus der BG-A-41770 ist eine solche Berieselungseinrichtung für Kühltürme bekannt, bei welcher der Dispergiereinrich­tung für die Flüssigkeit mindestens zwei im Abstand vonein­ander befindliche umströmte Schichten nachgeordnet sind, von denen jede von einer Reihe von Zellen gebildet wird, die über Halteorgane lösbar mit Sitzen in kleinen tragenden Balken verbindbar sind. Die Balken sind über Befestigungs­laschen an Aufhängern in Reihen angeordnet, die durch Di­stanzbuchsen getrennt sind. Jede umströmte Schicht ist so positioniert, daß Ihre Zellen in Bezug auf die Zellen der benachbarten Schicht versetzt sind.
  • Die bekannte Berieselungseinrichtung ist für eine Gaszufüh­rung im Querstrom ungeeignet. Ihre Abmessungen sind relativ groß und ihr Energiebedarf hoch. Die gesamte Verdampfungs­fläche der Berieselungseinrichtung pro Volumeneinheit ist relativ klein, da ein Durchgang von größeren Verunreinigun­gen mit der Flüssigkeit gewährleistet sein muß. Schließlich erfordert die bekannte Berieselungseinrichtung die Erzeu­gung, den Transport und die Montage einer großen Anzahl von Polymerenelementen mit großen Abmessungen. Die bekannte Be­rieselungseinrichtung ist ferner für den Einsatz von Flüs­sigkeiten nicht geeignet, die mit Ölen und anderen oberflä­chenaktiven Stoffen verunreinigt sind.
  • Die der Erfindung zugrunde liegende Aufgabe besteht nun da­rin, die gattungsgemäße Berieselungseinrichtung so auszu­bilden, daß sie für eine Gaszuführung im Quer- und Gegen­strom unter Gewährleistung eines hohen Volumenkoeffizienten des Wärme- und Stoffaustausches geeignet ist, auch wenn in der Flüssigkeit Verunreinigungen in Form von Ölen und ande­ren oberflächenaktiven Stoffen vorhanden sind, und aus ei­ner geringen Anzahl einfach herstellbarer und leicht trans­portierbarer Bauelemente einfach zusammenfügbar ist.
  • Diese Aufgabe wird ausgehend von der Berieselungseinrich­tung der gattungsgemäßen Art dadurch gelöst, daß die Lei­sten eines Etagengitters bezogen auf seine Umfangsleiste wenigstens in einer Richtung exzentrisch angeordnet sind, daß jede Anschlußlasche eine Öffnung für die Halterung an einem Aufhänger und Halteorgane für die Etagengitter auf­weist, daß die Öffnung jeder Anschlußlasche bezogen auf ihre Mitte und ihre Halteorgane exzentrisch angeordnet ist, daß die Anschlußlaschen zum Halten der Etagengittern in zwei aufeinanderfolgenden Etagen um 180° um eine vertikale Achse zueinander gedreht sind und daß die Etagengitter je­der zweiten Etage um eine vertikale Achse um 180° zueinan­der gedreht sind, so daß die Leisten eines Etagengitters zu den entsprechenden Leisten des Etagengitters der darüber und darunter befindlichen Etage versetzt sind.
  • Vorzugsweise sind die Leisten eines Etagengitters bezogen auf seine Umlaufleiste in zwei Richtungen, gewöhnlich zu­einander senkrechten Richtungen, exzentrisch angeordnet.
  • Vorteilhafterweise beträgt die Profilhöhe der am Umfang be­findlichen und der aussteifenden Leisten der Etagengitter 25mm bis 400mm, während die übrigen Leisten eine Profilhöhe von 10mm bis 400mm haben.
  • Zweckmäßigerweise sind in den von Leisten begrenzten Öff­nungen der Etagengitter prismatische W-förmige Einlagen aus polymerem Material angeordnet.
  • Durch die exzentrische Aufhängung der Anschlußlaschen wird eine abwechselnde gegenseitige Versetzung der tropfenbil­denden und tropfenempfangenden Leisten der Etagengitter von übereinander befindlichen Etagen erzielt. Dadurch, daß die sich exzentrisch in zwei zueinander senkrechte Richtungen erstreckenden Leisten große Öffnungen in den Etagengittern begrenzen, ist ein Flüssigkeitsdurchgang auch dann gewähr­leistet, wenn die Flüssigkeit großstückige Verunreinigungen mit sich führt. Dabei bleibt der Volumenkoeffizient des Wärme- und Stoffaustausches hoch.
  • Die exzentrische Anordnung der Leisten bezogen auf die Um­fangsleiste in wenigstens einer Richtung bedeutet, daß die Reihe der Öffnungen längs eines Umfangsrandes schmaler ist als die übrigen gleich großen Öffnungen. Wenn die Leisten bezogen auf die Umfangsleiste in zwei Richtungen exzen­trisch angeordnet sind, bedeutet dies, daß die an zwei an­einandergrenzenden Rändern des entsprechenden Etagengitters befindlichen Öffnungen schmaler sind als die übrigen in der Regel gleich großen Öffnungen des Etagengitters. Dadurch wird eine Zusammenfügung der Etagengitter zu Etagen mög­lich, bei der die Etagengitter bezogen auf eine vertikale Achse gegenseitig verdreht sind, wodurch erreicht werden kann, daß die Leisten der Etagengitter benachbarter Etagen zueinander versetzt sind. Dies ermöglicht auch die Anord­nung von mehr Etagen aus zusammengefügten Etagengittern pro Volumeneinheit bei optimaler Tropfenstoßenergie und erhöh­tem Wärme- und Stoffaustauschkoeffizienten. Ausgeschnittene Gitter können dabei alle Formen ausfüllen.
  • Da die Höhe der Etagengitter gering ist, läßt die Beriese­lungseinrichtung auch ein Gas im Quer- und Gegenstrom durch, wobei eine Homogenisierung des Gasstroms durch Ver­dichtung der Etagen im Strömungsbereich erreicht werden kann. Aufgrund der stetigen Tropfenbildung und Tropfendis­pergierung reißt ein Nebel aus Ölen und oberflächenaktiven Stoffen, wenn solche vorhanden sind, kontinuierlich auf, was auch den Wärme- und Stoffaustausch begünstigt. Die Eta­gengitter können als einstückige Polymerenelemente mit gro­ßen Außenabmessungen schnell gefertigt werden. Ihr Trans­port ist bequem, ihre Montage erfordert wenig Arbeitsauf­wand und ihr Betrieb ist einfach. Durch Verwendung von prismatischen Einlagen bei Einsatz reiner Flüssigkeiten mit großem Durchsatz kann die Homogenisierung des Gasstroms verbessert werden, wobei sich der Wärme- und Stoffaus­tauschkoeffizient steigern läßt.
  • Anhand von Zeichnungen wird ein Ausführungsbeispiel der Er­findung näher erläutert. Es zeigt:
    • Fig. 1 axonometrisch eine Berieselungseinrichtung für ei­nen Kühlturm,
    • Fig. 2 eine Draufsicht auf eine exzentrische Anschlußla­sche der Berieselungseinrichtung,
    • Fig. 3 den Schnitt III-III von Fig. 2,
    • Fig. 4 eine Ansicht eines Etagengitters von unten,
    • Fig. 5 das Etagengitter von Fig. 4 im Querschnitt,
    • Fig. 6 eine Draufsicht auf zueinander versetzte Etagengit­ter und
    • Fig. 7 die zueinander versetzten Etagengitter von Fig. 6 im Querschnitt.
  • Die in Fig. 1 gezeigte Berieselungseinrichtung 2 ist in ei­nem Kühlturm 1 über Öffnungen 3 für die Zuführung eines nicht gezeigten Gasstroms und unter Düsen 4 einer Rohre aufweisenden Verteilungseinrichtung 5 für eine Flüssigkeit angeordnet. Die Berieselungseinrichtung 2 ist über An­schlußlaschen 6 aufgehängt, die vertikal übereinander mit Aufhängern 7 durch Stecken verbunden werden. Über der Ver­teilungseinrichtung 5 sind Tropfenfänger 8 angeordnet.
  • An den Aufhängern 7 ist unter der Verteilungseinrichtung 5 eine Dispergiereinrichtung 18 für die Flüssigkeit ange­bracht, die aus zusammengefügten Etagengittern 19 aus polymerem Material besteht, von denen jedes aus bezogen auf den Umfang exzentrisch angeordneten, sich in zwei Richtun­gen senkrecht zueinander erstreckenden tropfenbildenden bzw. dispergierenden Leisten aufgebaut ist, zwischen denen jeweils Öffnungen ausgebildet sind, wie dies in Fig. 1 für die beiden obersten Etagen und in Fig. 4 für das Etagengit­ter 19 gezeigt ist. Die Profilhöhe der umfangsseitigen und versteifenden Leisten der Etagengitter 19 beträgt 25mm bis 400mm. Die übrigen Leisten haben eine Höhe von 10mm bis 400mm. In den Öffnungen zwischen den Leisten der Etagengit­ter 19 können prismatische Polymereinlagen 12 mit VVVV-Form angeordnet werden, was insbesondere bei großen Durchsätzen relativ reiner Flüssigkeiten günstig ist.
  • In jeder Anschlußlasche 6 ist bezogen auf ihr Mitte 30 ex­zentrisch eine Öffnung 20 vorgesehen. Um die Öffnung 20 herum ist auf jeder Seite der Anschlußlasche 6 jeweils ein senkrecht davon abstehender führender Sitz 21 angeordnet, der ein zapfenförmiges Halteorgan bildet. Die Anschlußla­sche 6 ist ferner mit zu ihrer Mitte konzentrisch angeord­neten Anschlußzapfen 13 versehen. Die Anschlußlaschen 6 der vertikal aufeinanderfolgend angeordneten Etagengitter 19 sind von Etage zu Etage jeweils um 180° um eine vertikale Achse zueinander gedreht, während die Etagengitter 19 in der Ausgestaltung der beiden obersten Etagen von Fig. 1 oder in der Ausgestaltung des Etagengittes 19 von Fig. 4 bei jeder zweiten Etage um eine vertikale Achse um 180° zu­einander gedreht sind. Dadurch ergibt sich die Anordnung der Etagen übereinander, wie sie in Fig. 6 und 7 gezeigt sind. Die Verbindung der Etagengitter 19 mit den Anschluß­laschen 6 wird dadurch hergestellt, daß die entsprechenden Anschlußzapfen 13 der Anschlußlasche 6 in Steckbuchsen 31 an den Etagengittern gesteckt werden.
  • Mit Hilfe der exzentrisch aufgehängten Anschlußlaschen 6 können auch Etagengitter 19 fixiert werden, wie sie als dritte Etage von oben in Fig. 1 gezeigt sind, bei denen sich die tropfenbildenden bzw. dispergierenden Leisten mit Ausnahme derer am Umfang nur in eine Richtung erstrecken. Bei jeder zweiten Etage werden diese Etagengitter 19 um 90°, 180°, 270° und 360° gedreht, so daß sie aufgrund der exzentrisch aufgehängten Anschlußlaschen 6, die um 180° bei jeder benachbarten Etage um eine vertikale Achse gedreht sind, diagonal versetzt sind.
  • Bei dem gezeigten Ausführungsbeispiel von Fig. 1 sind der Berieselungseinrichtung 2 räumliche Polymerenblöcke 9 aus umströmten Schichten 11 mit Zellen 10 zugeordnet, die in der Draufsicht eine sechseckige Form aufweisen. Die um­strömten Schichten 11 eines Polymerblocks 9 sind vertikal in einem bestimmten Abstand voneinander angeordnet. Wenn die Berieselungseinrichtung 2 mit reinen Flüssigkeiten und großen Durchsätzen betrieben wird, können in den Zellen 10 prismatische Einlagen 12 mit MM-Form vorgesehen werden. Die Zellen 10 in den umströmten Schichten 11 sind über Halteor­gane in Form von Anschlußzapfen 13 lösbar an zylindrische Wände 16 aufweisenden Anschlußöffnungen 14 von tragenden kleinen Balken 15 angebracht. Die tragenden Balken 15 sind über die zylindrischen Wände 16 der Anschlußöffnungen 14 an den Anschlußlaschen 6 angebracht, die auf die Aufhänger 7 aufgesteckt sind. Der vertikale Abstand zwischen den um­strömten Schichten 11 eines Polymerblocks 9 und zwischen den einzelnen Polymerenblöcken 9 ist durch Distanzbuchsen 17 festgelegt, die zwischen den Anschlußlaschen 6 befestigt und auf die Aufhänger 7 aufgesteckt sind. Die umströmten Schichten 11 eines räumlichen Polymerblocks 9 können so an­ geordnet werden, daß die Zellen 10 jeder umströmten Schicht 11 in Bezug auf die Zellen 10 ihrer benachbarten Schichten 11 in zwei Richtungen versetzbar sind.
  • Bei der Berieselungseinrichtung 2 für Kühltürme 1 wird Flüssigkeit durch die Verteilungseinrichtung 5 und die Dü­sen 4 auf die Dispergiereinrichtung 18, die aus ganzen und ausgeschnittenen Etagengittern 19 aus polymerem Material zusammengefügt ist, als Flüssigkeitsnebel aufgebracht, der in den obersten Etagen homogenisiert wird. Wenn eine Beauf­schlagung mit Flüssigkeit erfolgt, die durch Öle und ober­flächenaktive Stoffe verunreinigt sind, wird die ganze Be­rieselungseinrichtung 2 als Dispergiereinrichtung 18 ausge­führt, also ohne Polymerenblöcke 9, wobei in den untersten Etagen der vertikal untereinander angeordneten Etagengitter 19 der Gasstrom dadurch homogenisiert wird, daß die Etagen lokal verdichtet werden, also mit geringerem vertikalem Ab­stand zueinander festgelegt sind.
  • Die Profilhöhe der Leisten der Etagengitter 19 aus polyme­rem Material mit Abmessungen von 25mm bis 400mm für die pe­riferen und tragenden Leisten und von 10mm bis 400mm für die übrigen Leisten ermöglicht einen Querstrom des Gases durch die Räume zwischen den Etagen. Bei Verunreinigungen der Flüssigkeit mit Ölen oder mit oberflächenaktiven Stof­fen arbeitet die Berieselungseinrichtung 2 als reine Dis­pergiereinrichtung 18. Bei reinen Flüssigkeiten steigert sich der Volumenkoeffizient des Wärme- und Stoffaustausches infolge von Verdampfungsprozessen längs der Wände der Lei­sten der Etagengitter 19 und bei großen Durchsätzen auch längs der Wände der prismatischen Einlagen 12 aus polymerem Material in VVVV-Form in den von den Leisten begrenzten Öffnungen der Etagengitter 19. Das Abtropfen der Flüssig­ keit von den erfindungsgemäß ausgestalteten und angeordne­ten Etagen und das Auftreffen der Tropfen auf die Etagen­gitter 19 ist in Fig. 7 gezeigt.
  • Die Versetzung der Position der tropfenbildenden und trop­fendispergierenden Leisten in den Etagengittern 19 wird in zwei Operationen durchgeführt, nämlich durch Drehung der exzentrischen Anschlußlaschen 6 für jede nachfolgende Etage um 180° um eine vertikale Achse und durch Drehung der Eta­gengitter 19 um eine vertikale Achse um 180° bei jeder zweiten Etage, wobei die Leisten dieser Etagengitter 19 ge­mäß Fig. 4 exzentrisch in zwei Richtungen angeordnet sind.
  • Wenn kein Quergasstrom vorgesehen zu werden braucht, kann die Berieselungseinrichtung 2 als kombinierte Einrichtung ausgeführt werden, bei welcher vertikal unter der Disper­giereinrichtung 18 aus zusammengefügten Etagengittern 19 aus polymerem Material an den Aufhängern 7 mit Hilfe von Anschlußlaschen 6 und Distanzbuchsen 17 Polymerenblöcke 9 in Form von umströmten Schichten 11 mit sechseckigen Zellen 10 in versetzter oder unversetzter Form in Bezug auf die benachbarten in Etagen angeordneten Schichten 11 gehalten sind.
  • Wenn der Berieselungseinrichtung 2 umströmte Schichten 11 aus Polymerenelementen mit sechseckigen Zellen 10 zugeord­net sind, oder wenn bei der Dispergiereinrichtung 18 Eta­gengitter 19 verwendet werden, deren tropfenbildende bzw. Flüssigkeit dispergierenden Leisten mit Ausnahme der Lei­sten am Umfang parallel in einer Richtung angeordnet sind, was der Ausgestaltung der Etagengitter 19 der dritten Etage von oben in Fig. 1 entspricht, werden diese aufeinanderfol­gend um 90°, 180°, 270° und 360° um eine vertikale Achse gedreht angeordnet. Dabei kann auch eine Versetzung der Po­lymerenelemente der Zellen 10 vorgesehen werden. Zur Reini­gung der Düsen 4 werden jeweils die entsprechenden tropfen­fänger 8 abgehoben.

Claims (4)

1. Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme, mit einer Dispergiereinrichtung (18) für eine Flüssigkeit, die aus Leisten aufweisenden Etagengittern (19) aus polymerem Material besteht, die im Abstand übereinander in Etagen mit Hilfe von An­schlußlaschen (6) an Aufhängern (7) gehalten sind,
dadurch gekennzeichnet,
- daß die Leisten eines Etagengitters (19) bezogen auf seine Umfangsleiste wenigstens in einer Richtung ex­zentrisch angeordnet sind,
- daß jede Anschlußlasche (6) eine Öffnung (20) für die Halterung an einem Aufhänger (7) und Halteorgane (13) für die Etagengitter (19) aufweist,
- daß die Öffnung (20) jeder Anschlußlasche (6) bezogen auf ihre Mitte 30 und auf ihre Halteorgane (13) exzen­trisch angeordnet ist,
- daß die Anschlußlaschen (6) zum Halten von Etagengit­ter (19) in zwei aufeinanderfolgenden Etagen um 180° um eine vertikale Achse zueinander gedreht sind und
- daß die Etagengitter (19) jeder zweiten Etage um eine vertikale Achse um 180° zueinander gedreht sind, so
- daß die Leisten eines Etagengitters (19) zu den ent­sprechenden Leisten des Etagengitters (19) der darüber und darunter befindlichen Etage versetzt sind.
2. Berieselungseinrichtung nach Anspruch 1, dadurch ge­kennzeichnet, daß die Leisten eines Eta­gengitters (19) bezogen auf seine Umfangsleiste in zwei Richtungen exzentrisch angeordnet sind.
3. Berieselungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Profilhöhe der am Umfang befindlichen und der aussteifenden Leisten der Etagengitter (19) 25mm bis 400mm beträgt, während die übrigen Leisten eine Profilhöhe von 10mm bis 400mm ha­ben.
4. Berieselungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in den von den Leisten begrenzten Öffnungen der Etagen­gitter (19) prismatische W-förmige Einlagen (12) aus po­lymerem Material angeordnet sind.
EP89121985A 1988-11-30 1989-11-29 Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme Withdrawn EP0371475A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BG86284/88 1988-11-30
BG8628488A BG49681A2 (en) 1988-11-30 1988-11-30 Irrigative for cooling towers

Publications (1)

Publication Number Publication Date
EP0371475A1 true EP0371475A1 (de) 1990-06-06

Family

ID=3921239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89121985A Withdrawn EP0371475A1 (de) 1988-11-30 1989-11-29 Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme

Country Status (5)

Country Link
EP (1) EP0371475A1 (de)
JP (1) JPH02258057A (de)
CN (1) CN1043783A (de)
BG (1) BG49681A2 (de)
DD (1) DD301894A9 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437133A1 (de) * 1989-12-29 1991-07-17 Societe Hamon Vorrichtung zur Flüssigkeitskühlung für Kühlturm
EP0503547A1 (de) * 1991-03-13 1992-09-16 SPIG INTERNATIONAL, Societa per Impianti Generali S.p.A. Rieselgitter für Wasserkühltürme
EP0519832A1 (de) * 1991-06-21 1992-12-23 Gec Alsthom Sa Einsatzgefügestruktur des Berieselungstyps für einen Kühlturm und Verfahren zur Herstellung
EP2762824A1 (de) * 2013-01-30 2014-08-06 GEA Energietechnik GmbH Verbindungselement für Gittereinbauten

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746407B1 (de) * 1993-12-03 2001-08-16 Tower Tech, Inc. Zweistufiges flüssigkeitssammelsystem
BR112014000875A2 (pt) * 2011-07-15 2017-02-21 Univ Stellenbosch grades contra respingos e instalação de resfriamento de líquido

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3031173A (en) * 1960-02-18 1962-04-24 Fluor Corp Cross-flow cooling tower packing
GB996465A (en) * 1962-05-28 1965-06-30 Fluor Corp Arched packing for cooling towers
DE1542197B1 (de) * 1964-07-10 1970-06-18 Maurice Hamon Vorrichtung zum Kontaktieren einer Fluessigkeit mit einem Gas
US3751017A (en) * 1971-04-23 1973-08-07 Hamon Sobelco Sa Cooling tower
US4678615A (en) * 1986-07-23 1987-07-07 Dspie "D. Blagoev" Cooling stack for cooling towers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3031173A (en) * 1960-02-18 1962-04-24 Fluor Corp Cross-flow cooling tower packing
GB996465A (en) * 1962-05-28 1965-06-30 Fluor Corp Arched packing for cooling towers
DE1542197B1 (de) * 1964-07-10 1970-06-18 Maurice Hamon Vorrichtung zum Kontaktieren einer Fluessigkeit mit einem Gas
US3751017A (en) * 1971-04-23 1973-08-07 Hamon Sobelco Sa Cooling tower
US4678615A (en) * 1986-07-23 1987-07-07 Dspie "D. Blagoev" Cooling stack for cooling towers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 1, Nr. 79 (C-21)[1539], 26. Juli 1977; & JP-A-52 41 165 (MITSUBISHI JOSHI K.K.) 30-03-1977 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437133A1 (de) * 1989-12-29 1991-07-17 Societe Hamon Vorrichtung zur Flüssigkeitskühlung für Kühlturm
EP0503547A1 (de) * 1991-03-13 1992-09-16 SPIG INTERNATIONAL, Societa per Impianti Generali S.p.A. Rieselgitter für Wasserkühltürme
EP0519832A1 (de) * 1991-06-21 1992-12-23 Gec Alsthom Sa Einsatzgefügestruktur des Berieselungstyps für einen Kühlturm und Verfahren zur Herstellung
FR2678053A1 (fr) * 1991-06-21 1992-12-24 Alsthom Gec Corps d'echange pour refrigerant atmospherique a pluie et son procede de realisation.
EP2762824A1 (de) * 2013-01-30 2014-08-06 GEA Energietechnik GmbH Verbindungselement für Gittereinbauten

Also Published As

Publication number Publication date
JPH02258057A (ja) 1990-10-18
DD301894A9 (de) 1994-06-23
CN1043783A (zh) 1990-07-11
BG49681A2 (en) 1992-01-15

Similar Documents

Publication Publication Date Title
DE2943687C2 (de) Trogartige Vorrichtung zum Sammeln und Verteilen der Flüssigkeit für eine Gegenstromkolonne
DE1302032C2 (de) Kontaktkoerper
EP0112978B1 (de) Flüssigkeitsverteiler für eine Stoff- und Wärmeaustauschkolonne
DE60109326T2 (de) Katalytischer reaktor mit wärmetauscher für endothermischer und exothermischer chemischer reaktionen
EP0151693B1 (de) Stoffaustauschkolonne
EP0508223B1 (de) Rieseleinbau-Element für Kühltürme
DE2449383A1 (de) Gitteranordnung fuer dampf-fluessigkeits-kontaktbehaelter
DE2402807A1 (de) Kuehlturm mit geneigtem duennfilmbett
DE2212816B2 (de) Vorrichtung zur gleichmäßigen Verteilung einzudampfender Flüssigkeit in einem Fallstromverdampfer
DE2820490A1 (de) Spritzleiste fuer einen kreuzstrom-kuehlturm
EP0371475A1 (de) Berieselungseinrichtung für Wärme- und Stoffaustauscher, insbesondere Kühltürme
DE3825724C2 (de) Behälter
EP0162993B1 (de) Nasskühlturm oder Nass/Trockenkühlturm
EP0273191B1 (de) Flüssigkeitsverteiler für Stoff- und Wärmeaustauschkolonnen
EP0374443B1 (de) Vorrichtung zum Tragen von Füllkörpern und zum Sammeln oder Verteilen von Flüssigkeit in einem Stoff- oder Wärmeaustauschbehälter
EP0657210B1 (de) Einbaukörper für Anlagen zum Energie- und/oder Stoffaustausch und/oder zur Bewirkung von chemischen Reaktionen
EP0950435B1 (de) Spritzwandmodul und aus Spritzwandmodulen aufgebaute Spritzwand
DE602004007029T2 (de) Katalytischer reaktor unter pseudo-isothermischen bedingungen
DE2350601C2 (de) Rieseleinbau für Kühltürme
DE69934262T2 (de) Verteilung von gas und flüssigkeit in einer kontaktvorrichtung
EP2853852B1 (de) Einbauelement für eine Vorrichtung zur Behandlung eines Nutzfluids mittels eines Arbeitsfluids
EP1911502A1 (de) Tropfenabschneideranordnung
DE102006005114A1 (de) Einbauten für Rieselkühler, insbesondere für Kühltürme und Kunststofflage für derartige Einbauten
CH662515A5 (en) Built-in element for mass transfer columns
DE1542197B1 (de) Vorrichtung zum Kontaktieren einer Fluessigkeit mit einem Gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19901113

17Q First examination report despatched

Effective date: 19910604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920602