EP0368299B1 - Apparatus for checking the relative position of two optical axes - Google Patents

Apparatus for checking the relative position of two optical axes Download PDF

Info

Publication number
EP0368299B1
EP0368299B1 EP19890120735 EP89120735A EP0368299B1 EP 0368299 B1 EP0368299 B1 EP 0368299B1 EP 19890120735 EP19890120735 EP 19890120735 EP 89120735 A EP89120735 A EP 89120735A EP 0368299 B1 EP0368299 B1 EP 0368299B1
Authority
EP
European Patent Office
Prior art keywords
support tube
elements
auxiliary
light
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890120735
Other languages
German (de)
French (fr)
Other versions
EP0368299A1 (en
Inventor
Erwin Ing. Francke (Grad.)
Rudolf Techniker Handke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Demag Krauss Maffei GmbH
Original Assignee
Krauss Maffei AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883838381 external-priority patent/DE3838381A1/en
Application filed by Krauss Maffei AG filed Critical Krauss Maffei AG
Publication of EP0368299A1 publication Critical patent/EP0368299A1/en
Application granted granted Critical
Publication of EP0368299B1 publication Critical patent/EP0368299B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/323Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a device is known from the unpublished EP-A-0 315 892.
  • Each of the two deflection systems consists of a support tube for holding a positionally stable optical deflection element, a light entry or exit window being provided in the jacket of each support tube.
  • the deflecting element of the front support tube - as seen in the direction of light incidence - consists of a rhomboid element with two reflecting surfaces running parallel to one another, whereas the deflecting element of the rear supporting tube consists of a triple element with three reflecting surfaces running at right angles to each other. Because of Given the limited length of the carrier tubes, the known measuring device is only suitable for checking small arms, but not for guns, for example anti-aircraft armored vehicles, which have offset distances of up to 1.5 meters.
  • a self-test position is provided in the latter device.
  • the two deflection systems are rotated to one another in such a way that the exit window of the rear support tube comes to lie over a test window attached to the entry window of the front support tube, as a result of which the emerging light beam is superimposed on the incoming light beam.
  • interference lines appear on an axial view of the front support tube. If such interference lines are missing, there is a misalignment of unknown magnitude; in this case the device must be completely re-calibrated at the factory.
  • the object of the invention is to be able to detect and correct measurement errors in all scissor positions and under all temperature conditions in a device of the type mentioned at the outset.
  • test device 1 is composed of two longitudinal arms in the form of support tubes 2, 3, which are connected to one another in a scissor-like manner via a joint 4.
  • the total length of the test device 1 can be infinitely adjusted as required via the connecting joint 4, the total length being understood to mean the offset between the incoming and outgoing light beam.
  • An angle scale (not shown) is attached to the joint 4 in order to be able to set the scissor angle between the two support tubes 2, 3 in a defined manner.
  • the deflection optics held in each carrier tube 2, 3 comprises a number of triple elements 5, each of which has three reflection surfaces 6, 7 and 8 which are at right angles to one another.
  • the deflection elements 5 can be made of full glass (triple prisms), surface mirrors (triple mirrors), for example in shape consist of glass tubes (Fig. 9), in which the front end is chamfered and the rear end is chamfered twice (apex 90 °), these inclined surfaces are provided with surface plane mirrors (triple mirror).
  • a rhomboid or Z element 28 can also be provided, as shown in the embodiment according to FIG. 9, which in the case of FIG. 9 consists of a glass tube with two pointed ends, which in turn are provided with surface plane mirrors are.
  • the rhomboid element 28 replaces two triple elements 5 in the carrier tube 2.
  • Each triple element 5 contains a radiation entry region 9 and a radiation exit region 10, the triple elements 5 in the carrier tubes 2, 3 according to FIG. 1 or the triple elements 5 and the rhomboid element 28 in the carrier tube 2 and the triple elements 5 in the carrier tube 3 according to FIG. 9 in each case are arranged so that the beam exit area 10 of an element 5 or 28 is opposite the beam entry area 9 of the downstream (adjacent) element 5, that is to say the areas 9, 10 overlap one another. This overlap requires a corresponding one shown in FIGS. 1 and 9 clearly shown offset of successive elements 5, 28.
  • the connecting joint 4 has a free beam passage, in which, in the case of FIG. 1, a correction element 11 is arranged which has optical wedge disks which can be rotated relative to one another.
  • the front support tube 2 has for attaching the test device 1 e.g. on a weapon (cf. FIG. 12) a clamping joint 31 (FIG. 9) which, like the connecting joint 4, carries an angle scale, not shown.
  • window openings 12a, 12b (support tube 2) and 13 (support tube 3) are provided in the region of the end faces in order to allow the radiation to enter and exit from the support tubes 2, 3.
  • the window openings 12a and 12b lie radially opposite one another, only the window opening 12a being used for the normal operation of the test device 1 (test position according to FIG. 1).
  • the window opening 12b is only in the self-test position of the device 1 according to FIGS. 2 and 9 used, as will be explained in more detail.
  • the parallelism of the incoming and the outgoing beam is checked. This is done in that the carrier tube 2 is folded parallel to the carrier tube 3, so that the beam entering the device 1 (target line 14 'in FIG. 2) and the exit beam superimposed on the incoming beam (target line 14' in Fig. 2 ) can be observed by an observation device arranged in the emitting radiation source 15.
  • the radiation source 15 is used for the function test, which is also provided for the normal test function of the device 1 (FIG. 1), as shown in FIGS. 12 and 13 will be explained in more detail.
  • an autocollimator 150 is used as the radiation source for the self-test, which is arranged in front of a third window opening 12c in the end face of the carrier tube 2.
  • the implementation of the self-test in the device 1 according to FIG. 9 is based on FIGS. 10 and 11 explained in detail. In the case of FIG. 2, the self-test is carried out as follows:
  • the first reflection surface 6 at the window opening 12 of the support tube 2 is a semi-transparent mirror, e.g. partially mirrored mirrors in the visible wavelength range.
  • the beam emerging from the radiation source 15 can be returned to the radiation source 15 as a reflected beam (target line 14 ⁇ ) and the parallelism of both beams can be checked.
  • This is done by means of a beam splitter 26 arranged in the radiation source 15 or in the mirror collimator, through which in the eyepiece 27 on the one hand the line mark 19 generated by a line mark carrier 18 of the target line 14 'and on the other hand the line mark 19' of the reflected target line 14 'can be reproduced. Any storage of the reflected line mark 19 'from the line mark 19 indicates the inaccuracy of the test device 1, which can be eliminated via the correction element 11.
  • a small auxiliary prism 62 and 81 are arranged on the first mirror surface 6 and on the last mirror surface 8 of the deflection system located in the support tube 2, the auxiliary prism 62 in the beam path of a first measuring beam 152 and the auxiliary prism 81 in the beam path of a second measuring beam 153 of the autocollimator 150.
  • the auxiliary prism 62 sits on one semi-permeable plate 61.
  • the plate 61 covers two circular openings 63, 64 in the reflection surface 6.
  • an adjustable diaphragm 151 is arranged, which covers the measuring beams 152, 153 in the position according to FIG. 10 and in the position according to FIG 11 transmits the measuring beam 152 to the auxiliary prism 62 and the measuring beam 153 via the circular opening 64 to the auxiliary prism 81.
  • an auxiliary beam path 154 is released, which passes the auxiliary prism 62 through the circular opening 64, strikes the reflecting surface 8 next to the auxiliary prism 81 and from there into the deflection system of the rear carrier tube 3 (which is only indicated by the beam path in Fig. 10) occurs. From there, the auxiliary beam 154 falls through the window openings 13, 12b (FIG. 9) onto the reflection surface 6 and from there into the autocollimator 150.
  • the adjusting device 30a may be adjusted until the calibration test no longer shows any deviations. This means that only the front deflection system (support tube 2) is calibrated.
  • the rear deflection system (support tube 3) is also calibrated to the front deflection system by adjusting the rear deflection system in the "function test" position according to FIG. 10 by means of the adjusting device 30b until the measurement marks are no longer deposited in accordance with the auxiliary beam path 154.
  • the test device 1 can be used for the adjustment test (FIG. 13) and for the synchronization test (FIG. 12) of the weapon barrels 101, 102 of a weapon system, in the example shown an anti-aircraft armored vehicle.
  • the test device 1 is fastened to the weapon barrel 101 to be tested by means of the clamping joint 31, while the radiation source 15 (collimator) is fastened in the rear region of the weapon barrel 101 or to its rotary bearing 104.
  • the beam emitted by the collimator 15 strikes the light entry window 12a of the carrier tube 2 and is deflected via the device 1 to the target line 14 of the gunner's periscope 22, which is moved synchronously with the weapon 101.
  • the attachment of the collimator 15 in the rear region of the weapon barrel 101 or of the rotary bearing 104 ensures that the collimator 15 remains unaffected by bending of the weapon barrel 101, as can occur due to the weight of the test device which is necessarily positioned further forward.
  • the light beam emitted by collimator 15 accurately reflects the angular position of the weapon. This exact angular position is passed on to the periscope 22 by the test device 1, regardless of its possible change in position due to the bending of the weapon barrel.
  • the device 1 is attached with its clamping joint 31 to a stand 107 and adjusted so far that the light entry window 12a in the beam path of a collimator 15 (FIG. 1) attached in the weapon barrel 101 and the light exit window 13 in the beam path of the periscope 22.
  • the radiation source or the collimator 15 is adapted in a precise fixation in the mouth of the weapon barrel 101 in such a way that the core axis 17 of the weapon barrel 101 coincides with the target line 14 generated by the radiation source 15.
  • a line mark carrier 18 Arranged in the radiation source 15 is a line mark carrier 18 (FIG.
  • a line mark 19 representing the adjustment position of the weapon 16 around the eyepiece 20 of the commandant periscope 17 can be represented via the target line 14 entering the beam path of the commander periscope 17.
  • a possible deposit of the line mark 19 from the sighting mark 21 of the commander's periscope 17 thus indicates the adjustment deviation to be corrected between the target line of the cannon and the sighting line of the commander's periscope.
  • the adjustment position is checked in the same way with respect to the gunner's periscope 22, the target line 14 being able to be aligned with the beam path of the gunner's periscope by simply pivoting the longitudinal arms 2 and 3 about the axis 4 of the joint 4.
  • the line mark 19 can also be imaged in the thermal imaging device 23.
  • the window opening 13 is in the transmission beam 25 of the laser transmitter 24 and the window opening 12a in the Beam path of the radiation source 15 is pivoted, with a radiation-sensitive plate being pivoted in instead of the line mark carrier 18, with which the radiation from the laser transmitter 24 can be made visible.
  • Panels coated with phosphorescent material are particularly suitable for this, since they are reusable.
  • the line mark carrier 18 and the radiation-sensitive plate are arranged so that they can be pivoted into the beam path of the radiation source 15 as required.
  • the light energy of the laser 24 is directed to the radiation source 15 via the test device and there generates an afterglow point on the radiation-sensitive plate.
  • the angular position of this point with respect to a periscope for example the commandant's periscope 17, can then be made visible by pivoting the window opening 13 out of the transmission beam 25 of the laser transmitter 24 into the beam path of the commandant's periscope 17.
  • a possible deposit of the afterglow point from the sighting mark 21 of the commandant's periscope 17 indicates the adjustment deviation of the laser transmitter 24 to be corrected from the commandant's periscope 17 which has already been adjusted.
  • the collimator 15 is first adjusted to the crosshairs of the periscope 22, e.g. by means of a side and height-adjustable bracket, not shown in FIG. After swiveling the test device 1 into the line of sight of the periscope 22, the line mark of the collimator 15 appears in the periscope eyepiece.
  • the actual synchronization test can be carried out: Setting the desired elevation angle, if necessary tracking the test device and reading the deviation in side and height using the line mark.
  • the synchronism check of non-optical target devices requires, as with the adjustment check, a separate telescope which is attached to the elevatable device to be tested.
  • FIG. 3 shows the basic structure of a test device containing optical rhomboid elements 28. This also achieves a parallel offset of a target line 14 generated by a radiation source 15, for example a mirror collimator fixed in the muzzle of a cannon, with which, in the same way as with the embodiment according to FIGS. 1 and 2, the adjustment position and the synchronism of the commander's periscope 17, of the directional protection periscope 22 and other elements can be checked.
  • a radiation source 15 for example a mirror collimator fixed in the muzzle of a cannon
  • the rhomboid elements 28 each contain two mutually parallel rhomboid reflection surfaces 29 with which a Z-shaped parallel offset of the target line 14 can be achieved. In contrast to the triple element 5, a rhomboid element 28 is cheaper.
  • the embodiment shown in FIG. 3 consists of only one longitudinal arm, but a two-armed, articulated test device corresponding to the embodiment according to FIG. 1 can also be created when using rhomboid elements.
  • the carrier tubes 2, 3 are each formed from two half-shells, with all elements 5, 28 of the carrier tube 2 and 3 respectively which are attached to a half shell by means of shock-absorbing clamps. These load-bearing half-shells are connected to one another via the joint 4.
  • a coordinate drive 200 can also be used, as shown in FIG. 14, which has horizontally displaceable guides 201, 203 on which vertically movable carriages 202 and 204 are mounted. The ends of the test device 1 are rotatably mounted on the slides 202, 204. Any points in the coordinate plane of the drive 200 can thus be approached with the light entry and exit windows 12a and 13 of the device 1.
  • the drive 200 is preferably designed to be program-controlled, so that the axis positions of the viewing devices or weapons of a wide variety of vehicles can be approached with the test device 1 by appropriate preprogramming.
  • Another important advantage of the invention is that by using auxiliary prisms, a functional test of the test device and a possible (subsequent) calibration on the spot is possible, which avoids a time-consuming submission of the test device to the manufacturing plant.

Description

Die Erfindung bezieht sich auf eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 1. Eine derartige Vorrichtung ist aus der nicht vorveröffentlichten EP-A-0 315 892 bekannt.The invention relates to a device according to the preamble of claim 1. Such a device is known from the unpublished EP-A-0 315 892.

Zum Messen der Achsparallelität zweier optischer Achsen ist es aus der DE-C- 216 854 bekannt, zwei scherenförmig über ein mittiges Gelenk verbundene optische Ablenksysteme vorzusehen, welche in jeder Scherenstellung einen einfallenden Lichtstrahl (der z.B. von einer in einem Waffenrohr eines Waffensystems achsparallel adaptiereten Lichtquelle ausgesendet wird) parallel versetzen. Dadurch verläuft der austretende Lichtstrahl (der z.B. in ein Zielfernrohr des Waffensystems einfällt) exakt parallel zur Waffenrohrachse, unabhängig davon, unter welchem Scherenwinkel die beiden Ablenksysteme positioniert werden. Der gewünschte Parallelversatz läßt sich somit durch Verstellen des Scherenwinkels erzielen. Jedes der beiden Ablenksysteme besteht aus einem Trägerrohr für die Halterung eines in sich lagestabilen optischen Ablenkelementes, wobei im Mantel jedes Trägerrohrs ein Lichteintritts- bzw. Lichtaustrittsfenster angebracht ist. Das Ablenkelement des - in Lichteinfallsrichtung gesehen - vorderen Trägerrohrs besteht aus einem Rhomboidelement mitjeweils zwei parallel zueinander verlaufenden Reflexionsflächen, wohingegen das Ablenkelement des hinteren Trägerrohrs aus einem Tripelelement mit jeweils drei rechtwinklig zueinander verlaufenden Reflexionsflächen besteht. Wegen der begrenzten Länge der Trägerrohre eignet sich jedoch die bekannte Meßvorrichtung nur zur Überprüfung von Handfeuerwaffen, nicht aber von Geschützen, z.B. Flugabwehr-Panzerfahrzeugen, welche Versatzstrecken von bis zu 1,5 Metern aufweisen. Um bei längeren Trägerrohren für den letztgenannten Einsatzzweck das Gewicht der optischen Ablenkelemente und damit die mechanische Verbiegung möglichst gering zu halten, ist es aus der DE-A-3 205 610 bekannt, hinter dem Eintrittsfenster des Ablenksystems des vorderen Trägerrohrs einen bezüglich der Rohrachse um 45° geneigten Planspiegel anzubringen, dem am Lichtaustrittsfenster desselben Träherrohrs ein 45°-Dachkantprisma gegenüberliegt. Bei dem hinteren Trägerrohr ist das 45°-Dachkantprisma durch einen um 45° geneigten Planspiegel ersetzt. Die Lichtstrecken zwischen den beiden Planspiegeln bzw. zwischen Planspiegel und Dachkantprisma verlaufen durch das hohle Rohrinnere. Um Dejustierungen der Ablenksysteme, z. B. infolge Verbiegungen der Trägerrohre bei ungleicher Temperaturbelastung oder geänderten Gewichtsverteilungen in unterschiedlichen Scherenstellungen, feststellen zu können, ist bei der zuletzt genannten Vorrichtung eine Selbstprüfstellung vorgesehen. In dieser Selbstprüfstellung werden die beiden Ablenksysteme so zueinandner verdreht, daß das Austrittsfenster des hinteren Trägerrohrs über einem gegenüber dem Eintrittsfenster des vorderen Trägerrohrs angebrachten Prüffenster zu liegen kommt, wodurch der austretende Lichtstrahl mit dem eintretenden Lichtstrahl überlagert wird. Im Falle richtiger Justage treten an einem axialen Einblick des vorderen Trägerrohrs Interferenzlinien auf. Fehlen solche Interferenzlinien, so liegt eine Dejustage unbekannter Größenordnung vor; die Vorrichtung muß in diesem Falle werksseitig völlig neu kalibriert werden. Hinzu kommt, daß in der genannten Selbstprüfstellung nur die Achsparallelität in dieser speziellen Scherenstellung beider Trägerrohre geprüft wird; in allen anderen Scherenstellungen sind infolge geänderter Gewichtsverteilungen und daraus resultierender Verbiegungen der Trägerrohre Dejustierungen möglich, die unerkannt bleiben.To measure the axis parallelism of two optical axes, it is known from DE-C-216 854 to provide two optical deflection systems connected in a scissor-like manner via a central joint, which deflect an incident light beam in each scissor position (for example, from a light source adapted axially parallel in a weapon barrel of a weapon system is sent) in parallel. As a result, the emerging light beam (which, for example, falls into a telescopic sight of the weapon system) runs exactly parallel to the axis of the weapon barrel, regardless of the scissor angle at which the two deflection systems are positioned. The desired parallel offset can thus be achieved by adjusting the scissor angle. Each of the two deflection systems consists of a support tube for holding a positionally stable optical deflection element, a light entry or exit window being provided in the jacket of each support tube. The deflecting element of the front support tube - as seen in the direction of light incidence - consists of a rhomboid element with two reflecting surfaces running parallel to one another, whereas the deflecting element of the rear supporting tube consists of a triple element with three reflecting surfaces running at right angles to each other. Because of Given the limited length of the carrier tubes, the known measuring device is only suitable for checking small arms, but not for guns, for example anti-aircraft armored vehicles, which have offset distances of up to 1.5 meters. In order to keep the weight of the optical deflecting elements and thus the mechanical deflection as low as possible in the case of longer support tubes for the latter purpose, it is known from DE-A-3 205 610 that one behind the entry window of the deflection system of the front support tube is 45 with respect to the tube axis ° to mount the inclined plane mirror, which is opposite a 45 ° roof prism at the light exit window of the same tube. In the rear support tube, the 45 ° roof prism is replaced by a plane mirror inclined by 45 °. The light paths between the two plane mirrors or between the plane mirror and the roof prism run through the hollow tube interior. To adjust the deflection systems, e.g. B. as a result of bending of the support tubes with unequal temperature load or changed weight distributions in different scissor positions, a self-test position is provided in the latter device. In this self-test position, the two deflection systems are rotated to one another in such a way that the exit window of the rear support tube comes to lie over a test window attached to the entry window of the front support tube, as a result of which the emerging light beam is superimposed on the incoming light beam. In the case of correct adjustment, interference lines appear on an axial view of the front support tube. If such interference lines are missing, there is a misalignment of unknown magnitude; in this case the device must be completely re-calibrated at the factory. In addition, in the self-test position mentioned only the axis parallelism in this special scissor position of both carrier tubes is checked; In all other scissor positions, due to changed weight distributions and the resulting bending of the support tubes, misalignments are possible that remain undetected.

Die Aufgabe der Erfindung besteht demgegenüber darin, bei einer Vorrichtung der eingangs erwähnten Art Meßfehler in allen Scherenstellungen und unter allen Temperaturbedingungen erkennen und korrigieren zu können.In contrast, the object of the invention is to be able to detect and correct measurement errors in all scissor positions and under all temperature conditions in a device of the type mentioned at the outset.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.

Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Vorrichtung ergeben sich aus den Unteransprüchen.Advantageous refinements and developments of the device according to the invention result from the subclaims.

Die Erfindung wird nachstehend an Hand von Ausführungsbeispielen in den Zeichnungen näher erläutert. Es zeigt:

Fig. 1
eine schematische Schnittdarstellung eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung in Meßstellung;
Fig. 2
eine schematische Darstellung der Vorrichtung nach Fig. 1 in Selbstprüfstellung;
Fig. 3
eine schematische Darstellung des Grundprinzips der Lichtablenkung mittels hintereinander angeordneter Rhomboid- bzw. Z-Elemente und eines abschließenden Tripelelementes;
Fig. 4
eines schematische Darstellung eines Tripelelementes bzw. tripelprismas in Blickrichtung "A" gemäß Fig. 5;
Fig. 5
eine schematische Darstellung eines Tripelprismas in Blickrichtung "B" gemäß Fig. 6;
Fig. 6
eine schematische Darstellung eines Tripelprismas in Blickrichtung "C" gemäß Fig. 7;
Fig. 7
eine schematische Darstellung eines Tripelprismas in Blickrichtung "A" gemäß Fig. 5;
Fig. 8
eine schematische Darstellung eines aus drei hintereinander angeordneten Tripelprismen bestehenden Ablenksystems, wobei die Tripelprismen aufgrund Verbiegungen des Trägerrohrs aus ihrer gegenseitigen Normallage verschoben sind;
Fig. 9
eine schematische Darstellung eines weiteren Ausführungsbeispiels einer Prüfvorrichtung in Selbstprüfstellung;
Fig. 10
eine schematische Darstellung eines vergrößerten Details der Prüfvorrichtung nach Fig. 9 in dessen Betriebsstellung "Funktionstest";
Fig. 11
eine schematische Darstellung ähnlich wie in Fig. 10 für die Betriebsstellung "Kalibriertest";
Fig. 12
eine perspektivische Darstellung für die Verwendung der Prüfvorrichtung für die Gleichlaufprüfung der rechten Waffe eines Flugabwehr-Panzerfahrzeugs;
Fig. 13
eine perspektivische Darstellung für die Verwendung der Prüfvorrichtung zur Justierung der rechten Waffe eines Flugabwehr-Panzerfahrzeugs, und
Fig. 14
eine schematische Darstellung eines Koordinatenantriebs für die Prüfvorrichtung bei der Justierung der Waffe(n) eines Waffensystems.
The invention is explained below with reference to exemplary embodiments in the drawings. It shows:
Fig. 1
is a schematic sectional view of an embodiment of a device according to the invention in the measuring position;
Fig. 2
a schematic representation of the device of Figure 1 in self-test position.
Fig. 3
a schematic representation of the basic principle of light deflection by means of rhomboid or Z elements arranged one behind the other and a final triple element;
Fig. 4
a schematic representation of a triple element or triple prism in viewing direction "A" according to FIG. 5;
Fig. 5
a schematic representation of a triple prism in viewing direction "B" according to FIG. 6;
Fig. 6
a schematic representation of a triple prism in the viewing direction "C" according to FIG. 7;
Fig. 7
a schematic representation of a triple prism in viewing direction "A" according to FIG. 5;
Fig. 8
is a schematic representation of a deflection system consisting of three triple prisms arranged one behind the other, the triple prisms being displaced from their mutual normal position due to bending of the support tube;
Fig. 9
a schematic representation of another embodiment of a test device in self-test position;
Fig. 10
a schematic representation of an enlarged detail of the test device of Figure 9 in its operating position "function test";
Fig. 11
a schematic representation similar to that in Fig. 10 for the operating position "calibration test";
Fig. 12
a perspective view of the use of the test device for the synchronism test the right weapon of an anti-aircraft armored vehicle;
Fig. 13
a perspective view of the use of the test device for adjusting the right weapon of an anti-aircraft armored vehicle, and
Fig. 14
a schematic representation of a coordinate drive for the test device when adjusting the weapon (s) of a weapon system.

Die in Fig. 1 dargestellte Ausführungsform einer erfindungsgemäßen Prüfvorrichtung 1 setzt sich aus zwei Längsarmen in Form von Trägerrohren 2, 3 zusammen, welche über ein Gelenk 4 scherenförmig miteinander verbunden sind. Über das Verbindungsgelenk 4 läßt sich die Gesamtlänge der Prüfvorrichtung 1 je nach Bedarf stufenlos verstellen, wobei unter Gesamtlänge der Versatz zwischen ein- und austretendem Lichtstrahl verstanden wird. An dem Gelenk 4 ist eine nicht dargestellte Winkelskala angebracht, um den Scherenwinkel zwischen den beiden Trägerrohren 2, 3 definiert einstellen zu können.The embodiment of a test device 1 according to the invention shown in FIG. 1 is composed of two longitudinal arms in the form of support tubes 2, 3, which are connected to one another in a scissor-like manner via a joint 4. The total length of the test device 1 can be infinitely adjusted as required via the connecting joint 4, the total length being understood to mean the offset between the incoming and outgoing light beam. An angle scale (not shown) is attached to the joint 4 in order to be able to set the scissor angle between the two support tubes 2, 3 in a defined manner.

Die in jedem Trägerrohr 2, 3 gehalterte Ablenkoptik umfaßt eine Anzahl von Tripelelementen 5, von denen jedes Tripelelement drei im rechten Winkel zueinander stehende Reflexionsflächen 6, 7 und 8 aufweist. Die Ablenkelemente 5 können aus Vollglas (Tripelprismen), Oberflächenspiegeln (Tripelspigel), z.B. in Form von Glasrohren bestehen (Fig. 9), bei denen das vordere Ende einfach abgeschrägt und das hintere Ende zweifach (Scheitel 90°) abgeschrägt ist, wobei diese Schrägflächen mit Oberflächen-Planspiegeln versehen sind (Tripelspiegel). Anstelle eines Tripelelementes 5 kann auch, wie die Ausführungsform nach Fig. 9 zeigt, ein Rhomboid- oder Z- Element 28 vorgesehen werden, welches im Falle von Fig. 9 aus einem Glasrohr mit zwei angespitzten Enden besteht, die wiederum mit Oberflächen-Planspiegeln versehen sind. Wie der Vergleich der Fign. 1 und 9 zeigt, ersetzt das Rhomboid-Element 28 zwei Tripelelemente 5 im Trägerrohr 2.The deflection optics held in each carrier tube 2, 3 comprises a number of triple elements 5, each of which has three reflection surfaces 6, 7 and 8 which are at right angles to one another. The deflection elements 5 can be made of full glass (triple prisms), surface mirrors (triple mirrors), for example in shape consist of glass tubes (Fig. 9), in which the front end is chamfered and the rear end is chamfered twice (apex 90 °), these inclined surfaces are provided with surface plane mirrors (triple mirror). Instead of a triple element 5, a rhomboid or Z element 28 can also be provided, as shown in the embodiment according to FIG. 9, which in the case of FIG. 9 consists of a glass tube with two pointed ends, which in turn are provided with surface plane mirrors are. As the comparison of FIGS. 1 and 9 shows, the rhomboid element 28 replaces two triple elements 5 in the carrier tube 2.

Die geometrische Formgebung der Tripelelemente 5 ist im Genaueren anhand der Fign. 4 bis 7 beschrieben. Jedes Tripelelement 5 enthält einen Strahleneintrittsbereich 9 und einen Strahlenaustrittsbereich 10, wobei die Tripelelemente 5 in den Trägerrohren 2, 3 gemäß Fig. 1 bzw. die Tripelelemente 5 und das Rhomboidelement 28 im Trägerrohr 2 und die Tripelelemente 5 im Trägerrohr 3 gemäß Fig. 9 jeweils so zueinander angeordnet sind, daß dem Strahlenaustrittsbereich 10 eines Elementes 5 bzw. 28 der Strahleneintrittsbereich 9 des nachgeordneten (benachbarten) Elementes 5 gegenüber liegt, sich also die Bereiche 9, 10 gegenseitig überlappen. Diese Überlappung bedingt einen entsprechenden, in den Fign. 1 und 9 deutlich dargestellten Versatz aufeinanderfolgender Elemente 5, 28.The geometric shape of the triple elements 5 can be seen in more detail with reference to FIGS. 4 to 7 described. Each triple element 5 contains a radiation entry region 9 and a radiation exit region 10, the triple elements 5 in the carrier tubes 2, 3 according to FIG. 1 or the triple elements 5 and the rhomboid element 28 in the carrier tube 2 and the triple elements 5 in the carrier tube 3 according to FIG. 9 in each case are arranged so that the beam exit area 10 of an element 5 or 28 is opposite the beam entry area 9 of the downstream (adjacent) element 5, that is to say the areas 9, 10 overlap one another. This overlap requires a corresponding one shown in FIGS. 1 and 9 clearly shown offset of successive elements 5, 28.

Das Verbindungsgelenk 4 weist einen freien Strahlendurchgang auf, in welchem im Falle von Fig. 1 ein Korrekturelement 11 angeordnet ist, welches gegeneinander verdrehbare optische Keilscheiben aufweist.The connecting joint 4 has a free beam passage, in which, in the case of FIG. 1, a correction element 11 is arranged which has optical wedge disks which can be rotated relative to one another.

Das vordere Trägerrohr 2 weist zur Befestigung der Prüfvorrichtung 1 z.B. an einer Waffe (vgl. Fig. 12) ein Aufspanngelenk 31 (Fig. 9) auf, welches ebenso wie das Verbindungsgelenk 4 eine nicht gezeigte Winkelskala trägt.The front support tube 2 has for attaching the test device 1 e.g. on a weapon (cf. FIG. 12) a clamping joint 31 (FIG. 9) which, like the connecting joint 4, carries an angle scale, not shown.

Im Mantel der Trägerrohre 2, 3 sind im Bereich der Stirnseiten Fensteröffnungen 12a, 12b (Trägerrohr 2) und 13 (Trägerrohr 3) angebracht, um den Strahleneintritt bzw. -austritt in bzw. aus den Trägerrohren 2, 3 zu gestatten. Dabei liegen sich die Fensteröffnungen 12a und 12b radial gegenüber, wobei für den Normalbetrieb der Prüfvorrichtung 1 (Prüfstellung gemäß Fig. 1) nur die Fensteröffnung 12a benutzt wird. Die Fensteröffnung 12b wird nur in der Selbstprüfstellung der Vorrichtung 1 gemäß Fign. 2 und 9 benutzt, wie noch näher erläutert werden soll.In the jacket of the support tubes 2, 3, window openings 12a, 12b (support tube 2) and 13 (support tube 3) are provided in the region of the end faces in order to allow the radiation to enter and exit from the support tubes 2, 3. The window openings 12a and 12b lie radially opposite one another, only the window opening 12a being used for the normal operation of the test device 1 (test position according to FIG. 1). The window opening 12b is only in the self-test position of the device 1 according to FIGS. 2 and 9 used, as will be explained in more detail.

In der Selbstprüfstellung der Vorrichtung 1 (Fign. 2 und 9) wird eine Überprüfung der Parallelität des eintretenden und des austretenden Strahls durchgeführt. Dies erfolgt dadurch, daß das Trägerrohr 2 parallel zum Trägerrohr 3 geklappt wird, so daß der in die Vorrichtung 1 eintretende Strahl (Ziellinie 14′ in Fig. 2) als auch der sich dem eintretenden Strahl überlagernde Austrittsstrahl (Ziellinie 14˝ in Fig. 2) von einer in der emittierenden Strahlenquelle 15 angeordneten Beobachtungsvorrichtung beobachtet werden kann. Im Falle der Ausführungsform nach Fign. 1 und 2 wird für den Funktionstest die Strahlenquelle 15 benutzt, welche auch für die normale Prüffunktion der Vorrichtung 1 (Fig. 1) vorgesehen wird, wie anhand der Fign. 12 und 13 noch näher dargelegt werden soll. Im Falle der Ausführungsform nach Fig. 9 wird als Strahlenquelle für den Selbsttest ein Autokollimator 150 benutzt, welcher vor einer dritten Fensteröffnung 12c in der Stirnseite des Trägerrohrs 2 angeordnet wird. Die Durchführung des Selbsttests bei der Vorrichtung 1 nach Fig. 9 wird anhand der Fign. 10 und 11 im einzelnen erläutert. Im Falle der Fig. 2 erfolgt der Selbsttest wie folgt:In the self-test position of the device 1 (FIGS. 2 and 9), the parallelism of the incoming and the outgoing beam is checked. This is done in that the carrier tube 2 is folded parallel to the carrier tube 3, so that the beam entering the device 1 (target line 14 'in FIG. 2) and the exit beam superimposed on the incoming beam (target line 14' in Fig. 2 ) can be observed by an observation device arranged in the emitting radiation source 15. In the case of the embodiment according to FIGS. 1 and 2, the radiation source 15 is used for the function test, which is also provided for the normal test function of the device 1 (FIG. 1), as shown in FIGS. 12 and 13 will be explained in more detail. In the case of the embodiment according to FIG. 9, an autocollimator 150 is used as the radiation source for the self-test, which is arranged in front of a third window opening 12c in the end face of the carrier tube 2. The implementation of the self-test in the device 1 according to FIG. 9 is based on FIGS. 10 and 11 explained in detail. In the case of FIG. 2, the self-test is carried out as follows:

Die erste Reflexionsfläche 6 an der Fensteröffnung 12 des Trägerrohrs 2 ist als halbdurchlässiger Spiegel , z.B. im sichtbaren Wellenlängenbereich teilverspiegelter Spiegel, ausgeführt. Dadurch kann der aus der Strahlenquelle 15 austretende Strahl (Ziellinie 14′) wieder in die Strahlenquelle 15 als reflektierter Strahl (Ziellinie 14˝) zurückgeführt und die Parallelität beider Strahlen überprüft werden. Dies geschieht mittels eines in der Strahlenquelle 15 bzw. im Spiegelkollimator angeordneten Strahlenteilers 26, durch den im Okular 27 zum einen die von einem Strichmarkenträger 18 erzeugte Strichmarke 19 der Ziellinie 14′ und zum anderen die Strichmarke 19′ der reflektierten Ziellinie 14˝ abbildbar sind. Eine eventuelle Ablage der reflektierten Strichmarke 19′ von der Strichmarke 19 zeigt die Ungenauigkeit der Prüfvorrichtung 1 an, welche über das Korrekturelement 11 beseitigt werden kann.The first reflection surface 6 at the window opening 12 of the support tube 2 is a semi-transparent mirror, e.g. partially mirrored mirrors in the visible wavelength range. As a result, the beam emerging from the radiation source 15 (target line 14 ') can be returned to the radiation source 15 as a reflected beam (target line 14˝) and the parallelism of both beams can be checked. This is done by means of a beam splitter 26 arranged in the radiation source 15 or in the mirror collimator, through which in the eyepiece 27 on the one hand the line mark 19 generated by a line mark carrier 18 of the target line 14 'and on the other hand the line mark 19' of the reflected target line 14 'can be reproduced. Any storage of the reflected line mark 19 'from the line mark 19 indicates the inaccuracy of the test device 1, which can be eliminated via the correction element 11.

Für die Selbstprüfung der Ausführungsform nach Fign. 9 sind, wie aus den Fign. 10 und 11 ersichtlich ist, an der ersten Spiegelfläche 6 und an der letzten Spiegelfläche 8 des im Trägerrohr 2 befindlichen Ablenksystems jeweils ein kleines Hilfsprisma 62 bzw. 81 angeordnet, wobei das Hilfsprisma 62 im Strahlengang eines ersten Meßstrahls 152 und das Hilfsprisma 81 im Strahlengang eines zweiten Meßstrahls 153 des Autokollimators 150 liegt. Das Hilfsprisma 62 sitzt auf einer halbdurchlässigen Platte 61. Die Platte 61 überdeckt dabei zwei Kreisöffnungen 63, 64 in der Reflexionsfläche 6. Vor dem Autokollimator 150 ist eine verstellbare Blende 151 angeordnet, welche in der Stellung gemäß Fig. 10 die Meßstrahlen 152, 153 abdeckt und in der Stellung gemäß Fig. 11 den Meßstrahl 152 zum Hilfsprisma 62 und den Meßstrahl 153 über die Kreisöffnung 64 zu dem Hilfsprisma 81 durchläßt. In der ersten Stellung der Blende 151 gemäß Fig. 10 wird ein Hilfsstrahlengang 154 freigegeben, welcher an dem Hilfsprisma 62 vorbei durch die Kreisöffnung 64 hindu chtritt, neben dem Hilfsprisma 81 auf die Reflexionsfläche 8 auftrifft und von dort in das Ablenksystem des hinteren Trägerrohrs 3 (das in Fig. 10 nur durch den Strahlengang angedeutet ist) eintritt. Von dort fällt der Hilfsstrahl 154 über die Fensteröffnungen 13, 12b (Fig. 9) auf die Reflexionsfläche 6 und von dort in den Autokollimator 150.For the self-test of the embodiment according to FIGS. 9, as shown in FIGS. 10 and 11 can be seen, a small auxiliary prism 62 and 81 are arranged on the first mirror surface 6 and on the last mirror surface 8 of the deflection system located in the support tube 2, the auxiliary prism 62 in the beam path of a first measuring beam 152 and the auxiliary prism 81 in the beam path of a second measuring beam 153 of the autocollimator 150. The auxiliary prism 62 sits on one semi-permeable plate 61. The plate 61 covers two circular openings 63, 64 in the reflection surface 6. In front of the autocollimator 150, an adjustable diaphragm 151 is arranged, which covers the measuring beams 152, 153 in the position according to FIG. 10 and in the position according to FIG 11 transmits the measuring beam 152 to the auxiliary prism 62 and the measuring beam 153 via the circular opening 64 to the auxiliary prism 81. In the first position of the aperture 151 according to FIG. 10, an auxiliary beam path 154 is released, which passes the auxiliary prism 62 through the circular opening 64, strikes the reflecting surface 8 next to the auxiliary prism 81 and from there into the deflection system of the rear carrier tube 3 ( which is only indicated by the beam path in Fig. 10) occurs. From there, the auxiliary beam 154 falls through the window openings 13, 12b (FIG. 9) onto the reflection surface 6 and from there into the autocollimator 150.

In der Stellung gemäß Fig. 10 erfolgt - ebenso wie gemäß Fig. 2 - ein Funktionstest beider Ablenksysteme in den Trägerrohren 2, 3. Ebenso wie in Verbindung mit der Funktionstestbeschreibung von Fig. 2 kann auch im Falle von Fig. 10 eine Nicht-Parallelität durch eine entsprechende Ablage zwischen einer ausgesendeten und einer empfangenen Strichmarke erkannt werden. Eine erkannte Ungenauigkeit der Prüfvorrichtung 1 wird - anders als im Falle von Fig. 2 - bei der Ausführungsform nach Fig. 9 dadurch beseitigt, daß zuerst mittels der Justiervorrichtung 30a (Fig. 9) das vordere Ablenksystem (Trägerrohr 2) kalibriert wird. Hierzu wird der in Fig. 11 veranschaulichte Kalibriertest durchgeführt, bei welchem die Deckungsgleichheit der von den Hilfsprismen 62, 81 reflektierten Meßmarken des Autokollimators 150 überprüft wird. Um die Parallelität der Reflexionsflachen 6 und 8 zu überprüfen, genügt es nicht, nur die Reflexionen an den teilverspiegelten Hypothenusenflächen der Hilfsprismen 62, 81 zu überprüfen, sondern es müssen auch die Reflexionen an den Dachkanten der Hilfsprismen 62, 81 überprüft werden, um eine eventuelle Verkantung der Reflexionsflächen 6, 8 gegeneinander zu erfassen. Die Justiervorrichtung 30a wird gegebenenfalls so lange verstellt, bis der Kalibriertest keine Abweichungen mehr zeigt. Damit ist nur das vordere Ablenksystem (Trägerrohr 2) kalibriert. Anschließend wird auch das hintere Ablenksystem (Trägerrohr 3) auf das vordere Ablenksystem kalibriert, indem in der Stellung "Funktionstest" gemäß Fig. 10 mittels der Justiervorrichtung 30b das hintere Ablenksystem solange verstellt wird, bis die Ablage der Meßmarken entsprechend dem Hilfsstrahlengang 154 verschwindet.In the position according to FIG. 10, just as in accordance with FIG. 2, a function test of both deflection systems takes place in the support tubes 2, 3. Just as in connection with the function test description of FIG. 2, non-parallelism can also occur in the case of FIG. 10 can be recognized by a corresponding filing between a transmitted and a received line mark. A detected inaccuracy of the test device 1 - unlike in the case of FIG. 2 - is eliminated in the embodiment according to FIG. 9 by first calibrating the front deflection system (carrier tube 2) by means of the adjusting device 30a (FIG. 9). For this purpose, the calibration test illustrated in FIG. 11 is carried out, in which the congruence of the measurement marks of the autocollimator 150 reflected by the auxiliary prisms 62, 81 is checked. To check the parallelism of the reflection surfaces 6 and 8, it is not enough, only the reflections on the partially mirrored hypotenuse surfaces of the auxiliary prisms 62, 81, but also the reflections on the roof edges of the auxiliary prisms 62, 81 must be checked in order to detect a possible tilting of the reflection surfaces 6, 8 against each other. The adjusting device 30a may be adjusted until the calibration test no longer shows any deviations. This means that only the front deflection system (support tube 2) is calibrated. Subsequently, the rear deflection system (support tube 3) is also calibrated to the front deflection system by adjusting the rear deflection system in the "function test" position according to FIG. 10 by means of the adjusting device 30b until the measurement marks are no longer deposited in accordance with the auxiliary beam path 154.

Wie anhand der Figuren 12 und 13 erläutert ist, kann die Prüfvorrichtung 1 zur Justierprüfung (Fig. 13) und zur Gleichlaufprüfung (Fig. 12) der Waffenrohre 101, 102 eines Waffensystems, im dargestellten Beispielsfall eines Flugabwehr-Panzerfahrzeugs, verwendet werden. Im Falle der Gleichlaufprüfung nach Fig. 12 wird die Prüfvorrichtung 1 mittels des Aufspanngelenks 31 an dem zu prüfenden Waffenrohr 101 befestigt, während die Strahlenquelle 15 (Kollimator) im hinteren Bereich des Waffenrohrs 101 oder an dessen Drehlagerung 104 befestigt wird. Der vom Kollimator 15 ausgesendete Strahl trifft auf das Lichteintrittsfenster 12a des Trägerrohrs 2 und wird über die Vorrichtung 1 zur Ziellinie 14 des Richtschützenperiskops 22 abgelenkt, welche synchron zu der Waffe 101 bewegt wird. Durch die Anbringung des Kollimators 15 im hinteren Bereich des Waffenrohrs 101 bzw. der Drehlagerung 104 ist gewährleistet, daß der Kollimator 15 von Verbiegungen des Waffenrohrs 101, wie sie durch das Gewicht der notwendigerweise weiter vorne gelagerten Prüfvorrichtung auftreten können, unbeeinflußt bleibt. Dies hat zur weiteren Folge, daß der von Kollimator 15 ausgesendete Lichtstrahl die Winkelstellung der Waffe exakt wiedergibt. Diese exakte Winkelstellung wird von der Prüfvorrichtung 1 unabhängig von seiner eventuellen Lageänderung infolge Waffenrohrverbiegung exakt in das Periskop 22 weitergeleitet.
Im Falle der Justiervorrichtung nach Fig. 13 wird die Vorrichtung 1 mit ihrem Aufspanngelenk 31 an einem Stativ 107 befestigt und so weit verstellt, daß das Lichteintrittsfenster 12a im Strahlengang eines im Waffenrohr 101 angebrachten Kollimators 15 (Fig. 1) und das Lichtaustrittsfenster 13 im Strahlengang des Periskops 22 liegen. Wie Fig. 1 zeigt, ist die Strahlenquelle bzw. der Kollimator 15 in präziser Fixierung in der Mündung des Waffenrohrs 101 derart adaptiert, daß die Seelenachse 17 des Waffenrohrs 101 mit der von der Strahlenquelle 15 erzeugten Ziellinie 14 zusammenfällt. In der Strahlenquelle 15 ist ein Strichmarkenträger 18 (Fig. 2) angeordnet, mittels dem über die in den Strahlengang des Kommandantenperiskops 17 eintretende Ziellinie 14 eine die Justierstellung der Waffe 16 repräsentierende Strichmarke 19 um Okular 20 des Kommandantenperiskops 17 darstellbar ist. Eine eventuelle Ablage der Strichmarke 19 von der Visiermarkierung 21 des Kommandantenperiskops 17 zeigt somit die zu korrigierende Justierabweichung zwischen der Ziellinie der Kanone und der Visierlinie des Kommandantenperiskops an.
As explained with reference to FIGS. 12 and 13, the test device 1 can be used for the adjustment test (FIG. 13) and for the synchronization test (FIG. 12) of the weapon barrels 101, 102 of a weapon system, in the example shown an anti-aircraft armored vehicle. In the case of the synchronism test according to FIG. 12, the test device 1 is fastened to the weapon barrel 101 to be tested by means of the clamping joint 31, while the radiation source 15 (collimator) is fastened in the rear region of the weapon barrel 101 or to its rotary bearing 104. The beam emitted by the collimator 15 strikes the light entry window 12a of the carrier tube 2 and is deflected via the device 1 to the target line 14 of the gunner's periscope 22, which is moved synchronously with the weapon 101. The attachment of the collimator 15 in the rear region of the weapon barrel 101 or of the rotary bearing 104 ensures that the collimator 15 remains unaffected by bending of the weapon barrel 101, as can occur due to the weight of the test device which is necessarily positioned further forward. As a result, that the light beam emitted by collimator 15 accurately reflects the angular position of the weapon. This exact angular position is passed on to the periscope 22 by the test device 1, regardless of its possible change in position due to the bending of the weapon barrel.
In the case of the adjusting device according to FIG. 13, the device 1 is attached with its clamping joint 31 to a stand 107 and adjusted so far that the light entry window 12a in the beam path of a collimator 15 (FIG. 1) attached in the weapon barrel 101 and the light exit window 13 in the beam path of the periscope 22. As shown in FIG. 1, the radiation source or the collimator 15 is adapted in a precise fixation in the mouth of the weapon barrel 101 in such a way that the core axis 17 of the weapon barrel 101 coincides with the target line 14 generated by the radiation source 15. Arranged in the radiation source 15 is a line mark carrier 18 (FIG. 2), by means of which a line mark 19 representing the adjustment position of the weapon 16 around the eyepiece 20 of the commandant periscope 17 can be represented via the target line 14 entering the beam path of the commander periscope 17. A possible deposit of the line mark 19 from the sighting mark 21 of the commander's periscope 17 thus indicates the adjustment deviation to be corrected between the target line of the cannon and the sighting line of the commander's periscope.

In gleicher Weise erfolgt die Überprüfung der Justierstellung in bezug auf das Richtschützenperiskop 22, wobei die Ziellinie 14 durch einfaches Verschwenken der Längsarme 2 und 3 um die Achse 4 des Gelenks 4 auf den Strahlengang des Richtschützenperiskops ausgerichtet werden kann.The adjustment position is checked in the same way with respect to the gunner's periscope 22, the target line 14 being able to be aligned with the beam path of the gunner's periscope by simply pivoting the longitudinal arms 2 and 3 about the axis 4 of the joint 4.

Aufgrund der Verwendung eines Spiegelkollimators als Strahlenquelle 15 kann neben dem sichtbaren Wellenlängenbereich auch im Infrarot-Wellenlängenbereich z.B. 10µ- Bereich emittiert werden, wodurch die Strichmarke 19 auch im Wärmebildgerät 23 abbildbar ist.Due to the use of a mirror collimator as the radiation source 15, in addition to the visible wavelength range, also in the infrared wavelength range, e.g. 10μ range are emitted, whereby the line mark 19 can also be imaged in the thermal imaging device 23.

Zur Überprüfung des Lasersenders 24 wird die Fensteröffnung 13 in den Sendestrahl 25 des Lasersenders 24 und die Fensteröffnung 12a in den Strahlengang der Strahlenquelle 15 geschwenkt, wobei anstelle des Strichmarkenträgers 18 eine strahlungsempfindliche Platte eingeschwenkt wird, mit der die Strahlung des Lasersenders 24 sichtbar gemacht werden kann. Besonders sind hierfür mit phosphoreszierendem Material beschichtete Platten geeignet, da sie wiederverwendbar sind. Der Strichmarkenträger 18 und die strahlungempfindliche Platte sind dabei so angeordnet, daß sie je nach Bedarf in den Strahlengang der Strahlenquelle 15 eingeschwenkt werden können. Die Lichtenergie des Lasers 24 wird über die Prüfvorrichtung zur Strahlenquelle 15 gelenkt und erzeugt dort auf der strahlungsempfindlichen Platte einen nachleuchtenden Punkt. Die Winkellage dieses Punktes zu einem Periskop, beispielsweise dem Kommandantenperiskop 17, kann anschließend sichtbar gemacht werden, indem die Fensteröffnung 13 aus dem Sendestrahl 25 des Lasersenders 24 in den Strahlengang des Kommandantenperiskops 17 geschwenkt wird. Eine eventuelle Ablage des nachleuchtenden Punktes von der Visiermarkierung 21 des Kommandantenperiskops 17 zeigt die zu korrigierende Justierabweichung des Lasersenders 24 von dem vorher bereits justierten Kommandantenperiskops 17 an.To check the laser transmitter 24, the window opening 13 is in the transmission beam 25 of the laser transmitter 24 and the window opening 12a in the Beam path of the radiation source 15 is pivoted, with a radiation-sensitive plate being pivoted in instead of the line mark carrier 18, with which the radiation from the laser transmitter 24 can be made visible. Panels coated with phosphorescent material are particularly suitable for this, since they are reusable. The line mark carrier 18 and the radiation-sensitive plate are arranged so that they can be pivoted into the beam path of the radiation source 15 as required. The light energy of the laser 24 is directed to the radiation source 15 via the test device and there generates an afterglow point on the radiation-sensitive plate. The angular position of this point with respect to a periscope, for example the commandant's periscope 17, can then be made visible by pivoting the window opening 13 out of the transmission beam 25 of the laser transmitter 24 into the beam path of the commandant's periscope 17. A possible deposit of the afterglow point from the sighting mark 21 of the commandant's periscope 17 indicates the adjustment deviation of the laser transmitter 24 to be corrected from the commandant's periscope 17 which has already been adjusted.

Bei der Gleichlaufprüfung (Fig. 12) wird zunächst der Kollimator 15 zum Fadenkreuz des Periskops 22 einjustiert, z.B. mittels einer in Fig. 12 nicht gezeigten seiten- und höhenrichtbaren Halterung. Dabei erscheint nach dem Schwenken der Prüfvorrichtung 1 in die Sichtlinie des Periskops 22 die Strichmarke des Kollimators 15 im Periskop-Okular.In the synchronism test (Fig. 12), the collimator 15 is first adjusted to the crosshairs of the periscope 22, e.g. by means of a side and height-adjustable bracket, not shown in FIG. After swiveling the test device 1 into the line of sight of the periscope 22, the line mark of the collimator 15 appears in the periscope eyepiece.

Nach dem Justieren des Kollimators 15 auf das Fadenkreuz des Periskops 22 kann die eigentliche Gleichlaufprüfung durchgeführt werden:
Einstellen des gewünschten Elevationswinkels, ggf. Nachführen der Prüfvorrichtung und Ablesen der Abweichung in Seite und Höhe anhand der Strichmarke.
After the collimator 15 has been adjusted to the crosshairs of the periscope 22, the actual synchronization test can be carried out:
Setting the desired elevation angle, if necessary tracking the test device and reading the deviation in side and height using the line mark.

Die Gleichlaufprüfung von nichtoptischen Zielgeräten erfordert wie bei der Justierüberprüfung ein separates Fernrohr welches am zu prüfenden elevierbaren Gerät angebracht wird.The synchronism check of non-optical target devices requires, as with the adjustment check, a separate telescope which is attached to the elevatable device to be tested.

In Fig. 3 ist der prinzipielle Aufbau einer optische Rhomboidelemente 28 enthaltenden Prüfvorrichtung dargestellt. Damit ist ebenfalls ein Parallelversatz einer von einer Strahlenquelle 15, beispielsweise einem in der Mündung einer Kanone befestigten Spiegelkollimator, erzeugten Ziellinie 14 erreichbar, womit in gleicher Weise wie mit der Ausführungsform nach den Fig. 1 und 2 die Justierstellung und der Gleichlauf des Kommandantenperiskops 17, des Richtschutzperiskops 22 und weiterer Elemente überprüfbar ist.3 shows the basic structure of a test device containing optical rhomboid elements 28. This also achieves a parallel offset of a target line 14 generated by a radiation source 15, for example a mirror collimator fixed in the muzzle of a cannon, with which, in the same way as with the embodiment according to FIGS. 1 and 2, the adjustment position and the synchronism of the commander's periscope 17, of the directional protection periscope 22 and other elements can be checked.

Die Rhomboidelemente 28 enthalten jeweils zwei zueinander parallele Rhomboid-Reflexionsflächen 29 mit denen ein Z-förmiger Parallelversatz der Ziellinie 14 erreichbar ist. Im Gegensatz zu dem Tripelelement 5 ist ein Rhomboidelement 28 billiger. Die in Fig. 3 gezeigte Ausführungsform besteht nur aus einem Längsarm, doch kann auch bei Vervendung von Rhomboidelementen eine zweiarmige, gelenkige Prüfvorrichtung entsprechend der Ausführungsform nach Fig. 1 geschaffen werden.The rhomboid elements 28 each contain two mutually parallel rhomboid reflection surfaces 29 with which a Z-shaped parallel offset of the target line 14 can be achieved. In contrast to the triple element 5, a rhomboid element 28 is cheaper. The embodiment shown in FIG. 3 consists of only one longitudinal arm, but a two-armed, articulated test device corresponding to the embodiment according to FIG. 1 can also be created when using rhomboid elements.

Die Fig. 4 bis 7 zeigen in Vollinien ein Tripelelement 5 mit den Reflexionsflächen 6, 7 und 8 und dem Strahleneingangsbereich 9 und dem Strahlenausgangsbereich 10.4 to 7 show in solid lines a triple element 5 with the reflection surfaces 6, 7 and 8 and the radiation input region 9 and the radiation output region 10.

Um eine einfache Montage der Elemente 5, 28 in den Trägerrohren 2, 3 zu ermöglichen, sind, wie Fig. 9 zeigt, die Trägerrohre 2, 3 aus jeweils zwei Halbschalen gebildet, wobei sämliche Elemente 5, 28 des Trägerrohrs 2 bzw. 3 an der einen Halbschale mittels schockgedämpfter Schellen befestigt sind. Diese tragenden Halbschalen sind über das Gelenk 4 miteinander verbunden.In order to enable simple assembly of the elements 5, 28 in the carrier tubes 2, 3, as shown in FIG. 9, the carrier tubes 2, 3 are each formed from two half-shells, with all elements 5, 28 of the carrier tube 2 and 3 respectively which are attached to a half shell by means of shock-absorbing clamps. These load-bearing half-shells are connected to one another via the joint 4.

Zur exakten Einstellung der Prüfvorrichtung 1 kann auch, wie in Fig. 14 gezeigt ist, ein Koordinatenantrieb 200 verwendet werden, welcher horizontal verschiebbare Führungen 201, 203 aufweist, auf denen vertikal verfahrbare Schlitten 202 bzw. 204 gelagert sind. Die Enden der Prüfvorrichtung 1 sind an den Schlitten 202, 204 drehbar gelagert. Damit lassen sich beliebige Punkte in der Koordinatenebene des Antriebs 200 mit den Lichteintritts- und - austrittsfenstern 12a bzw. 13 der Vorrichtung 1 anfahrten. Der Antrieb 200 ist vorzugsweise programmgesteuert ausgebildet, so daß durch entsprechende Vorprogrammierung die Achslagen der Sichtgeräte bzw. Waffen von verschiedensten Fahrzeugen mit der Prüfvorrichtung 1 anfahrbar sind.For the exact setting of the test device 1, a coordinate drive 200 can also be used, as shown in FIG. 14, which has horizontally displaceable guides 201, 203 on which vertically movable carriages 202 and 204 are mounted. The ends of the test device 1 are rotatably mounted on the slides 202, 204. Any points in the coordinate plane of the drive 200 can thus be approached with the light entry and exit windows 12a and 13 of the device 1. The drive 200 is preferably designed to be program-controlled, so that the axis positions of the viewing devices or weapons of a wide variety of vehicles can be approached with the test device 1 by appropriate preprogramming.

Die durch die Erfindung erzielte Lösung der Aufgabe ist anhand der Fig. 8 veranschaulicht. Wie hieraus hervorgeht, sind die Ablenkelemente 5 eines Trägerrohrs infolge einer Verbiegung des Trägerrohrs aus ihrer gegenseitigen Normallage verschoben worden, ohne daß dies Folgen für den Parallelversatz von eintretendem zu austretendem Lichtstrahl hat. Wesentlich ist jedoch, daß jedes einzelne Ablenkelement 5 in sich lagestabil ist.The solution to the object achieved by the invention is illustrated with reference to FIG. 8. As can be seen from this, the deflection elements 5 of a support tube have been displaced from their mutual normal position as a result of a deflection of the support tube, without this having any consequences for the parallel offset of the incoming light beam to be exited. It is essential, however, that each individual deflection element 5 is inherently stable.

Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, daß durch die Verwendung von Hilfsprismen ein Funktionstest der Prüfvorrichtung und eine eventuelle (anschließende) Kalibrierung an Ort und Stelle möglich ist, was eine zeitraubende Einsendung der Prüfvorrichtung in das Herstellerwerk vermeidet.Another important advantage of the invention is that by using auxiliary prisms, a functional test of the test device and a possible (subsequent) calibration on the spot is possible, which avoids a time-consuming submission of the test device to the manufacturing plant.

Claims (7)

  1. Apparatus for checking the axial position (parallel and point adjustment) of at least two optical axes, in particular the sight and target lines of a weapon system, with two optical deflecting systems (2, 3, 5, 28) connected to each other in the form of scissors, which make an incident light ray parallel in each position of the scissors and respectively comprise a support tube (2 or 3) for the mounting of at least two optical deflecting elements (5, 28), which have a stable position per se, in the form of triple elements (5) each with three reflection surfaces (8, 7, 8) extending at right angles to each other and possibly in the form of rhomboid elements (28) each with two reflection surfaces (29) extending parallel to each other, the support tubes (2, 3) being provided with a light inlet and light outlet window (12a, 13) and adjacent triple elements (5) or rhomboid elements (28) being staggered with respect to each other so that their ray inlet and ray outlet regions (9, 10) overlap, characterized in that at right angles to its light inlet window (12a), the front support tube (2) receiving the incident light ray comprises a further light inlet window (12c) provided for automatic checking purposes, that located on the further light inlet window (12c) is an autocollimator (150), which emits a measuring light (152) and receives it again (153), that located on the first (6) and last (8) mirror surface of the deflecting system (5, 28) of the front support tube (2) is respectively a small auxiliary prism (62 or 81) so that the auxiliary prisms (62, 81) reflect the measuring light (152, 153) of the autocollimator (150) along different axial positions.
  2. Apparatus according to Claim 1, characterized in that located in front of the autocollimator (150) is an adjustable diaphragm (151), which in a first position (function test; Figure 10) deflects the measuring light (152, 153) to the auxiliary prisms (62, 81) and leaves an auxiliary ray path (154) free, which serves for a function test of both deflecting systems (2, 3, 5, 28), and which in a second position (calibrating test; Figure 11) allows the measuring light (152, 153) to reach the auxiliary prisms (62, 81) and covers the auxiliary ray path (154), that furthermore a mirror surface of the deflecting elements (5, 28) of the front support tube (2) can be adjusted in its position (adjusting device 30a; Figure 9), in case, in the autocollimator (150), the images produced by reflection by the auxiliary prisms (62, 81) are not congruent, and that a mirror surface of the deflecting elements (5, 28) of the other support tube (3) can be adjusted in its position (adjusting device 30b; Figure 9), in case a measuring mark is not congruent with its image produced by the auxiliary ray path (154) in the autocollimator (150).
  3. Apparatus according to Claim 1 or 2, characterised in that at their ends the support tubes (2, 3) are located on separate carriage guides (202, 204) of a coordinate drive (200), the carriage guides (202, 204) being able to travel into pre-programmed positions (Figure 14).
  4. Apparatus according to one of Claims 1 to 3, characterised in that each support tube (2, 3) consists of two half-shells (2a, 2b or 3a, 3b) and all the deflecting elements (5, 28) of the respective support tube (2 or 3) are attached to one half-shell (2a or 3a) in a shock-absorbing manner.
  5. Apparatus according to one of Claims 1 to 4, characterised in that an angle scale is respectively located on a clamping joint (31) of the front support tube (2) and on a connecting joint (4) between both support tubes (2, 3).
  6. Apparatus according to one of Claims 1 to 5, characterised in that the deflecting elements (5, 28) consist of surface mirrors or of solid glass.
  7. Apparatus according to one of Claims 1 to 5, characterised in that the deflecting elements (5, 28) consist of glass tubes which are bevelled once or twice on the end faces, the inclined surfaces of the glass tubes being provided with plane surface mirrors.
EP19890120735 1988-11-11 1989-11-09 Apparatus for checking the relative position of two optical axes Expired - Lifetime EP0368299B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883838381 DE3838381A1 (en) 1987-11-12 1988-11-11 Device and method for checking the axis position of two optical axes
DE3838381 1988-11-11

Publications (2)

Publication Number Publication Date
EP0368299A1 EP0368299A1 (en) 1990-05-16
EP0368299B1 true EP0368299B1 (en) 1994-01-19

Family

ID=6367029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890120735 Expired - Lifetime EP0368299B1 (en) 1988-11-11 1989-11-09 Apparatus for checking the relative position of two optical axes

Country Status (1)

Country Link
EP (1) EP0368299B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647152A1 (en) * 1996-11-14 1998-05-28 Sick Ag Laser distance determination device
CN114545645B (en) * 2022-02-28 2023-09-26 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Periscope type integrated optical circuit assembling and adjusting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216854C (en) * 1908-04-04
DE3205610A1 (en) * 1982-02-17 1983-08-25 Berthold 5401 Buchholz Hajen Optical equipment for testing parallelism and synchronisation
CH674414A5 (en) * 1984-11-16 1990-05-31 Wild Leitz Ag
DE3738474A1 (en) * 1987-11-12 1989-05-24 Krauss Maffei Ag TEST DEVICE FOR CHECKING THE ADJUSTMENT AND SIMPLICITY OF THE WEAPON AND TARGETING OF A COMBAT VEHICLE

Also Published As

Publication number Publication date
EP0368299A1 (en) 1990-05-16

Similar Documents

Publication Publication Date Title
DE2710904C2 (en)
DE2016797A1 (en) Device for, in particular, continuous control and / or display of the curvatures of the barrel of a firearm
DE2323593C3 (en) Laser Doppler anemometer
DE2536878C3 (en) Electro-optical retro-reflective locating device, in particular laser rangefinder, with adjustment aid
DE2414382C2 (en) Optical collimating alignment arrangement
DE102015016274B4 (en) Optical system and method for adjusting a signal beam
DE102011015779A1 (en) Spotlight for directed energy
DE3044554A1 (en) METHOD AND ARRANGEMENT FOR CHECKING THE MATCHING OF SIGHTING AND TARGET LINES
DE3707023C2 (en)
DE3104318A1 (en) Aiming method and associated apparatus arrangement
DE2951108C2 (en) Method and device for checking the synchronization of the line of sight of a periscope with elements that can be aimed at target points
EP0368299B1 (en) Apparatus for checking the relative position of two optical axes
DE3428990A1 (en) DEVICE FOR HARMONIZING THE OPTICAL AXES OF A VISOR
DE3838381C2 (en)
DE3214604C2 (en)
EP0315892B1 (en) Test device for checking the bore sight and the parallelism between weapon and sighting means of a fighting vehicle
DE3246805C2 (en) Adjustment device for the fire control system of a combat vehicle
DE3205610A1 (en) Optical equipment for testing parallelism and synchronisation
DE3838357C2 (en)
DE3930564C2 (en)
DE2817237B2 (en) Panoramic periscope with laser rangefinder
DE3942922C2 (en)
DE3623455C3 (en) Optical visor
DE2040225B2 (en) METHOD AND DEVICE FOR DETERMINING THE EXIT FAILURE ANGLE OF A STORY WHEN LEAVING THE PIPE
DE2224324C2 (en) Sighting device with a telescope for observing a target

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH GB LI NL SE

17P Request for examination filed

Effective date: 19900908

17Q First examination report despatched

Effective date: 19921021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH GB LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89120735.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971125

Year of fee payment: 9

Ref country code: BE

Payment date: 19971125

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

BERE Be: lapsed

Owner name: KRAUSS-MAFFEI A.G.

Effective date: 19981130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981109

EUG Se: european patent has lapsed

Ref document number: 89120735.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KRAUSS-MAFFEI AKTIENGESELLSCHAFT TRANSFER- KRAUSS-

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031117

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031121

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601