EP0367799B1 - Device for dispersing gas within a liquid phase - Google Patents

Device for dispersing gas within a liquid phase Download PDF

Info

Publication number
EP0367799B1
EP0367799B1 EP88910055A EP88910055A EP0367799B1 EP 0367799 B1 EP0367799 B1 EP 0367799B1 EP 88910055 A EP88910055 A EP 88910055A EP 88910055 A EP88910055 A EP 88910055A EP 0367799 B1 EP0367799 B1 EP 0367799B1
Authority
EP
European Patent Office
Prior art keywords
chimney
liquid phase
lining
venturi
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88910055A
Other languages
German (de)
French (fr)
Other versions
EP0367799A1 (en
Inventor
Jacques Bousquet
Alain Catros
Le Xuan Huynh
Alain Secq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Antar France
Original Assignee
Elf France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf France SA filed Critical Elf France SA
Publication of EP0367799A1 publication Critical patent/EP0367799A1/en
Application granted granted Critical
Publication of EP0367799B1 publication Critical patent/EP0367799B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/75Flowing liquid aspirates gas

Definitions

  • the present invention relates to a device allowing the transfer of a gaseous phase into a liquid phase, the addition of the gaseous phase being intended to ensure the course of reactions which have to develop subsequently in the liquid phase.
  • This device is mainly intended for carrying out treatments such as chemical, biological and metabolic reactions comprising the transfer of a gaseous phase into a liquid phase, this liquid phase possibly being industrial or domestic water.
  • An intermediate cylindrical piece is interposed between the exit of the divergent and the entry of the chimney. connection. This intermediate part is pierced with lights connecting the interior of the chimney and the liquid phase in which the device is bathed.
  • the device (s) are immersed in a basin or any other type of tank containing the liquid phase.
  • the gaseous phase is introduced at the neck of the venturi and can, as the case may be, be sucked in by the liquid phase which then plays the role of motive fluid or introduced by the combined effect of the pressure due to a gas compressor and the suction due in the liquid phase.
  • the divergent ensures a mixture between the two phases.
  • the chimney and the intermediate cylindrical part placed at the outlet of the divergent considerably reinforce the effect of the venturi by ensuring a large contact area in a relatively confined space which allows to obtain a much better gas / liquid transfer than by current processes. known.
  • the speed of the liquid phase and gas phase mixture in the chimney causes the suction of part of the external liquid phase through the openings of the intermediate cylindrical part.
  • Such an effect is sought in particular whenever the amount of gas contained in the liquid phase / gas phase mixture will be greater than the absorption capacity of the liquid phase.
  • the nature of the material or materials used to make the device has no influence on the effectiveness of the latter. It is the nature of the phases involved which will determine the materials to be used.
  • the connections of the device to the various pipes can be of any type and in particular to be welded, to be glued, to flanges, and to be screwed.
  • the venturi is calculated in such a way that the speed of the flow in the chimney ensures the gas bubbles which are subjected to two influences: the upward flow of the mixture and the archimedean force, a low downward speed allowing the said bubbles to be dissolved as much as possible by the liquid phase.
  • the device which is the subject of the invention can be used for all the processes requiring the transfer of a gaseous phase into a liquid phase, in particular for the treatment of industrial or domestic, used or potable water, in particular for aeration operations air or enriched air, oxygenation, chlorination and ozonation.
  • the devices can be associated in parallel, their number depending on the volume of liquid phase to be treated. Two or more devices can be connected in series, in particular when the conditions for absorption of the gas phase in the liquid phase are difficult, that is to say when the solubility of the gas phase is low under the conditions provided for the treatment, or if a reaction occurs with consumption of the dissolved gas.
  • the device comprises a convergent 1 of angle 40 degrees approximately and length 127 millimeters.
  • a cylindrical part 6 intended for the connection of the piping bringing the liquid phase.
  • the inlet diameter of the convergent 1 is equal to 114 millimeters.
  • the neck 2 of the venturi After the convergent is the neck 2 of the venturi. It has a diameter of 25.4 millimeters and a length of 25.4 millimeters.
  • the neck 2 has equidistant from its two ends a tap 7 projecting externally by 50.8 millimeters and intended for supplying the device by the gas phase.
  • the diameter of this nozzle is 6 millimeters.
  • the diameter is 8 millimeters.
  • the neck 2 is followed by the divergent 3 forming an angle of 10 degrees. Its length is such that the outlet diameter is equal to the inlet diameter of the convergent, ie 506 millimeters.
  • a spacer 4 is inserted between the venturi and the chimney 5.
  • its diameter is equal to 114 millimeters, its length to 114 millimeters.
  • the intermediate piece is perforated by three lights presenting a maximum clearance compatible with its realization.
  • the liquid phase is sent to the input of the devices 12 by means of a pump 9 and a supply ramp 10.
  • the gaseous phase is sent to the neck of the devices 12 by the by means of a compressor 11 and a ramp 13.
  • the basin has a capacity of 1000 cubic meters
  • the pump 9 has a flow rate of 2400 cubic meters per hour at a pressure of 1 bar
  • the compressor 11 has a flow rate of 3.3 cubic meters per minute for a pressure of 0.4 bar.
  • the installation is preferably equipped with 263 devices, each arranged substantially vertically. It provides an oxygenation capacity of 51 grams of oxygen per cubic meter per hour. The gross power required is 30 kilowatts, or a specific power of 30 watts per cubic meter.
  • FIG. 3 makes it possible to compare the values of the transfer coefficients as a function of the speed of the liquid phase, namely 0.2624 meters per second using the device which is the subject of the invention: curve 14 and the coefficients obtained using the devices already known: curves 15 (porous plateau), 16 (classic venturi), 17 (bubble column and static mixer).
  • Curves 16 and 17 were obtained by WANG and AL in 1978, the others experimentally by the inventors. On the abscissa are the surface gas velocities in meter per second, the ordinates show the transfer coefficients in seconds minus one.
  • FIG. 4 makes it possible to compare the values of the oxygenation capacities as a function of the specific powers implemented by the device which is the subject of the invention: curves 18 and 19 (flow rate of the liquid phase equal to 2.5 liters per second for curve 18, liquid phase flow rate equal to 5 liters per second for curve 19) and the coefficients obtained by already known devices: curve 20 (maximum envelope curve of the statistical values relating to fast, slow turbines and brushes), 21 (turbine slow brush) and 22 (fast turbine). Curves 20, 21 and 22 were plotted with the results of measurements cited by CEMAGREF in 1980, the others experimentally by the inventors. In * abscisses are the specific powers in watts per cubic meter, in ordinates are the oxygenation capacities in grams of oxygen per cubic meter and per hour.
  • FIG. 5 to 8 differ from those described above in that they further comprise a lining in the chimney which acts as a bubble breaker and thus prevents the coalescence of the gas bubbles .
  • the device comprises a lining 30 arranged in the chimney 5.
  • the lining is formed by two elements 32 and 34, each comprising a mesh structure 36 as shown in FIG. 9.
  • the mesh structure 36 comprises two series of wires 38 arranged orthogonally forming square meshes which are either welded or entangled.
  • the wires 38 can be, for example, of a material plastic, stainless steel or consist of plasticized metal wires.
  • the first element 32 of the lining 30 is formed of a mesh structure 36 which is rolled up so that it takes on a substantially spiral shape.
  • the second element 34 of the lining 30 is also formed of a mesh structure which is folded so as to have a substantially sawtooth section. Once folded, the grid structure is rolled up to take a shape corresponding to that of the first element.
  • the two elements 32 and 34 are wound together. Once wound up, the lining 30 is mounted inside the chimney 5
  • the lining 30 In order to retain the lining 30 in the chimney 5, it is possible to envisage forming the lining with an external diameter which is between 1.10 and 1.20 times the internal diameter of the chimney 5. In this case, the lining 30 is fitted by force in the chimney 5. One can also provide for forming the lining 30 with an external diameter substantially equal to or slightly less than the internal diameter of the chimney 5. In this case, the device further comprises a means for retaining the lining 30 in place in the chimney 5.
  • the devices shown in Figures 5 to 7 each have a different means for retaining the lining 30.
  • the lining 30 is retained by a locking spring 40 which is substantially C-shaped and which has two arms, extremes 42 directed towards the center of C.
  • the locking spring 40 is mounted around the outside of the chimney 5, the arms 42 passing through openings 44 formed in the chimney 5 to engage the meshes of the element 32.
  • the locking spring 40 is retained in place between two flanges 46 which are each formed by folding back part of the sheet metal of the chimney 5.
  • FIG. 6 differs from that of FIG. 5 in that the locking spring 40 ′ is mounted inside the chimney 5.
  • the arms 42 ′ are folded outwards and pass through openings 44 ′ formed in the chimney 5.
  • a third opening 48 is formed in the chimney and allows a part 50 in the form of a loop of the spring 40 ′ to protrude outside the chimney 5.
  • the locking spring 40 ′ is arranged in the chimney between the lining 30 and the outlet of the chimney 5.
  • the lining 30 comprises two bayonets 52 which are welded to the meshes of the elements 32 and 34.
  • the chimney 5 is provided with two L-shaped recesses 54 which are intended to receive the bayonets 52 thus locking the lining 30 in place.
  • FIG. 8 A second embodiment of the lining 30 is shown in FIG. 8. This lining differs from that of FIGS. 5 to 7 in that the second element is formed of a mesh structure to which a wavy or substantially sinusoidal section has previously been given. .
  • the axial length of the lining 30 is between 10 to 40% of the axial length of the chimney 5.
  • the first element 32 of the lining 30, intended to be used in a device having the dimensions given above, is preferably formed of square meshes having a side of 10 mm made from a wire with a diameter of 0.25 to 0 , 5 mm.
  • the length of each panel is 14.14 mm and the angle between two neighboring panels is 90 °.
  • the wavelength of the corrugations is 20 mm and the amplitude is 10 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A device for dispersing a gaseous phase in a liquid phase comprises at least one Venturi ejector with a vertical or inclined axis, composed of a mixer head (1) for admitting the liquid, a neck (2) for admitting the gas and an injector tube (3). The injector tube is prolonged by a chamber (5) whose diameter is equal to or greater than that of the injector tube with which it possibly merges. Also described is the application of this device to treatments such as chemical, biochemical or metabolic reactions involving the transfer of a gas to a liquid phase.

Description

La présente invention concerne un dispositif permettant le transfert d'une phase gazeuse dans une phase liquide, l'apport de la phase gazeuse étant destiné à assurer le déroulement de réactions devant se développer ultérieurement dans la phase liquide.The present invention relates to a device allowing the transfer of a gaseous phase into a liquid phase, the addition of the gaseous phase being intended to ensure the course of reactions which have to develop subsequently in the liquid phase.

Ce dispositif est principalement destiné à la réalisation de traitements telles que les réactions chimiques, biologiques et métaboliques comportant le transfert d'une phase gazeuse dans une phase liquide, cette phase liquide pouvant être une eau industrielle ou domestique.This device is mainly intended for carrying out treatments such as chemical, biological and metabolic reactions comprising the transfer of a gaseous phase into a liquid phase, this liquid phase possibly being industrial or domestic water.

Beaucoup de traitements mettant en jeu des transformations chimiques ou biologiques, en particulier celles se produisant dans le traitement aérobie des eaux résiduaires, demandent que soit incluse dans le milieu réactionnel la phase gazeuse nécessaire aux réactions chimiques, biochimiques et métaboliques des micro-organismes présents dans le milieu réactionnel que représente la phase liquide.Many treatments involving chemical or biological transformations, in particular those occurring in the aerobic treatment of waste water, require that the gaseous phase necessary for the chemical, biochemical and metabolic reactions of the microorganisms present in the reaction medium be included. the reaction medium represented by the liquid phase.

De plus, pour être efficace le système nécessite un mélange des deux phases.In addition, to be effective the system requires a mixture of the two phases.

On connaît déjà des dispositifs tels que les aérateurs de surface à turbines fixes ou flottantes, lentes ou rapides ou à brosses, les systèmes immergés par injection d'air tels que aérateurs statiques, clapets vibreurs et diffuseurs poreux et les systèmes par pompes déprimogènes à jets fixes ou mobiles.Devices are already known such as surface aerators with fixed or floating turbines, slow or fast or with brushes, immersed systems by injection of air such as static aerators, vibrating valves and porous diffusers and systems with vacuum-operated pressure pumps fixed or mobile.

Ces dispositifs ne permettent l'obtention d'un mélange très homogène qu'au prix d'une dépense d'énergie élevée.
On connait également des dispositifs tels que celui décrit dans le document DE-A-3218227 qui utilisent un éjecteur venturi pour assurer l'aération de la phase liquide. Ils sont plus économes en énergie que les dispositifs cités ci-dessus.
On connait également par US-A-4123800 un injecteur-mélangeur de liquides comprenant un convergent, un col et un divergent prolongé par une cheminée de diamètre égal à celui du divergent.
On peut juger des performances intrinsèques d'un équipement d'aération au travers de deux critères qui sont :

  • L'apport spécifique brut en kilogrammes d'oxygène par kilowattheure
  • Le coefficient de transfert en secondes moins un. Ce coefficient est défini comme celui qui lie la vitesse de variation de concentration à l'écart entre cette concentration et la concentration correspondant à celle de saturation de la phase gazeuse dans la phase liquide. Les appareils habituellement utilisés ont des apports spécifiques bruts généralement compris entre 0,8 et 1,8 kilogrammes d'oxygène par kilowattheure.
    Une étude réalisée par WANG et AL en 1978 et publiée dans Chem. Eng. Sci., 33, 945 en 1978 montrait que des coefficients de transfert pouvant aller jusqu'à 0,22 seconde moins un pouvaient être obtenus en utilisant des colonnes à bulles équipées de mélangeurs statiques pour des vitesses de liquide et de gaz respectivement égales à 0,17 mètre par seconde et 0,25 mètre par seconde. Les équipements plus habituels que sont le venturi classique ou le diffuseur poreux permettent d'obtenir des coefficients de transfert généralement compris entre 0,06 et 0,13 seconde moins un. La présente invention a pour but d'améliorer considérablement les performances des dispositifs de transfert d'une phase gazeuse dans une phase liquide. Selon l'invention le dispositif comprend un dispositif pour la dispersion d'une phase gazeuse dans une phase liquide comprenant au moins un éjecteur venturi composé d'un convergent pour l'entrée du liquide, d'un col pour l'entrée du gaz et d'un divergent caractérisé en ce que le divergent est prolongé par une cheminée de diamètre égal ou supérieur à celui du divergent et jointive ou non avec celui-ci, le dispositif étant utilisé en position sensiblement verticale, et en ce que le flux de la phase liquide est descendant.
These devices only allow a very homogeneous mixture to be obtained at the cost of high energy expenditure.
Devices such as that described in document DE-A-3218227 are also known which use a venturi ejector to aerate the liquid phase. They are more energy efficient than the devices mentioned above.
Also known from US-A-4123800 is an injector-mixer for liquids comprising a convergent, a neck and a divergent extended by a chimney of diameter equal to that of the divergent.
We can judge the intrinsic performance of aeration equipment by two criteria which are:
  • The gross specific intake in kilograms of oxygen per kilowatt hour
  • The transfer coefficient in seconds minus one. This coefficient is defined as that which links the rate of change in concentration to the difference between this concentration and the concentration corresponding to that of saturation of the gas phase in the liquid phase. The devices usually used have specific gross inputs generally between 0.8 and 1.8 kilograms of oxygen per kilowatt hour.
    A study carried out by WANG and AL in 1978 and published in Chem. Eng. Sci., 33, 945 in 1978 showed that transfer coefficients of up to 0.22 seconds minus one could be obtained using bubble columns equipped with static mixers for liquid and gas velocities respectively equal to 0 , 17 meters per second and 0.25 meters per second. The more usual equipment that is the classic venturi or the porous diffuser makes it possible to obtain transfer coefficients generally between 0.06 and 0.13 seconds minus one. The object of the present invention is to considerably improve the performance of devices for transferring a gaseous phase into a liquid phase. According to the invention, the device comprises a device for dispersing a gaseous phase in a liquid phase comprising at least one venturi ejector composed of a convergent for the entry of the liquid, a neck for the entry of the gas and a divergent characterized in that the divergent is extended by a chimney of diameter equal to or greater than that of the divergent and contiguous or not with it, the device being used in a substantially vertical position, and in that the flow of the liquid phase is descending.

On intercale en outre entre la sortie du divergent et l'entrée de la cheminée une pièce cylindrique intermédiaire de raccordement. Cette pièce intermédiaire est percée de lumières mettant en communication l'intérieur de la cheminée et la phase liquide dans laquelle baigne le dispositif.An intermediate cylindrical piece is interposed between the exit of the divergent and the entry of the chimney. connection. This intermediate part is pierced with lights connecting the interior of the chimney and the liquid phase in which the device is bathed.

Le ou les dispositifs sont immergés dans un bassin ou tout autre type de réservoir contenant la phase liquide.The device (s) are immersed in a basin or any other type of tank containing the liquid phase.

Celle-ci est introduite par une pompe à l'entrée du convergent avec une vitesse initiale adaptée au venturi. La phase gazeuse est introduite au col du venturi et peut être selon les cas aspirée par la phase liquide qui joue alors le rôle de fluide moteur ou introduite par l'effet combiné de la pression due à un compresseur de gaz et de l'aspiration due à la phase liquide. Le divergent assure un mélange entre les deux phases. La cheminée et la pièce cylindrique intermédiaire placée à la sortie du divergent renforcent considérablement l'effet du venturi en assurant une zone de contact importante dans un espace relativement confiné ce qui permet d'obtenir un bien meilleur transfert gaz/liquide que par les procédés actuellement connus. En outre, la vitesse du mélange phase liquide et phase gazeuse dans la cheminée provoque l'aspiration d'une partie de la phase liquide extérieure au travers des lumières de la pièce cylindrique intermédiaire. Un tel effet est recherché en particulier chaque fois que la quantité de gaz contenu dans le mélange phase liquide/phase gazeuse sera supérieure à la capacité d'absorption de la phase liquide.This is introduced by a pump at the inlet of the convergent with an initial speed adapted to the venturi. The gaseous phase is introduced at the neck of the venturi and can, as the case may be, be sucked in by the liquid phase which then plays the role of motive fluid or introduced by the combined effect of the pressure due to a gas compressor and the suction due in the liquid phase. The divergent ensures a mixture between the two phases. The chimney and the intermediate cylindrical part placed at the outlet of the divergent considerably reinforce the effect of the venturi by ensuring a large contact area in a relatively confined space which allows to obtain a much better gas / liquid transfer than by current processes. known. In addition, the speed of the liquid phase and gas phase mixture in the chimney causes the suction of part of the external liquid phase through the openings of the intermediate cylindrical part. Such an effect is sought in particular whenever the amount of gas contained in the liquid phase / gas phase mixture will be greater than the absorption capacity of the liquid phase.

La nature du ou des matériaux servant à la réalisation du dispositif n'a pas d'influence sur l'efficacité de celui-ci. C'est la nature des phases en présence qui déterminera les matériaux à utiliser. Les raccordements du dispositif aux diverses tuyauteries peuvent être de tout type et notamment à souder, à coller, à brides, et à visser.The nature of the material or materials used to make the device has no influence on the effectiveness of the latter. It is the nature of the phases involved which will determine the materials to be used. The connections of the device to the various pipes can be of any type and in particular to be welded, to be glued, to flanges, and to be screwed.

Le venturi est calculé de telle façon que la vitesse du flux dans la cheminée assure aux bulles de gaz qui sont soumises à deux influences: le flux ascendant du mélange et la force d'archimède, une vitesse descendante faible permettant aux dites bulles d'être dissoutes de façon maximale par la phase liquide.The venturi is calculated in such a way that the speed of the flow in the chimney ensures the gas bubbles which are subjected to two influences: the upward flow of the mixture and the archimedean force, a low downward speed allowing the said bubbles to be dissolved as much as possible by the liquid phase.

Des essais menés avec le dispositif objet de l'invention ont conduit à des résultats faisant apparaître des coefficients de transfert pouvant atteindre 0,35 seconde moins un, bien supérieurs à ceux obtenus par les dispositifs connus et cités précédemment.Tests carried out with the device which is the subject of the invention have led to results showing transfer coefficients of up to 0.35 seconds minus one, much higher than those obtained by the known devices and cited above.

Le dispositif objet de l'invention peut être utilisé pour tous les procédés nécessitant le transfert d'une phase gazeuse dans une phase liquide, notamment pour les traitements d'eaux industrielles ou domestiques, usées ou potables, en particulier pour les opérations d'aération à l'air ou à l'air enrichi, d'oxygénation, de chloration et d'ozonation.The device which is the subject of the invention can be used for all the processes requiring the transfer of a gaseous phase into a liquid phase, in particular for the treatment of industrial or domestic, used or potable water, in particular for aeration operations air or enriched air, oxygenation, chlorination and ozonation.

Les dispositifs peuvent être associés en parallèle, leur nombre dépendant du volume de phase liquide à traiter. Deux ou plusieurs dispositifs peuvent être montés en série, en particulier lorsque les conditions d'absorption de la phase gazeuse dans la phase liquide sont difficiles c'est à dire lorsque la solubilité de la phase gazeuse est faible dans les conditions prévues pour le traitement, ou si une réaction intervient avec consommation du gaz dissous.The devices can be associated in parallel, their number depending on the volume of liquid phase to be treated. Two or more devices can be connected in series, in particular when the conditions for absorption of the gas phase in the liquid phase are difficult, that is to say when the solubility of the gas phase is low under the conditions provided for the treatment, or if a reaction occurs with consumption of the dissolved gas.

D'autres buts et avantages de la présente invention apparaîtront à la lecture de la description suivante, faite, à titre non limitatif, en référence aux dessins annexés dans lesquels :

  • La figure 1 est une vue en coupe longitudinale du dispositif de l'invention ;
  • La figure 2 montre un exemple de mise en oeuvre de l'invention,
  • La figure 3 donne plusieurs courbes montrant la variation du coefficient de transfert en fonction de la vitesse de la phase gazeuse, lors de mesures faites, partie par les inventeurs, partie par WANG et AL, en Chem. Eng. Sci., 33,945 (1978),
  • La figure 4 donne plusieurs courbes montrant la variation de la capacité d'oxygénation du dispositif de la figure 1 en fonction de la puissance spécifique, établies en partant de résultats obtenus partie par des essais faits par les inventeurs, partie par des résultats provenant d'une étude du Centre Technique Du Génie Rural des Eaux et Forêts (CEMAGREF) et publiés par le Ministère de l'Agriculture français en 1980.
  • Les figures 5 à 7 représentent, chacune, une vue en coupe d'un dispositif selon un troisième mode de réalisation de l'invention ;
  • La figure 8 est une vue, analogue à celles des figures 5 à 7, d'une variante ; et
  • La figure 9 est une vue d'un élément de garnissage. Les dispositifs objets de l'invention et décrits à tire d'exemple ont été déterminés pour être utilisés dans un bassin de 400 mètres carrés de surface et 2, 5 mètres de profondeur dont les besoins en oxygène de la phase liquide sont de 51 kilogrammes par heure.
Other objects and advantages of the present invention will appear on reading the following description, given, without implied limitation, with reference to the appended drawings in which:
  • Figure 1 is a longitudinal sectional view of the device of the invention;
  • FIG. 2 shows an example of implementation of the invention,
  • FIG. 3 gives several curves showing the variation of the transfer coefficient as a function of the speed of the gas phase, during measurements made, partly by the inventors, partly by WANG and AL, in Chem. Eng. Sci., 33.945 (1978),
  • FIG. 4 gives several curves showing the variation of the oxygenation capacity of the device of FIG. 1 as a function of the specific power, established on the basis of results obtained partly by tests made by the inventors, partly by results coming from a study of the Technical Center of Rural Engineering of Water and Forests (CEMAGREF) and published by the French Ministry of Agriculture in 1980.
  • Figures 5 to 7 each represent a sectional view of a device according to a third embodiment of the invention;
  • Figure 8 is a view, similar to those of Figures 5 to 7, of a variant; and
  • Figure 9 is a view of a packing element. The devices which are the subject of the invention and described by way of example have been determined to be used in a basin of 400 square meters of surface and 2.5 meters in depth, the oxygen requirements of the liquid phase of which are 51 kilograms per hour.

Si l'on considère la figure 1, le dispositif comporte un convergent 1 d'angle 40 degrès environ et de longueur 127 millimètres. Côté entrée de ce convergent, qui sert d'entrée à la phase liquide, se trouve une partie cylindrique 6 destinée au raccordement de la tuyauterie amenant la phase liquide. Le diamètre d'entrée du convergent 1 est égal à 114 millimètres.If we consider Figure 1, the device comprises a convergent 1 of angle 40 degrees approximately and length 127 millimeters. On the inlet side of this convergent, which serves as an inlet for the liquid phase, there is a cylindrical part 6 intended for the connection of the piping bringing the liquid phase. The inlet diameter of the convergent 1 is equal to 114 millimeters.

Après le convergent se trouve le col 2 du venturi. Il a un diamètre de 25,4 millimètres et une longueur de 25,4 millimètres. Le col 2 comporte équidistant de ses deux extrémités un piquage 7 dépassant extérieurement de 50,8 millimètres et destiné à l'alimentation du dispositif par la phase gazeuse. Le diamètre de ce piquage est de 6 millimètres. Dans une variante de cette réalisation où la phase gazeuse est admise par induction due à la force motrice de la phase liquide, le diamètre est de 8 millimètres.After the convergent is the neck 2 of the venturi. It has a diameter of 25.4 millimeters and a length of 25.4 millimeters. The neck 2 has equidistant from its two ends a tap 7 projecting externally by 50.8 millimeters and intended for supplying the device by the gas phase. The diameter of this nozzle is 6 millimeters. In a variant of this embodiment where the gas phase is admitted by induction due to the motive force of the liquid phase, the diameter is 8 millimeters.

Le col 2 est suivi du divergent 3 formant un angle de 10 degrés. Sa longueur est telle que le diamètre de sortie soit égal au diamètre d'entrée du convergent, soit 506 millimètres.The neck 2 is followed by the divergent 3 forming an angle of 10 degrees. Its length is such that the outlet diameter is equal to the inlet diameter of the convergent, ie 506 millimeters.

On intercale entre le venturi et la cheminée 5 une pièce d'espacement 4.A spacer 4 is inserted between the venturi and the chimney 5.

Dans un exemple préféré, son diamètre est égal à 114 millimètres, sa longueur à 114 millimètres. La pièce intercalaire est ajourée par trois lumières présentant un dégagement maximal compatible avec sa réalisation.In a preferred example, its diameter is equal to 114 millimeters, its length to 114 millimeters. The intermediate piece is perforated by three lights presenting a maximum clearance compatible with its realization.

Après la pièce d'espacement 4 on trouve la cheminée 5. Elle est cylindrique, de diamètre égal à celui de la sortie du divergent 3, sa longueur est égale à 1030 millimètres.After the spacer 4 there is the chimney 5. It is cylindrical, of diameter equal to that of the outlet of the divergent 3, its length is equal to 1030 millimeters.

Sur la figure 2, on peut voir comment sont mis en oeuvre les dispositifs décrits ci-dessus. Dans le bassin 8 on envoie à l'entrée des dispositifs 12 la phase liquide par l'intermédiaire d'une pompe 9 et d'une rampe d'alimentation 10. De même, on envoie au col des dispositifs 12 la phase gazeuse par l'intermédiaire d'un compresseur 11 et d'une rampe 13. Le bassin a une capacité de 1000 mètres cubes, la pompe 9 a un débit de 2400 mètres cubes par heure pour une pression de 1 bar, le compresseur 11 a un débit de 3, 3 mètres cubes par minute pour une pression de 0, 4 bar.In Figure 2, we can see how are implemented the devices described above. In the basin 8 the liquid phase is sent to the input of the devices 12 by means of a pump 9 and a supply ramp 10. Similarly, the gaseous phase is sent to the neck of the devices 12 by the by means of a compressor 11 and a ramp 13. The basin has a capacity of 1000 cubic meters, the pump 9 has a flow rate of 2400 cubic meters per hour at a pressure of 1 bar, the compressor 11 has a flow rate of 3.3 cubic meters per minute for a pressure of 0.4 bar.

L'installation est de préférence équipée de 263 dispositifs, chacun disposé sensiblement verticalement. Elle assure une capacité d'oxygénation de 51 grammes d'oxygène par mètre cube et par heure. La puissance brute requise est de 30 kilowatts, soit une puissance spécifique de 30 watts par mètre cube.The installation is preferably equipped with 263 devices, each arranged substantially vertically. It provides an oxygenation capacity of 51 grams of oxygen per cubic meter per hour. The gross power required is 30 kilowatts, or a specific power of 30 watts per cubic meter.

La figure 3 permet de comparer les valeurs des coefficients de transferts en fonction de la vitesse de la phase liquide à savoir 0,2624 mètre par seconde en utilisant le dispositif objet de l'invention: courbe 14 et les coefficients obtenus en utilisant les dispositifs déjà connus : courbes 15 (plateau poreux), 16 (venturi classique), 17 (colonne à bulles et mélangeur statique).FIG. 3 makes it possible to compare the values of the transfer coefficients as a function of the speed of the liquid phase, namely 0.2624 meters per second using the device which is the subject of the invention: curve 14 and the coefficients obtained using the devices already known: curves 15 (porous plateau), 16 (classic venturi), 17 (bubble column and static mixer).

Les courbes 16 et 17 ont été obtenues par WANG et AL en 1978, les autres expérimentalement par les inventeurs. En abscisses figurent les vitesses superficielles de gaz en mètre par seconde, en ordonnées figurent les coefficients de transfert en seconde moins un.Curves 16 and 17 were obtained by WANG and AL in 1978, the others experimentally by the inventors. On the abscissa are the surface gas velocities in meter per second, the ordinates show the transfer coefficients in seconds minus one.

La figure 4 permet de comparer les valeurs des capacités d'oxygénation en fonction des puissances spécifiques mises en oeuvre par le dispositif objet de l'invention: courbes 18 et 19 (débit de la phase liquide égal à 2,5 litres par seconde pour courbe 18, débit de la phase liquide égal à 5 litres par seconde pour courbe 19) et les coefficients obtenus par les dispositifs déjà connus : courbe 20 (courbe enveloppe maximale des valeurs statistiques relatives aux turbines rapides, lentes et aux brosses ), 21 (turbine lente brosse) et 22 (turbine rapide). Les courbes 20, 21 et 22 ont été tracées avec les résultats de mesures citées par CEMAGREF en 1980, les autres expérimentalement par les inventeurs. En *abcisses figurent les puissances spécifiques en watts par mètre cube, en ordonnées figurent les capacités d'oxygénation en grammes d'oxygène par mètre cube et par heure.FIG. 4 makes it possible to compare the values of the oxygenation capacities as a function of the specific powers implemented by the device which is the subject of the invention: curves 18 and 19 (flow rate of the liquid phase equal to 2.5 liters per second for curve 18, liquid phase flow rate equal to 5 liters per second for curve 19) and the coefficients obtained by already known devices: curve 20 (maximum envelope curve of the statistical values relating to fast, slow turbines and brushes), 21 (turbine slow brush) and 22 (fast turbine). Curves 20, 21 and 22 were plotted with the results of measurements cited by CEMAGREF in 1980, the others experimentally by the inventors. In * abscisses are the specific powers in watts per cubic meter, in ordinates are the oxygenation capacities in grams of oxygen per cubic meter and per hour.

Chacun des dispositifs décrits ci-dessus est très performant en soi. Cependant, dans certains cas et en présence de certains fluides qui sont caractérisés par une faible viscosité et/ou une forte tension de vapeur, ou en présence de certains gaz occlus ou phase dispersée de bas poids moléculaire, son utilisation en mode vertical peut conduire à une accumulation de gaz ou une coalescence de celui-ci dans la cheminée du dispositif.Each of the devices described above is very efficient in itself. However, in certain cases and in the presence of certain fluids which are characterized by a low viscosity and / or a high vapor pressure, or in the presence of certain occluded gases or dispersed phase of low molecular weight, its use in vertical mode can lead to an accumulation of gas or a coalescence of it in the chimney of the device.

Les modes de réalisation représentés sur les figures 5 à 8 diffèrent de ceux décrits ci-dessus en ce qu'ils comprennent, en plus, un garnissage dans la cheminée qui joue le rôle de rupteur de bulles et empêche ainsi la coalescence des bulles du gaz.The embodiments shown in Figures 5 to 8 differ from those described above in that they further comprise a lining in the chimney which acts as a bubble breaker and thus prevents the coalescence of the gas bubbles .

Comme représenté sur la figure 5, le dispositif comporte un garnissage 30 disposé dans la cheminée 5. Le garnissage est formé de deux éléments 32 et 34, chacun comprenant une structure grillagée 36 telle que représentée sur la figure 9. La structure grillagée 36 comprend deux séries de fils 38 disposées de manière orthogonale formant des mailles carrées qui sont soit soudées, soit enchevêtrées. Les fils 38 peuvent être, par exemple, en une matière plastique, en acier inoxydable ou bien consister en fils métalliques plastifiés.As shown in FIG. 5, the device comprises a lining 30 arranged in the chimney 5. The lining is formed by two elements 32 and 34, each comprising a mesh structure 36 as shown in FIG. 9. The mesh structure 36 comprises two series of wires 38 arranged orthogonally forming square meshes which are either welded or entangled. The wires 38 can be, for example, of a material plastic, stainless steel or consist of plasticized metal wires.

Le premier élément 32 du garnissage 30 est formé d'une structure grillagée 36 qui est enroulée pour qu'elle prenne une forme sensiblement spirale. Le deuxième élément 34 du garnissage 30 est également formé d'une structure grillagée qui est pliée de façon à avoir une section sensiblement en dent de scie. Une fois pliée, la structure grillagée est enroulée pour prendre une forme correspondant à celle du premier élément. De préférence, les deux éléments 32 et 34 sont enroulés ensemble. Une fois enroulé, le garnissage 30 est monté à l'intérieur de la cheminée 5The first element 32 of the lining 30 is formed of a mesh structure 36 which is rolled up so that it takes on a substantially spiral shape. The second element 34 of the lining 30 is also formed of a mesh structure which is folded so as to have a substantially sawtooth section. Once folded, the grid structure is rolled up to take a shape corresponding to that of the first element. Preferably, the two elements 32 and 34 are wound together. Once wound up, the lining 30 is mounted inside the chimney 5

Afin de retenir le garnissage 30 dans la cheminée 5, on peut envisager de former le garnissage avec un diamètre externe qui est entre 1,10 et 1,20 fois le diamètre interne de la cheminée 5. Dans ce cas, le garnissage 30 est emmanché à force dans la cheminée 5. On peut également prévoir de former le garnissage 30 avec un diamètre externe sensiblement égal ou légèrement inférieur au diamètre interne de la cheminée 5. Dans ce cas, le dispositif comprend, en outre, un moyen pour retenir le garnissage 30 en place dans la cheminée 5. Les dispositifs représentés sur les figures 5 à 7 comportent chacun un moyen différent pour retenir le garnissage 30. Dans le mode de réalisation de la figure 5, le garnissage 30 est retenu par un ressort de blocage 40 qui est sensiblement en forme de C et qui comporte deux bras, extrêmes 42 dirigés vers le centre du C. Le ressort de blocage 40 est monté autour de l'extérieur de la cheminée 5, les bras 42 passant par des ouvertures 44 formées dans la cheminée 5 pour engager les mailles de l'élément 32. Le ressort de blocage 40 est retenu en place entre deux brides 46 qui sont formées chacune par repliage d'une partie de la tôle de la cheminée 5.In order to retain the lining 30 in the chimney 5, it is possible to envisage forming the lining with an external diameter which is between 1.10 and 1.20 times the internal diameter of the chimney 5. In this case, the lining 30 is fitted by force in the chimney 5. One can also provide for forming the lining 30 with an external diameter substantially equal to or slightly less than the internal diameter of the chimney 5. In this case, the device further comprises a means for retaining the lining 30 in place in the chimney 5. The devices shown in Figures 5 to 7 each have a different means for retaining the lining 30. In the embodiment of Figure 5, the lining 30 is retained by a locking spring 40 which is substantially C-shaped and which has two arms, extremes 42 directed towards the center of C. The locking spring 40 is mounted around the outside of the chimney 5, the arms 42 passing through openings 44 formed in the chimney 5 to engage the meshes of the element 32. The locking spring 40 is retained in place between two flanges 46 which are each formed by folding back part of the sheet metal of the chimney 5.

Le mode de réalisation de la figure 6 diffère de celui de la figure 5 en ce que le ressort de blocage 40′ est monté à l'intérieur de la cheminée 5. Dans ce cas, les bras 42′ sont repliés vers l'extérieur et passent par des ouvertures 44′ formées dans la cheminée 5. Une troisième ouverture 48 est formée dans la cheminée et permet à une partie 50 en forme de boucle du ressort 40′ de faire saillie en dehors de la cheminée 5. Le ressort de blocage 40′ est disposé dans la cheminée entre le garnissage 30 et la sortie de la cheminée 5.The embodiment of FIG. 6 differs from that of FIG. 5 in that the locking spring 40 ′ is mounted inside the chimney 5. In this case, the arms 42 ′ are folded outwards and pass through openings 44 ′ formed in the chimney 5. A third opening 48 is formed in the chimney and allows a part 50 in the form of a loop of the spring 40 ′ to protrude outside the chimney 5. The locking spring 40 ′ is arranged in the chimney between the lining 30 and the outlet of the chimney 5.

Dans le mode de réalisation de la figure 7, le garnissage 30 comporte deux baïonnettes 52 qui sont soudées sur les mailles des éléments 32 et 34. La cheminée 5 est pourvue de deux évidements 54 en forme de L qui sont destinés à recevoir les baïonnettes 52 verrouillant ainsi le garnissage 30 en place.In the embodiment of FIG. 7, the lining 30 comprises two bayonets 52 which are welded to the meshes of the elements 32 and 34. The chimney 5 is provided with two L-shaped recesses 54 which are intended to receive the bayonets 52 thus locking the lining 30 in place.

Un deuxième mode de réalisation du garnissage 30 est représenté sur la figure 8. Ce garnissage diffère de celui des figures 5 à 7 en ce que le deuxième élément est formé d'une structure grillagée à laquelle on a préalablement donné une section ondulée ou sensiblement sinusoïdale.A second embodiment of the lining 30 is shown in FIG. 8. This lining differs from that of FIGS. 5 to 7 in that the second element is formed of a mesh structure to which a wavy or substantially sinusoidal section has previously been given. .

Dans les modes de réalisation des figures 5 à 8, il est envisagé que la longueur axiale du garnissage 30 soit entre 10 à 40 % de la longueur axiale de la cheminée 5.In the embodiments of FIGS. 5 to 8, it is envisaged that the axial length of the lining 30 is between 10 to 40% of the axial length of the chimney 5.

Le garnissage décrit ci-dessus présente les avantages suivants :

  • du fait de sa très grande porosité, la perte de charge créée par la présence du garnissage dans la cheminée est très faible ;
  • la surface de contact entre le gaz et le liquide est augmentée par le cassage des bulles de gaz ;
  • le transfert gaz-liquide est donc amélioré, ce qui entraîne une réduction de la viscosité du liquide due à la forte quantité de gaz dissous ;
  • le garnissage permet la libre circulation des particules solides si la maille est environ 5 fois plus importante que le diamètre des particules ;
  • le garnissage diminue le rétromélange du liquide rendant l'écoulement de ce dernier plus près d'un écoulement piston.
The packing described above has the following advantages:
  • due to its very high porosity, the pressure drop created by the presence of the lining in the chimney is very low;
  • the contact surface between the gas and the liquid is increased by the breaking of the gas bubbles;
  • the gas-liquid transfer is therefore improved, which leads to a reduction in the viscosity of the liquid due to the large amount of dissolved gas;
  • the lining allows the free circulation of solid particles if the mesh is approximately 5 times larger than the diameter of the particles;
  • the packing decreases the back-mixing of the liquid making the flow of the latter closer to a piston flow.

Le premier élément 32 du garnissage 30, destiné à être utilisé dans un dispositif ayant les dimensions données ci-dessus, est de préférence formé de mailles carrées ayant un côté de 10 mm réalisées à partir d'un fil de diamètre 0,25 à 0,5 mm. Dans le cas où le premier élément 32 a une section en dent de scie, la longueur de chaque pan est 14,14 mm et l'angle entre deux pans voisins est 90°. Dans le mode de réalisation de la figure 8, la longueur d'onde des ondulations est 20 mm et l'amplitude est 10 mm.The first element 32 of the lining 30, intended to be used in a device having the dimensions given above, is preferably formed of square meshes having a side of 10 mm made from a wire with a diameter of 0.25 to 0 , 5 mm. In the case where the first element 32 has a section sawtooth, the length of each panel is 14.14 mm and the angle between two neighboring panels is 90 °. In the embodiment of Figure 8, the wavelength of the corrugations is 20 mm and the amplitude is 10 mm.

Claims (9)

1. A device for the dispersion of a gaseous phase in a liquid phase comprising at least one venturi ejector consisting of a convergent portion (1), a neck (2) and a divergent portion (3), characterised in that the said divergent portion (3) is extended by a chimney (5) having a diameter equal to that of the divergent portion and in that there is incorporated between the venturi and the chimney portion a cylindrical open-work portion (4) having a diameter equal to the outlet diameter of the convergent portion (1) and of a length which is substantially equal to the said diameter.
2. A device according to Claim 1, characterised in that the chimney portion (5) is of at least the same length as the venturi ejector.
3. A device according to one of Claims 1 or 2, characterised in that it comprises a plurality of venturi ejectors mounted in series.
4. A device according to one of Claims 1 to 3, characterised in that it comprises a plurality of venturi ejectors mounted in parallel.
5. A device according to one of Claims 1 to 4, characterised in that it comprises furthermore a lining (30) disposed in the chimney portion (5), the said lining (30) consisting of at least lattice-work element (32, 34).
6 A device according to Claim 5, characterised in that the lining (30) consists of two lattice-work elements (32, 34) which are rolled together in order substantially to assume the form of a spiral.
7. A device according to Claim 6, characterised in that one of the elements (34) has a substantially saw-toothed cross-section.
8. A device according to Claim 6, characterised in that one of the elements (34) is of substantially sinusoidal cross-section.
9. A device according to one of Claims 5 to 8, characterised in that it also comprises a means of retaining the lining (30) in place in the chimney portion (5).
EP88910055A 1987-11-03 1988-10-27 Device for dispersing gas within a liquid phase Expired - Lifetime EP0367799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8715219A FR2622470B1 (en) 1987-11-03 1987-11-03 GAS DISPERSION DEVICE WITHIN A LIQUID PHASE AND APPLICATION OF THIS DEVICE TO CARRYING OUT TREATMENTS INCLUDING THE TRANSFER OF A GAS PHASE INTO A LIQUID PHASE
FR8715219 1987-11-03

Publications (2)

Publication Number Publication Date
EP0367799A1 EP0367799A1 (en) 1990-05-16
EP0367799B1 true EP0367799B1 (en) 1992-03-18

Family

ID=9356430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88910055A Expired - Lifetime EP0367799B1 (en) 1987-11-03 1988-10-27 Device for dispersing gas within a liquid phase

Country Status (9)

Country Link
US (1) US5073309A (en)
EP (1) EP0367799B1 (en)
JP (1) JPH02502085A (en)
DE (1) DE3869417D1 (en)
ES (1) ES2013358A6 (en)
FR (1) FR2622470B1 (en)
GR (1) GR880100740A (en)
PT (1) PT88911B (en)
WO (1) WO1989004208A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906483D0 (en) * 1989-03-21 1989-05-04 Boc Group Plc Dissolution of gas
DE9201154U1 (en) * 1992-01-31 1993-06-03 Oematech oekologische Maschinenbautechnik GmbH, O-4500 Dessau Device for the continuous introduction of gas into a liquid
DE9302862U1 (en) * 1993-02-26 1993-05-27 Anton Steinecker Entwicklungs GmbH & Co, 8050 Freising Aeration nozzle for aerating liquids containing organic substances
JPH0838806A (en) * 1994-07-27 1996-02-13 Fsk Corp Oil/water separation device
WO1997022562A1 (en) * 1995-12-05 1997-06-26 Inglewood Technologies Pty. Ltd. An aeration device
US6835312B2 (en) * 2001-05-15 2004-12-28 Global Biosciences, Inc. Method and apparatus for treatment of septic systems with alkane-utilizing bacteria
US20030201227A1 (en) * 1996-12-17 2003-10-30 Perriello Felix Anthony Remediation of odorous media
US7182871B2 (en) * 1996-12-17 2007-02-27 Global Biosciences, Inc. Wastewater treatment with alkanes
US6923914B2 (en) * 1996-12-17 2005-08-02 Global Biosciences, Inc. Remediation of metal contaminants with hydrocarbon-utilizing bacteria
US6669846B2 (en) * 1996-12-17 2003-12-30 Global Biosciences, Inc. Wastewater treatment with alkanes
US7192523B2 (en) 1996-12-17 2007-03-20 Global Biosciences, Inc. Methods for treating agricultural waste and producing plant growth-enhancing material
US5916491A (en) * 1997-01-16 1999-06-29 Rhone-Poulenc, Inc. Gas-liquid vortex mixer and method
US5925290A (en) * 1997-08-08 1999-07-20 Rhone-Poulenc Inc. Gas-liquid venturi mixer
FR2771953B1 (en) * 1997-12-05 2000-01-14 Carboxyque Francaise CO2 DISTRIBUTION DEVICE AND METHODS OF TREATING AN EFFLUENT AND SURFACE CLEANING USING THE SAME
DE19905572A1 (en) * 1999-02-11 2000-08-31 Bayer Ag Device for mixing and reacting multiphase gaseous and liquid mixtures and use of this device
IT1306856B1 (en) * 1999-06-07 2001-10-11 Ct Sviluppo Materiali Spa DEVICE FOR SOLUBILIZING AN AERIFORM IN FLUID, AND USE OF A DEVICE.
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
US7329532B2 (en) 2001-07-27 2008-02-12 Global Biosciences, Inc. Remediation of sulfur-containing pollutants with hydrocarbon-utilizing bacteria
US6875356B2 (en) * 2001-07-27 2005-04-05 Global Biosciences, Inc. Method and apparatus for recovery of metals with hydrocarbon-utilizing bacteria
US20030116871A1 (en) * 2001-12-21 2003-06-26 Steven Ringo Structured packing
US7025883B1 (en) * 2003-09-30 2006-04-11 Ok Technologies, Llc Autotrofic sulfur denitration chamber and calcium reactor
DE102004007123B3 (en) * 2004-02-12 2005-08-18 Honeywell B.V. Mixing device for mixing gas and combustion air for a gas burner comprises a gas regulating unit arranged on a monolithic unit consisting of a housing and a Venturi nozzle
US7303156B1 (en) * 2004-04-08 2007-12-04 Louisiana Tech University Research Foundation As A Division Of The Louisiana Tech University Foundation Generation and usage of microbubbles as a blood oxygenator
CN2923009Y (en) * 2006-06-02 2007-07-18 上海荣威塑胶工业有限公司 Pressure-typ gas-liquid mixing gas-leading apparatus
JP2011507685A (en) * 2007-12-20 2011-03-10 レイブ・エヌ・ピー・インコーポレーテッド Fluid ejection assembly for nozzle
WO2010077962A1 (en) * 2008-12-16 2010-07-08 Geir Corporation Improvements in oxygenation of a fluid
DE102009048405A1 (en) * 2009-10-06 2011-04-07 Honeywell Technologies S.A.R.L. Control device for gas burners
DE102010010791A1 (en) * 2010-03-09 2011-09-15 Honeywell Technologies Sarl Mixing device for a gas burner
ITGE20120109A1 (en) * 2012-11-16 2014-05-17 A Due Di Squeri Donato & C S P A DISPERSION AND DISSOLUTION DEVICE OF POLVERULENTO MATERIAL IN A FLUID THROUGH CONTROLLED HYDRODYNAMIC CAVITATION
CN104761067B (en) * 2015-03-18 2016-08-24 上海爱地环保技术有限公司 Launch the jet aerator of turn type jet
US10857507B2 (en) * 2016-03-23 2020-12-08 Alfa Laval Corporate Ab Apparatus for dispersing particles in a liquid
US11206853B2 (en) 2017-04-12 2021-12-28 Gaia Usa, Inc. Apparatus and method for generating and mixing ultrafine gas bubbles into a high gas concentration aqueous solution
CA3120242A1 (en) 2018-06-01 2019-12-05 Gaia Usa, Inc. Apparatus in the form of a unitary, single-piece structure configured to generate and mix ultra-fine gas bubbles into a high gas concentration aqueous solution

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB111720A (en) * 1916-12-09 1917-12-10 Jones & Attwood Ltd Improvements in and connected with the Purification of Sewage and other Impure Liquids.
US2322087A (en) * 1942-12-10 1943-06-15 Socony Vacuum Oil Co Inc Eductor tank mixer
DE1078092B (en) * 1953-01-31 1960-03-24 Sulzer Ag Method for mixing a gas with a liquid
US2771998A (en) * 1954-01-05 1956-11-27 Orloff W Holden Aerator screen
US2857927A (en) * 1954-08-18 1958-10-28 Creamery Package Mfg Co Valve construction
GB776942A (en) * 1954-09-28 1957-06-12 British Oxygen Co Ltd Improvements in or relating to gas/liquid contact devices
US3094171A (en) * 1958-03-24 1963-06-18 Gamewell Co Foam nozzle
US3256802A (en) * 1962-03-14 1966-06-21 Shasta Beverage Division Of Co Continuous carbonation system
FR1319079A (en) * 1962-04-04 1963-02-22 Hydro-mixing device
US3347381A (en) * 1966-08-26 1967-10-17 Mead Corp Waste treatment
FR2187398A1 (en) * 1972-06-06 1974-01-18 Degremont Waste water treatment chemical reactor - using kinetic energy of input solution to produce rapid homogeneous blend with flocculating reagents etc
US3826474A (en) * 1972-09-18 1974-07-30 Lear Siegler Inc Jet agitator assembly
US4019983A (en) * 1974-10-10 1977-04-26 Houdaille Industries, Inc. Disinfection system and method
FR2321930A1 (en) * 1975-08-25 1977-03-25 Cem Comp Electro Mec METHOD AND DEVICE FOR COMBINING GAS AND LIQUID
US4123800A (en) * 1977-05-18 1978-10-31 Mazzei Angelo L Mixer-injector
US4308138A (en) * 1978-07-10 1981-12-29 Woltman Robert B Treating means for bodies of water
US4564480A (en) * 1978-12-20 1986-01-14 Eduard Kamelmacher Aeration system and method
US4278405A (en) * 1979-01-22 1981-07-14 Angle Lonnie L Energy amplifier apparatus
US4416610A (en) * 1980-03-14 1983-11-22 Hydroil, Inc. Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
JPS5931352Y2 (en) * 1981-02-19 1984-09-05 日本産業機械株式会社 Sewage treatment equipment
DE3218227A1 (en) * 1982-05-14 1983-11-17 Basf Ag, 6700 Ludwigshafen Use of a jet nozzle for introduction of gases into liquids
DE3247912A1 (en) * 1982-12-24 1984-06-28 Deutsche Babcock Anlagen Ag, 4200 Oberhausen Process and apparatus for the continuous chemical conditioning of sewage sludge
US4742584A (en) * 1984-09-05 1988-05-10 Abe Co., Ltd. Water current and air bubble generating apparatus for bath
BE901771A (en) * 1985-02-20 1985-06-17 Studiecentrum Voor Kernerergie GAS PURIFICATION DEVICE.
CA1259304A (en) * 1985-09-06 1989-09-12 Hans C. Rasmusen Motionless mixer for gas/liquid mixing
US4722363A (en) * 1986-06-04 1988-02-02 Atlantic Richfield Company Additive injection system for fluid transmission pipelines
US4820408A (en) * 1988-07-22 1989-04-11 Dial Manufacturing, Inc. Double valve apparatus

Also Published As

Publication number Publication date
PT88911B (en) 1993-12-31
US5073309A (en) 1991-12-17
FR2622470A1 (en) 1989-05-05
PT88911A (en) 1989-09-14
DE3869417D1 (en) 1992-04-23
WO1989004208A1 (en) 1989-05-18
FR2622470B1 (en) 1991-05-10
GR880100740A (en) 1994-03-31
JPH02502085A (en) 1990-07-12
EP0367799A1 (en) 1990-05-16
ES2013358A6 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
EP0367799B1 (en) Device for dispersing gas within a liquid phase
EP0125162B1 (en) Apparatus for dissolving ozone in a fluid
CA2629924C (en) Scrubber for cleaning the exhaust gases of a diesel engine, method of operating it and corresponding maritime vehicle
FR2755959A1 (en) REACTOR, PROCESS AND INSTALLATION FOR MANUFACTURING AMMONIA SALTS
FR2737975A1 (en) APPARATUS FOR SEPARATING GAS BY ADSORPTION
FR2814735A1 (en) Flow tube used in ozone generators for disinfecting drinking water, and for cleaning fruit and vegetables comprises an outer tube, an inner tube arranged in the outer tube
WO2015135921A1 (en) Device for separating gas components contained in a gas mixture, and use thereof for separating methane and carbon dioxide from a biogas
FR2509337A1 (en) FLOATING DEVICE FOR THE TREATMENT OF OLD PAPERS
WO2005044441A1 (en) Method of mixing and distributing a liquid phase and a gaseous phase
EP1750831A1 (en) Device for injecting gas into a liquid
EP2355921B1 (en) Method and device for treating at least one compound carried in a liquid
EP1343577B1 (en) Method, module and device for contacting a gas and a liquid
US20010050443A1 (en) Method and apparatus for diffusing ozone gas into liquid
FR2604371A1 (en) METHOD AND DEVICE FOR EXCHANGING BETWEEN A GAS AND A LIQUID
CH396786A (en) Process for the treatment of a liquid medium with a gas mixture and apparatus for carrying out this process
FR3030481A1 (en) MOBILE DEVICE FOR THE BIOLOGICAL TREATMENT OF BIOREACTOR TYPE WASTEWATER.
FR2484862A1 (en) Injector for contacting gas with liq. to form emulsion - injects high speed gas co-current at low angle of incidence
FR2825996A1 (en) Oxygenation system for liquid in tank, introduces gas under pressure into recirculated tank flow such that quantified bubble dispersion is maintained
CA1052918A (en) Aerobic treatment in an enclosure divided into a peripheral settling zone and a central activation zone
FR2682302A1 (en) Process for dissolving a gas in a liquid and device for its use
CH554191A (en) Appts. for diffusion of gas into a liq. - partic. of oxygen for regeneration of polluted waters
FR2947187A1 (en) Treating a chemical compound and/or microorganism transported by a liquid and/or a gas, comprises circulating a liquid in a flow space to produce cavitation bubbles/pockets, and injecting an incondensable gas inside the bubbles/pockets
FR2887470A1 (en) Procedure and apparatus for dissolving a gas in a liquid, especially oxygen in water, uses nozzles to inject liquid into chamber partly filled with gas
FR3124955A1 (en) Device for creating a liquid mixture from at least two streams of liquid fluids
EP1594599A1 (en) Device for the production of mini-bubbles in a liquid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT LU NL

17Q First examination report despatched

Effective date: 19910422

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL

REF Corresponds to:

Ref document number: 3869417

Country of ref document: DE

Date of ref document: 19920423

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921007

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921016

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921116

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921229

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930126

Year of fee payment: 6

26N No opposition filed
EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931027

Ref country code: GB

Effective date: 19931027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: ELF FRANCE

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051027