EP0367280B2 - Particle filter system - Google Patents
Particle filter system Download PDFInfo
- Publication number
- EP0367280B2 EP0367280B2 EP89120374A EP89120374A EP0367280B2 EP 0367280 B2 EP0367280 B2 EP 0367280B2 EP 89120374 A EP89120374 A EP 89120374A EP 89120374 A EP89120374 A EP 89120374A EP 0367280 B2 EP0367280 B2 EP 0367280B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- particle filter
- burner chamber
- flow
- filter system
- gas conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title claims abstract description 55
- 238000002485 combustion reaction Methods 0.000 claims description 83
- 239000007789 gas Substances 0.000 claims description 63
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 239000011819 refractory material Substances 0.000 claims 1
- 230000008929 regeneration Effects 0.000 abstract description 15
- 238000011069 regeneration method Methods 0.000 abstract description 15
- 239000000446 fuel Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 description 13
- 230000008901 benefit Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 206010006895 Cachexia Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 208000026500 emaciation Diseases 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/14—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S55/00—Gas separation
- Y10S55/30—Exhaust treatment
Definitions
- the invention relates to a particle filter system with an in an exhaust pipe of a diesel engine flowable particle filter and with a Burner, the burner having an atomizing nozzle which by means of a gas line can be supplied with oxygen-containing gas, and to which a primary combustion chamber with a primary swirl flow and a secondary combustion chamber connect, the direction of rotation of the swirl flow in the primary combustion chamber the sense of rotation of the swirl flow in the secondary combustion chamber is opposite.
- Particle emission is a procedural disadvantage of the diesel engine. So far, attempts have been made to solve this problem by internal engine Measures to solve. The increasingly stringent legal requirements for vehicle engines will require the use of Particle filters in the exhaust gas flow.
- Such a particle filter is described in US-A-4,651,524.
- This particle filter system has one in an exhaust pipe Diesel engine with flowable particle filter and a burner, which has an atomizer nozzle which contains oxygen by means of a gas line Gas can be supplied.
- the swirl devices for the primary flow and generate currents for the secondary flow opposite twist.
- Construction of the particle filter system with the burner, the combustion chambers and the supply of the exhaust gas so designed that for operation the burner has a bypass line through which during of the combustion process exhaust gas is derived. This is done during the burning process always, d. H. to a small extent even when idling.
- the exhaust gas is fed axially to the particle filter system, whereby the corresponding line in the flow direction in front of the burner one connecting flange begins and the line continues Flow course around the burner is guided.
- the invention has for its object to a particle filter system create, with the filter surface evenly loaded and regenerated to use the particle filter optimally and before Protect thermal stress cracks.
- the particle filter only can flow in the full flow of the exhaust pipe of the diesel engine, that the atomizer nozzle is an air swirl atomizer nozzle, the outlet of which swirl opens into the primary combustion chamber and the Air swirl atomizer nozzle in the primary combustion chamber a torus vortex generates the primary combustion chamber within the flow direction front part of the secondary combustion chamber is arranged that the Exhaust line tangentially generating swirl on the circumference of the secondary combustion chamber is connected and that the exhaust pipe in the flow direction front part of the secondary combustion chamber opens.
- the fuel-air mixture joins Swirl from the air swirl atomizer nozzle into the primary combustion chamber and forms a torus vortex there.
- the freshly blown in hits this torus vortex Mixture and is intensively processed by multiple recirculation.
- the stationary torus vortex also acts as a flame holder, which ensures a stable flame in the primary combustion chamber is.
- the arrangement of the primary chamber within the flow direction front part of the secondary combustion chamber offers the advantage short overall length of the particle filter system, an advantage that the exhaust pipe tangentially generating swirl on the circumference of the secondary combustion chamber is connected and in that the exhaust pipe in the flow direction opens the front part of the secondary combustion chamber is further strengthened, since the mixing and homogenization path of the Exhaust gas up to the particle filter is maximized.
- the combustion chamber cooled by the engine exhaust the heat absorbed regeneration directly benefits.
- openings on the circumference of the primary combustion chamber prevented negative effects of the exhaust gas pulsations of the diesel engine on the stability of the flame of the primary combustion chamber and allows an admixture of oxygen-containing exhaust gas into the primary combustion chamber.
- the openings are in the flow direction seen arranged in the first third of the primary combustion chamber and their cross section is 5% to 20% of the cross section of the primary combustion chamber. This area has been chosen for a sensitivity to pressure fluctuation insensitivity proven.
- a baffle plate is coaxial with the outlet opening the primary combustion chamber arranged in front of the particle filter.
- the baffle plate is preferably circular, and their diameter is approximately 60% and their distance from the primary chamber end approximately 150% of the diameter of the primary chamber. This offers the advantage that if the ignition fails, the fuel is not in the Core area of the particulate filter can result in overheating and partial destruction of the filter would result. Because of the relative small diameter of the baffle plate and its large distance from the baffle plate does not effect the outlet opening of the primary combustion chamber substantial flow control, so that the uniformity of the Actuation of the particle filter remains guaranteed.
- the production of the baffle plate from heat-resistant material offers the advantage that the baffle plate due to the high thermal stress in Hot gas flow from the primary combustion chamber is not destroyed by overheating becomes.
- this task is particularly suitable Ceramics.
- the gas line with the pressure side of a positive displacement fan driven by the internal combustion engine connected is. This represents a simple form of air supply of the burner.
- the delivery characteristics of the displacement fan can thereby arranged a relief valve in the gas line is to be modified in a simple manner.
- the gas line via a solenoid valve and a flow restrictor which is preferably designed as a supercritical nozzle with a pressure vessel of constant or approximately constant pressure is connected, in the case of a compressed air source, as in Compressed air tanks of commercial vehicles are given in the normal case, one elegant solution for supplying air to the primary combustion chamber.
- the Supercritical nozzle has the advantage that even with certain Pressure fluctuations in the storage container an almost constant amount of air is delivered.
- the particle filter system 2 consists of a burner 3 and a particle filter 7, both in the main flow an exhaust pipe 10 of a diesel engine 1 are arranged.
- the burner 3 consists of an air swirl nozzle 5, a primary combustion chamber 6 and a secondary combustion chamber 9.
- the air swirl atomizer nozzle 5 is supplied by a conveyor and metering device, not shown, via the Fuel supply line 18 supplied with fuel of low pressure
- the supply of compressed air low Pressure takes place via the gas line 4. This is in the embodiment according to FIG. 1 with one of the diesel engine 1 driven displacement blower 15 connected to which a relief valve 11 is assigned.
- the air swirl atomizer nozzle 5 is supercritical via a solenoid valve 21 flowed through nozzle 19 connected to a pressure vessel 20.
- the air swirl atomizer nozzle 5 is followed by the primary combustion chamber 6.
- the primary combustion chamber 6 sits coaxially in the secondary combustion chamber 9, on the front wall 22 it is attached.
- the primary combustion chamber 6 has an axial outlet opening 8, the diameter of which is approximately 60 to 80% of the Diameter of the primary combustion chamber 6 is. In addition, are at the periphery of the primary combustion chamber 6 in the - Seen in the direction of flow - front third openings 12 are attached These openings have one Total cross section of 5 and 20% of the primary combustion chamber cross section.
- the secondary combustion chamber 9 like the primary combustion chamber 6, is cylindrical. In its scope and - in Direction of flow seen - the front part, the exhaust pipe 10 is connected tangentially. With several Exhaust pipes 10, the distances between them on the circumference of the secondary combustion chamber 9 are the same, as shown in FIG.
- the primary combustion chamber 9 is followed by the particle filter 7.
- This is a monolithic Ceramic filter of the usual type.
- baffle plate 13 Between the outlet opening 8 of the primary combustion chamber 6 and the particle filter 7 there is a circular one Baffle plate 13 provided, e.g. connected to the periphery of the secondary combustion chamber 9 via spokes 14 is the baffle plate 13, which is made of heat-resistant material such. B. ceramic, has a diameter of approx. 60% of the primary combustion chamber diameter and a distance to the opening 8 of approx. 150% of the primary combustion chamber diameter.
- the particle filter system works as follows:
- the exhaust gas of the diesel engine 1 enters the exhaust gas line 10 tangentially into the Secondary combustion chamber 9 and causes a swirl flow there.
- the exhaust gas temperature and the particle content between the different exhaust pipes 10 by the swirl flow in the secondary combustion chamber 9 balanced. This homogenization of the exhaust gas flow leads to a uniform one Loading and thus for optimal use of the particle filter.
- the exhaust gas back pressure of the diesel engine 1 increases. If the exhaust back pressure a certain Has reached height, the burner 3 is switched on automatically during normal operation of the diesel engine 1, to regenerate the particle filter 7.
- the air swirl atomizer nozzle 5 receives fuel via the fuel line 18 and via the gas line 4 air.
- the fuel is from a source not shown, e.g. B. the fuel delivery pump of the diesel engine 1 delivered under relatively low pressure. Its quantity depends on the current load or exhaust gas temperature and speed of the diesel engine 1.
- the air which is also relatively low pressure, is either powered by a diesel engine Displacement fan 15 or from a pressure vessel 20 via a solenoid valve 21 and a supercritical one Nozzle 19 conveyed to the air swirl atomizer nozzle.
- the solution with the pressure container 20 is suitable for vehicles with compressed air brakes and accordingly dimensioned air compressor.
- This structurally simple solution delivers even with a not quite constant Container pressure a largely constant air pressure in front of the air swirl nozzle 5.
- the pressure that the displacement blower 15 delivers is dependent on the speed of the diesel engine 1 dependent, with a relief valve 11 is provided for pressure limitation.
- the amount of air supplied to the air swirl atomizer nozzle 5 and thus also the amount for conveying and heating it The energy required is relatively low since the residual oxygen in the particle filter system 1 according to the invention of the diesel engine exhaust gas is used for the regeneration of the particle filter 7.
- the residual oxygen content in the exhaust gas of a diesel engine is between approx. 7% at full load and approx. 18% in Neutral.
- the 7% residual oxygen content at full load is just enough to adequately regenerate Time to realize, provided that the exhaust gas temperature reaches the regeneration temperature at this load point.
- the nominal speed for reasons of consumption and emissions chosen relatively low which also keeps the maximum exhaust gas temperature relatively low here must also be at the full load point of the nominal speed, the point of the lowest power requirement of the burner 3, these work to reach the regeneration temperature. Since only the required at this operating point If there is a minimum amount of oxygen in the exhaust gas, no oxygen may be extracted from the exhaust gas. That is why in this operating point, the fuel-air mixture of the burner 3 is approximately stoichiometric. In this way the regeneration temperature with the lowest possible additional air volume and without use of the residual oxygen content of the exhaust gas is reached.
- the compressed air supplied forms a swirl flow, which is on a cutting edge leads to a fine atomization of the fuel.
- the fuel-air mixture emerges with swirl from the air swirl atomizer nozzle 5 into the primary combustion chamber 6 and is ignited there with the help of a high-voltage ignition device, not shown.
- the freshly blown mixture hits this torus vortex and becomes intensive through multiple recirculation processed.
- the stationary torus swirl also acts as a flame holder, creating a stable flame in the primary combustion chamber 6 is guaranteed.
- the stability of the flame also depends on pressure fluctuations in the primary combustion chamber 6, which vary from Exhaust gas flow from the diesel engine 1 originate. These pressure fluctuations are through the openings 12 on The extent of the primary combustion chamber 6 largely weakened. In the area of the openings 12, the ejector effect of the air swirl atomizing nozzle 5 in the primary combustion chamber 6 is a negative pressure, through which the pulsating exhaust gas from the secondary combustion chamber 9 enters the primary combustion chamber 6. Because the exhaust pressure fluctuations are also effective at the opening 8 of the primary combustion chamber 6, they stand out in their Effect on the flame in the primary combustion chamber 6 largely.
- the baffle plate 13 in front of the opening 8 of the primary combustion chamber 6 prevents it from not igniting the primary combustion chamber 6 reaches unburned fuel on the particle filter 7 and this after Ignition at risk from overheating. Since the baffle plate 13 is in the hot exhaust gas stream, it is hot itself and acts as a surface carburetor for the fuel until the fuel-air mixture is ignited. Because of its small size, based on the diameter of the secondary combustion chamber 9, affects the Uniformity of the flow in the secondary combustion chamber 9 is not.
- the combustion of a partially substoichiometric mixture in the primary combustion chamber 6 leads to a particle-free partial combustion due to the intensive mixture preparation, with strong formation of CO, H 2 and radicals.
- These gases combine in the secondary combustion chamber 9 with a part of the residual oxygen of the exhaust gas, the mixing of the exhaust gas with the reaction gas emerging from the primary combustion chamber 6 taking place according to the invention by the opposite direction of rotation of the swirl in the primary and secondary combustion chamber in the manner of a shear current mixture.
- This intensive mixing process causes the secondary combustion chamber 9 and thus also the end face of the particle filter 7 are evenly exposed to flames. Starting from individual ignition germs a uniform and gentle erosion of the particle coating of the particle filter 7 is therefore achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
Die Erfindung betrifft ein Partikelfiltersystem mit einem in einer Abgasleitung eines Dieselmotors durchströmbaren Partikelfilter und mit einem Brenner, wobei der Brenner eine Zerstäuberdüse aufweist, der mittels einer Gasleitung sauerstoffhaltiges Gas zuführbar ist, und an die sich eine Primärbrennkammer mit einer Primärdrallströmung und eine Sekundärbrennkammer anschließen, wobei der Drehsinn der Drallströmung in der Primärbrennkammer dem Drehsinn der Drallströmung in der Sekundärbrennkammer entgegengerichtet ist.The invention relates to a particle filter system with an in an exhaust pipe of a diesel engine flowable particle filter and with a Burner, the burner having an atomizing nozzle which by means of a gas line can be supplied with oxygen-containing gas, and to which a primary combustion chamber with a primary swirl flow and a secondary combustion chamber connect, the direction of rotation of the swirl flow in the primary combustion chamber the sense of rotation of the swirl flow in the secondary combustion chamber is opposite.
Die Partikelemission ist ein verfahrensbedingter Nachteil des Dieselmotors. Bisher wurde versucht, dieses Problem durch innermotorische Maßnahmen zu lösen. Die immer schärfer werdenden gesetzlichen Auflagen für Fahrzeugmotoren erfordern in Zukunft aber den Einsatz von Partikelfiltern im Abgasstrom.Particle emission is a procedural disadvantage of the diesel engine. So far, attempts have been made to solve this problem by internal engine Measures to solve. The increasingly stringent legal requirements for vehicle engines will require the use of Particle filters in the exhaust gas flow.
Ein solches Partikelfilter ist in der US-A-4,651,524 beschrieben. Dieses Partikelfiltersystem weist einen in einer Abgasleitung eines Dieselmotors durchströmbaren Partikelfilter und einen Brenner auf, der eine Zerstäuberdüse aufweist, der mittels einer Gasleitung sauerstoffhaltiges Gas zuführbar ist. Über eine Drallkammer wird einer Brennkammer innerhalb des Mantels eine Primärströmung und über eine Drallplatte wird einer Brennkammer außerhalb des Mantels eine Sekundärströmung zugeführt. Die Dralleinrichtungen für die Primärströmung und für die Sekundärströmung erzeugen Strömungen mit zueinander entgegengesetztem Drall. Dabei ist der zuvor erläuterte Aufbau von dem Partikelfiltersystem mit dem Brenner, den Brennkammern und der Zuführung des Abgases so ausgelegt, daß zum Betrieb des Brenners eine Bypass-Leitung vorhanden, durch die während des Abbrennvorganges Abgas abgeleitet wird. Dies erfolgt während des Abbrennvorganges immer, d. h. in geringem Maße auch bei Leerlauf. Das Abgas wird dem Partikelfiltersystem axial zugeführt, wobei die entsprechende Leitung in Strömungsrichtung vor dem Brenner mit einem Anschlußflansch beginnt und die Leitung im weiteren Strömungsverlauf um den Brenner herumgeführt ist.Such a particle filter is described in US-A-4,651,524. This particle filter system has one in an exhaust pipe Diesel engine with flowable particle filter and a burner, which has an atomizer nozzle which contains oxygen by means of a gas line Gas can be supplied. One becomes over a swirl chamber Combustion chamber inside the jacket a primary flow and over a swirl plate becomes a combustion chamber outside the jacket Secondary flow supplied. The swirl devices for the primary flow and generate currents for the secondary flow opposite twist. Here is the one previously explained Construction of the particle filter system with the burner, the combustion chambers and the supply of the exhaust gas so designed that for operation the burner has a bypass line through which during of the combustion process exhaust gas is derived. This is done during the burning process always, d. H. to a small extent even when idling. The exhaust gas is fed axially to the particle filter system, whereby the corresponding line in the flow direction in front of the burner one connecting flange begins and the line continues Flow course around the burner is guided.
Die Zeitschrift "Brennstoff, Wärme, Kraft" (BWK), Band 37, 1985, Nr. 10, Seite 380 ff beschreibt in dem Artikel "Strömungsvorgänge und Tropfenbildungsmechanismen in luftgestützten Zerstäubungsdüsen" eine Luftdrallzerstäuberdüse, die insbesondere im Rahmen der Weiterentwicklung von Gasturbinen-Brennkammern umfassend untersucht wurde. Dabei sind dem Artikel umfangreiche Ausführungen zu Einflußparametern auf die Wirkungsweise der Luftdrallzerstäuberdüse zu entnehmen.The magazine "fuel, heat, power" (BWK), volume 37, 1985, No. 10, page 380 ff describes in the article "flow processes and droplet formation mechanisms in air-based atomizing nozzles" an air swirl atomizer nozzle , which is particularly useful as part of the further development of gas turbine combustion chambers has been extensively investigated. Extensive explanations of the parameters influencing the mode of operation of the air swirl atomizer nozzle can be found in the article.
Der Erfindung liegt die Aufgabe zugrunde, ein Partikelfiltersystem zu schaffen, bei dem Filteroberfläche gleichmäßig beladen und regeneriert wird, um dadurch das Partikelfilter optimal zu nutzen und vor Wärmespannungsrissen zu schützen.The invention has for its object to a particle filter system create, with the filter surface evenly loaded and regenerated to use the particle filter optimally and before Protect thermal stress cracks.
Diese Aufgabe wird dadurch gelöst, daß das Partikelfilter ausschließlich im Vollstrom der Abgasleitung des Dieselmotors durchströmbar ist, daß die Zerstäuberdüse eine Luftdrallzerstäuberdüse ist, deren Austritt drallerzeugend in die Primärbrennkammer einmündet und wobei die Luftdrallzerstäuberdüse in der Primärbrennkammer einen Toruswirbel erzeugt, daß die Primärbrennkammer innerhalb des in Strömungsrichtung vorderen Teils der Sekundärbrennkammer angeordnet ist, daß die Abgasleitung tangential drallerzeugend am Umfang der Sekundärbrennkammer angeschlossen ist und daß die Abgasleitung in den in Strömungsrichtung vorderen Teil der Sekundärbrennkammer mündet.This object is achieved in that the particle filter only can flow in the full flow of the exhaust pipe of the diesel engine, that the atomizer nozzle is an air swirl atomizer nozzle, the outlet of which swirl opens into the primary combustion chamber and the Air swirl atomizer nozzle in the primary combustion chamber a torus vortex generates the primary combustion chamber within the flow direction front part of the secondary combustion chamber is arranged that the Exhaust line tangentially generating swirl on the circumference of the secondary combustion chamber is connected and that the exhaust pipe in the flow direction front part of the secondary combustion chamber opens.
Durch die erfindungsgemäße Ausbildung wird zunächst erreicht, daß das Abgas der Brennkraftmaschine sich im normalen Motorbetrieb durch die Drallströmung gleichmäßig in der Sekundärbrennkammer verteilt und dadurch das Partikelfilter gleichmäßig belädt. Zum anderen wird erreicht, daß sich bei der Regeneration die Abgasströme des Dieselmotors und des Brenners durch deren entgegengesetzten Drallsinn in Art einer Scherstrommischung intensiv mischen und so über eine gleichmäßige Temperaturverteilung vor dem Partikelfilter zu dessen gleichmäßiger, vollständiger und schonender Regeneration führen. Dadurch und durch die Verwendung einer Luftdrallzerstäuberdüse ist der Einsatz des Partikelfilters im Vollstrom der Abgasleitung möglich. Durch die Ausbildung der Zerstäuberdüse als Luftdrallzerstäuberdüse bildet die zugeführte Druckluft eine Drallströmung, die an einer Schneide zu einer feinen Zerstäubung des Brennstoffes führt. Das Brennstoff-Luftgemisch tritt mit Drall aus der Luftdrallzerstäuberdüse in die Primärbrennkammer ein und bildet dort einen Toruswirbel. Auf diesen Toruswirbel trifft das frisch eingeblasene Gemisch und wird durch Mehrfachrezirkulation intensiv aufbereitet. Der stationäre Toruswirbel wirkt außerdem als Flammenhalter, wodurch eine stabile Flamme in der Primärbrennkammer gewährleistet ist. Die Anordnung der primären Kammer innerhalb des in Strömungsrichtung vorderen Teils der Sekundärbrennkammer bietet den Vorteil kurzer Baulänge des Partikelfiltersystem, ein Vorteil, der dadurch, daß die Abgasleitung tangential drallerzeugend an Umfang der Sekundärbrennkammer angeschlossen ist und dadurch, daß die Abgasleitung in den Strömungsrichtung vorderen Teil der Sekundärbrennkammer mündet noch verstärkt wird, da der Mischungs- und Homogenisierungsweg des Abgases bis zum Partikelfilter maximiert wird. Außerdem wird die Brennkammer von dem Motorabgas gekühlt, wobei die aufgenommene Wärme der Regeneration direkt zugute kommt.Through the training according to the invention it is first achieved that Exhaust gas from the internal combustion engine in normal engine operation due to the Swirl flow evenly distributed in the secondary combustion chamber and this evenly loads the particle filter. Secondly, that during the regeneration, the exhaust gas flows of the diesel engine and of the burner through their opposite sense of twist in the manner of a Mix the shear current mixture intensively and so over a uniform Temperature distribution in front of the particle filter to make it more uniform complete and gentle regeneration. Through and through the use of an air swirl atomizer nozzle is the use of the particle filter possible in the full flow of the exhaust pipe. Through training the atomizer nozzle as the air swirl atomizer nozzle forms the feed Compressed air is a swirl flow, which on a cutting edge leads to a fine atomization of the fuel leads. The fuel-air mixture joins Swirl from the air swirl atomizer nozzle into the primary combustion chamber and forms a torus vortex there. The freshly blown in hits this torus vortex Mixture and is intensively processed by multiple recirculation. The stationary torus vortex also acts as a flame holder, which ensures a stable flame in the primary combustion chamber is. The arrangement of the primary chamber within the flow direction front part of the secondary combustion chamber offers the advantage short overall length of the particle filter system, an advantage that the exhaust pipe tangentially generating swirl on the circumference of the secondary combustion chamber is connected and in that the exhaust pipe in the flow direction opens the front part of the secondary combustion chamber is further strengthened, since the mixing and homogenization path of the Exhaust gas up to the particle filter is maximized. In addition, the combustion chamber cooled by the engine exhaust, the heat absorbed regeneration directly benefits.
Dadurch, daß bei mehreren Abgasleitungen deren Einmündungen in die Sekundärbrennkammer in gleichen Abständen angeordnet sind, wird der Vorteil einer symmetrischen Strömung erreicht, die beim Beladen des Partikelfilters zu einer gleichmäßigen Vermischung der einzelnen Abgasströme führt und beim Regenerieren zusätzlich zur gleichmäßigen Zumischung des Brenngases führt.The fact that in the case of several exhaust pipes, their junctions into the Secondary combustion chamber are arranged at equal intervals, the Advantage of a symmetrical flow achieved when loading the Particle filter for uniform mixing of the individual exhaust gas flows leads and when regenerating in addition to even Admixture of the fuel gas leads.
Die Anordnung von Öffnungen am Umfang der Primärbrennkammer verhindert negative Auswirkungen der Abgaspulsationen des Dieselmotors auf die Stabilität der Flamme der Primärbrennkammer und ermöglicht eine Zumischung sauerstoffhaltigen Abgases in die Primärbrennkammer. Dabei sind in Weiterbildung der Erfindung die Öffnungen in Strömungsrichtung gesehen im ersten Drittel der Primärbrennkammer angeordnet und ihr Querschnitt beträgt 5 % bis 20 % des Querschnittes der Primärbrennkammer. Dieser Bereich hat sich für eine Abstimmung auf Druckschwankungsunempfindlichkeit bewährt.The arrangement of openings on the circumference of the primary combustion chamber prevented negative effects of the exhaust gas pulsations of the diesel engine on the stability of the flame of the primary combustion chamber and allows an admixture of oxygen-containing exhaust gas into the primary combustion chamber. In a further development of the invention, the openings are in the flow direction seen arranged in the first third of the primary combustion chamber and their cross section is 5% to 20% of the cross section of the primary combustion chamber. This area has been chosen for a sensitivity to pressure fluctuation insensitivity proven.
In Weiterbildung der Erfindung ist eine Prallplatte koaxial zur Austrittsöffnung der Primärbrennkammer dem Partikelfilter vorgelagert angeordnet. Weiterhin ist die Ausbildung der Prallplatte vorzugsweise kreisförmig, und ihr Durchmesser beträgt ca. 60 % und ihr Abstand zum Primärkammerende ca. 150 % des Durchmessers der primären Kammer. Dies bietet den Vorteil, daß bei Ausfall der Zündung der Kraftstoff nicht in den Kernbereich des Partikelfilters gelangen kann, was zur Überhitzung und partiellen Zerstörung des Filters führen würde. Aufgrund des relativ kleinen Durchmessers der Prallplatte und ihres großen Abstandes von der Austrittsöffnung der Primärbrennkammer bewirkt die Prallplatte keine wesentliche Strömungsbeeinflussung, so daß die Gleichmäßigkeit der Beaufschlagung des Partikelfilters gewährleistet bleibt. In a further development of the invention, a baffle plate is coaxial with the outlet opening the primary combustion chamber arranged in front of the particle filter. Furthermore, the baffle plate is preferably circular, and their diameter is approximately 60% and their distance from the primary chamber end approximately 150% of the diameter of the primary chamber. This offers the advantage that if the ignition fails, the fuel is not in the Core area of the particulate filter can result in overheating and partial destruction of the filter would result. Because of the relative small diameter of the baffle plate and its large distance from the baffle plate does not effect the outlet opening of the primary combustion chamber substantial flow control, so that the uniformity of the Actuation of the particle filter remains guaranteed.
Die Herstellung der Prallplatte aus warmfesten Material bietet den Vorteil, daß die Prallplatte durch die hohe thermische Beanspruchung im Heißgasstrom der Primärbrennkammer nicht durch Überhitzung zerstört wird. Für diese Aufgabe eignet sich neben hoch warmfesten Stahl insbesondere Keramik.The production of the baffle plate from heat-resistant material offers the advantage that the baffle plate due to the high thermal stress in Hot gas flow from the primary combustion chamber is not destroyed by overheating becomes. In addition to high-temperature steel, this task is particularly suitable Ceramics.
In Weiterbildung der Erfindung ist vorgesehen, daß die Gasleitung mit der Druckseite eines von der Brennkraftmaschine angetriebenen Verdrängergebläses verbunden ist. Dies stellt eine einfache Form der Luftversorgung des Brenners dar.In a development of the invention it is provided that the gas line with the pressure side of a positive displacement fan driven by the internal combustion engine connected is. This represents a simple form of air supply of the burner.
Die Fördercharakteristik des Verdrängergebläses kann dadurch, das in der Gasleitung ein Abblaseventil angeordnet ist, auf einfache Weise modifiziert werden.The delivery characteristics of the displacement fan can thereby arranged a relief valve in the gas line is to be modified in a simple manner.
Dadurch, daß die Gasleitung über ein Magnetventil und eine Strömungsdrossel, die vorzugsweise als überkritische Düse ausgebildet ist, mit einem Druckbehälter von konstantem oder angenähert konstantem Druck verbunden ist, bietet für den Fall einer Druckluftquelle, wie sie im Druckluftbehälter von Nutzfahrzeugen im normalen Fall gegeben ist, eine elegante Lösung zur Luftversorgung der Primärbrennkammer an. Die überkritische Düse bietet dabei den Vorteil, daß auch bei gewissen Druckschwankungen im Vorratsbehälter eine annähernd konstante Luftmenge geliefert wird.The fact that the gas line via a solenoid valve and a flow restrictor, which is preferably designed as a supercritical nozzle with a pressure vessel of constant or approximately constant pressure is connected, in the case of a compressed air source, as in Compressed air tanks of commercial vehicles are given in the normal case, one elegant solution for supplying air to the primary combustion chamber. The Supercritical nozzle has the advantage that even with certain Pressure fluctuations in the storage container an almost constant amount of air is delivered.
Dadurch, daß die Gasleitung über ein Magnetventil mit der Abgasleitung verbunden ist, und daß in Strömungsrichtung hinter dem Abzweig der Leitung in der Abgasleitung eine Drosselklappe angeordnet ist, wird eine sogenannte Knopfdruckregeneration gestattet. Diese wird im Gegensatz zur vollautomatischen Regeneration auf Wunsch des Fahrers durch Knopfdruck bei Leerlauf des Motors ausgelöst. Da in diesem Betriebszustand der Brennkraftmaschine ein großer Luftüberschuß im Abgas des Motors besteht, kann auf eine äußere Sauerstoffzufuhr verzichtet werden. Dadurch wird der Bauaufwand für die Regenerationsanlage besonders niedrig, der Bedienungsaufwand jedoch erhöht. The fact that the gas line via a solenoid valve with the exhaust pipe is connected, and that in the direction of flow behind the branch of Line is arranged in the exhaust pipe, a throttle valve, a so-called push button regeneration allowed. This is in contrast for fully automatic regeneration at the driver's request Pressing a button triggered when the engine was idling. Because in this operating state the internal combustion engine has a large excess of air in the exhaust gas of the Motors, an external oxygen supply can be dispensed with. This makes the construction work for the regeneration system special low, but the operating effort increases.
Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung und der Zeichnung, in der ein Ausführungsbeispiel der Erfindung schematisch dargestellt ist. Further features of the invention result from the following description and the drawing, in which an embodiment of the invention is shown schematically.
Es zeigen:
Das Partikelfiltersystem 2 besteht aus einem Brenner 3 und einem Partikelfilter 7, die beide im Hauptstrom
einer Abgasleitung 10 eines Dieselmotors 1 angeordnet sind. Der Brenner 3 besteht aus einer Luftdrallzerstäuberdüse
5, einer Primärbrennkammer 6 und einer Sekundärbrennkammer 9.The
Die Luftdrallzerstäuberdüse 5 wird von einer nicht dargestellten Förder- und Dosiereinrichtung über die
Brennstoffzufuhrleitung 18 mit Brennstoff niedrigen Druckes versorgt Die Versorgung mit Druckluft geringen
Druckes erfolgt über die Gasleitung 4. Diese ist in der Ausführung nach Figur 1 mit einem von dem Dieselmotor
1 angetriebenen Verdrängergebläse 15 verbunden, dem ein Abblaseventil 11 zugeordnet ist.The air
In der Ausführung nach Figur 3 ist die Luftdrallzerstäuberdüse 5 über ein Magnetventil 21 und eine überkritisch
durchströmte Düse 19 mit einem Druckbehälter 20 verbunden.In the embodiment according to FIG. 3, the air
Bei der Lösung nach Figur 4 besteht eine Verbindung zwischen der Abgasleitung 10 und der Gasleitung
4, wobei in der Abgasleitung 10 eine Drosselklappe 17 und in der Gasleitung 4 ein Magnetventil 16 angeordnet
sind.In the solution according to FIG. 4, there is a connection between the
Der Luftdrallzerstäuberdüse 5 ist die Primärbrennkammer 6 nachgeschaltet. Die Primärbrennkammer 6
sitzt koaxial in der Sekundärbrennkammer 9, an deren Vorderwand 22 sie befestigt ist.The air
Die Primärbrennkammer 6 besitzt eine axiale Austrittsöffnung 8, deren Durchmesser ca. 60 bis 80 % des
Durchmessers der Primärbrennkammer 6 beträgt. Außerdem sind an Umfang der Primärbrennkammer 6 in deren
- in Strömungsrichtung gesehen - vorderem Drittel Öffnungen 12 angebracht Diese Öffnungen haben einen
Gesamtquerschnitt von 5 und 20 % des Primärbrennkammerquerschnitts.The
Die Sekundärbrennkammer 9 ist wie die Primärbrennkammer 6 zylinderförmig. An ihrem Umfang und - in
Strömungsrichtung gesehen - vorderen Teil ist die Abgasleitung 10 tangential angeschlossen. Bei mehreren
Abgasleitungen 10 sind deren Abstände am Umfang der Sekundärbrennkammer 9 gleich, wie in Figur 2 dargestellt. The secondary combustion chamber 9, like the
Der Primärbrennkammer 9 schließt sich das Partikelfilter 7 an. Hierbei handelt es sich um ein monolithisches
Keramikfilter üblicher Bauart.The primary combustion chamber 9 is followed by the
Zwischen der Austrittsöffnung 8 der Primärbrennkammer 6 und dem Partikelfilter 7 ist eine kreisförmige
Prallplatte 13 vorgesehen, die z.B. über Speichen 14 mit dem Umfang der Sekundärbrennkammer 9 verbunden
ist Die Prallplatte 13, die aus warmfestem Material wie z. B. Keramik besteht, hat einen Durchmesser von ca.
60 % des Primärbrennkammerdurchmessers und einen Abstand zur Öffnung 8 von ca. 150 % des Primärbrennkammerdurchmessers.Between the outlet opening 8 of the
Das Partikelfiltersystem funktioniert wie folgt:The particle filter system works as follows:
Im normalen Motorbetrieb tritt das Abgas des Dieselmotors 1 durch die Abgasleitung 10 tangential in die
Sekundärbrennkammer 9 ein und bewirkt dort eine Drallströmung. Im Falle von zwei oder mehreren Abgasleitungen,
wie sie z. B. bei V-Motoren üblich sind, werden eventuell vorhandene Unterschiede der Abgastemperatur
und des Partikelgehaltes zwischen den verschiedenen Abgasleitungen 10 durch die Drallströmung in
der Sekundärbrennkammer 9 ausgeglichen. Diese Homogenisierung des Abgasstromes führt zu einer gleichmäßigen
Beladung und damit zur optimalen Ausnutzung des Partikelfilters.In normal engine operation, the exhaust gas of the
Dabei steigt der Abgasgegendruck des Dieselmotors 1 an. Wenn der Abgasgegendruck eine bestimmte
Höhe erreicht hat, wird automatisch, während des normalen Betriebes des Dieselmotors 1 der Brenner 3 eingeschaltet,
um das Partikelfilter 7 zu regenerieren.The exhaust gas back pressure of the
Dadurch erhält die Luftdrallzerstäuberdüse 5 über die Brennstoffleitung 18 Brennstoff und über die Gasleitung
4 Luft.As a result, the air
Der Brennstoff wird von einer nicht abgebildeten Quelle, z. B. der Kraftstoff-Förderpumpe des Dieselmotors
1 unter relativ geringem Druck angeliefert Seine Menge richtet sich nach der momentanen Last bzw. Abgastemperatur
und Drehzahl des Dieselmotors 1.The fuel is from a source not shown, e.g. B. the fuel delivery pump of the
Die Luft, die ebenfalls einen relativ niedrigen Druck hat, wird entweder von einem Dieselmotor angetriebenen
Verdrängergebläse 15 oder von einem Druckbehälter 20 über ein Magnetventil 21 und über eine überkritische
Düse 19 zur Luftdrallzerstäuberdüse gefördert.The air, which is also relatively low pressure, is either powered by a diesel
Die Lösung mit dem Druckbehälter 20 bietet sich bei Fahrzeugen mit Druckluftbremse und entsprechend
dimensionierten Luftkompressor an. Diese konstruktiv einfache Lösung liefert auch bei nicht ganz konstantem
Behälterdruck einen weitgehend konstanten Luftdruck vor der Luftdrallzerstäuberdüse 5.The solution with the
Demgegenüber ist der Druck, den das Verdrängergebläse 15 liefert, von der Drehzahl des Dieselmotors
1 abhängig, wobei ein Abblaseventil 11 zur Druckbegrenzung vorgesehen ist.In contrast, the pressure that the
Die der Luftdrallzerstäuberdüse 5 zugeführte Luftmenge und damit auch die zu ihrer Förderung und Aufheizung
benötigte Energie ist relativ gering, da bei dem erfindungsgemäßen Partikelfiltersystem 1 der Restsauerstoff
des Dieselmotorabgases zur Regeneration des Partikelfilters 7 mit herangezogen wird.The amount of air supplied to the air
Der Restsauerstoffgehalt im Abgas eines Dieselmotors liegt zwischen ca. 7 % bei Vollast und ca. 18 % im Leerlauf. Die 7 % Restsauerstoffgehalt bei Vollast reichen gerade aus, um eine Regeneration in angemessener Zeit zu verwirklichen, vorausgesetzt, die Abgastemperatur erreicht in diesem Lastpunkt die Regenerationstemperatur. Dies ist nur bei Dieselmotoren mit relativ hoher Nenndrehzahl der Fall. Bei Stadtbusmotoren, bei denen Partikelfilter in erster Linie zur Anwendung kommen, wird die Nenndrehzahl aus Verbrauchsund Emissionsgründen relativ niedrig gewählt, wodurch auch die maximale Abgastemperatur relativ niedrig bleibt Deshalb muß hier auch im Vollastpunkt der Nenndrehzahl, dem Punkt des kleinsten Leistungsbedarfs des Brenners 3, dieser arbeiten, um die Regenerationstemperatur zu erreichen. Da in diesem Betriebspunkt nur die erforderlich Mindestsauerstoffmenge imAbgas vorliegt, darf dem Abgas kein Sauerstoff entzogen werden. Deshalb ist in diesem Betriebspunkt das Brennstoff-Luftgemisch des Brenners 3 ungefähr stöchiometrisch. Auf diese Weise wird die Regenerationstemperatur mit der geringst möglichen Zusatzluftmenge und ohne Inanspruchnahme des Restsauerstoffgehaltes des Abgases erreicht.The residual oxygen content in the exhaust gas of a diesel engine is between approx. 7% at full load and approx. 18% in Neutral. The 7% residual oxygen content at full load is just enough to adequately regenerate Time to realize, provided that the exhaust gas temperature reaches the regeneration temperature at this load point. This is only the case for diesel engines with a relatively high nominal speed. For city bus engines where Particulate filters are primarily used, the nominal speed for reasons of consumption and emissions chosen relatively low, which also keeps the maximum exhaust gas temperature relatively low here must also be at the full load point of the nominal speed, the point of the lowest power requirement of the burner 3, these work to reach the regeneration temperature. Since only the required at this operating point If there is a minimum amount of oxygen in the exhaust gas, no oxygen may be extracted from the exhaust gas. That is why in this operating point, the fuel-air mixture of the burner 3 is approximately stoichiometric. In this way the regeneration temperature with the lowest possible additional air volume and without use of the residual oxygen content of the exhaust gas is reached.
In allen anderen Betriebspunkten des Dieselmotors 1 ist eine höhere Brennerleistung und damit eine
größere Brennstoffmenge erforderlich, was bei gleichbleibender oder abnehmender Luftmenge ein unterstöchiometrisches
Gemisch im Brenner 3 zur Folge hat Der fehlende Sauerstoff wird dann vom Motorabgas geliefert,
dessen Restsauerstoffgehalt mit der jeweils erforderlichen Brennerleistung steigt.In all other operating points of the
In der Luftdrallzerstäuberdüse 5 bildet die zugeführte Druckluft eine Drallströmung, die an einer Schneide
zu einer feinen Zerstäubung des Brennstoffs führt.In the air
Das Brennstoff-Luftgemisch tritt mit Drall aus der Luftdrallzerstäuberdüse 5 in die Primärbrennkammer 6
ein und wird dort mit Hilfe einer nicht abgebildeten Hochspannungszündvorrichtung gezündet.The fuel-air mixture emerges with swirl from the air
Aufgrund der Drallströmung in der Primärbrennkammer 6 bildet sich in deren Achse eine Unterdruckzone.
Dadurch strömen die brennenden Gase in Richtung Luftdrallzerstäuberdüse 5 zurück und bilden einen Toruswirbel.Due to the swirl flow in the
Auf diesen Toruswirbel trifft das frisch eingeblasene Gemisch und wird durch Mehrfachrezirkulation intensiv aufbereitet. The freshly blown mixture hits this torus vortex and becomes intensive through multiple recirculation processed.
Der stationäre Toruswirbel wirkt außerdem als Flammenhalter, wodurch eine stabile Flamme in der Primärbrennkammer
6 gewährleistet ist.The stationary torus swirl also acts as a flame holder, creating a stable flame in the
Die Stabilität der Flamme hängt auch von Druckschwankungen in der Primärbrennkammer 6 ab, die vom
Abgasstrom des Dieselmotors 1 herrühren. Diese Druckschwankungen werden durch die Öffnungen 12 am
Umfang der Primärbrennkammer 6 weitgehend abgeschwächt. Im Bereich der Öffnungen 12 herrscht aufgrund
der Ejektorwirkung der Luftdrallzerstäuberdüse 5 in der Primärbrennkammer 6 ein Unterdruck, durch den das
pulsierende Abgas aus der Sekundärbrennkammer 9 in die Primärbrennkammer 6 eintritt. Da die Abgasdruckschwankungen
zugleich auch an der Öffnung 8 der Primärbrennkammer 6 wirksam sind, heben sie sich in ihrer
Wirkung auf die Flamme in der Primärbrennkammer 6 weitgehend auf.The stability of the flame also depends on pressure fluctuations in the
Außerdem tritt mit dem Abgas durch die Öffnungen 12 Restsauerstoff in die Primärbrennkammer 6 ein,
was besonders bei sehr fettem Gemisch zu einer erwünschten Abmagerung führt, die ein gewünschtes Hinauswandern
der Flamme aus der Primärbrennkammer 6 begrenzt und damit ein Abreißen und Verlöschen der
Flamme verhindert.In addition, residual oxygen enters the
Eine weitere Möglichkeit, den Restsauerstoff des Abgases der Brennkraftmaschine schon in der Primärbrennkammer
6 zu verarbeiten, besteht darin, der Luftdrallzerstäuberdüse 5 anstelle von externer Luft Abgas
aus der Abgasleitung 10 zuzuführen, wie in Fig. 4 dargestellt wird. Durch Öffnen eines Magnetventils 16 und
gleichzeitiges Schließen einer Drosselklappe 17 wird über die Gasleitung 4 die erforderliche Strömungsverbindung
hergestellt Die erforderliche Druckdifferenz zwischen Luftdrallzerstäuberdüse 5 und Primärbrennkammer
6 wird durch eine gewollte Undichtheit der Drosselklappe 17 erreicht, die entweder eine definierte
Bohrung oder einen definierten Spalt zur Abgasleitung 10 besitzt. Diese Art der Regeneration funktioniert nur
beim Leerlauf, da nur in diesem Betriebspunkt ein ausreichend hoher Restsauerstoffhehalt im Abgas vorliegt.
Deshalb ist eine automatische Regeneration nicht möglich, so daß in diesem Fall die Regeneration durch
Knopfdruck vom Fahrer ausgelöst werden muß.Another possibility is the residual oxygen from the exhaust gas of the internal combustion engine already in the
Die der Öffnung 8 der Primärbrennkammer 6 vorgelagerte Prallplatte 13 verhindert, daß beim Nichtzünden
der Primärbrennkammer 6 unverbrannter Brennstoff auf das Partikelfilter 7 gelangt und dieses nach erfolgter
Zündung durch Überhitzung gefährdet. Da die Prallplatte 13 im heißen Abgasstrom steht, ist sie selber heiß
und wirkt bis zur Zündung des Kraftstoffluftgemisches als Oberflächenvergaser für den Kraftstoff. Aufgrund
ihrer geringen Abmessung, bezogen auf den Durchmesser der Sekundärbrennkammer 9 beeinflußt sie die
Gleichmäßigkeit der Strömung in der Sekundärbrennkammer 9 nicht.The
Die Verbrennung eines zum Teil unterstöchiometrischen Gemisches in der Primärbrennkammer 6 führt aufgrund
der intensiven Gemischaufbereitung zu einer partikelfreien Teilverbrennung unter starker Bildung von
CO, H2 und Radikalen. Diese Gase verbinden sich in der Sekundärbrennkammer 9 mit einem Teil des Restsauerstoffs
des Abgases, wobei die Vermischung des Abgases mit dem aus der Primärbrennkammer 6 austretenden
Reaktionsgases erfindungsgemäß durch den entgegengesetzten Drehsinn des Dralls in der Primär-
und Sekundärbrennkammer in Art einer Scherstrommischung erfolgt.The combustion of a partially substoichiometric mixture in the
Dieser intensive Mischvorgang bewirkt, daß die Sekundärbrennkammer 9 und damit auch die Stirnseite
des Partikelfilters 7 gleichmäßig von Flammen beaufschlagt werden. Ausgehend von einzelnen Zündkeimen
wird daher ein gleichmäßiger und schonender Abbrand des Partikelbelages des Partikelfilters 7 erreicht.This intensive mixing process causes the secondary combustion chamber 9 and thus also the end face
of the
Claims (11)
- A particle filter system having a particle filter (7) in the flow of an exhaust gas conduit (10) of a Diesel engine (1) and a burner (3), the burner (3) comprising an atomiser nozzle (5) to which oxygen-containing gas can be supplied by means of a gas conduit (4) and which is adjoined by a primary burner chamber (6) with a primary swirl flow and a secondary burner chamber (9), the direction of rotation of the swirling flow in the secondary burner chamber (9) being directed oppositely to the direction of rotation of the swirling flow in the primary burner chamber (6), characterised in that the particle filter (7) lies exclusively in the full flow of the exhaust gas conduit (10) of the Diesel engine (1), that the atomiser nozzle (5) is an air-swirl atomiser nozzle the outlet of which opens in swirling fashion into the primary burner chamber (6) whereby the air-swirl atomiser nozzle (5) produces a toroidal swirl in the primary burner chamber (6), that the primary burner chamber (6) is arranged within the forward part, in the direction of flow, of the secondary burner chamber (9), that the exhaust gas conduit (10) is attached tangentially for air-swirl to the circumference of the secondary burner chamber (9), and that the exhaust gas conduit (10) opens into the forward part, in the direction of flow, of the secondary burner chamber (9).
- A particle filter system according to Claim 1, characterised in that, in the case of a plurality of exhaust gas conduit (10), their entries into the secondary burner chamber (9) are arranged at equal intervals.
- A particle filter system according to one of the preceding Claims, characterised in that openings (12) are arranged on the circumference of the primary burner chamber (6).
- A particle filter system according to any one of the preceding Claims, characterised in that the openings (12), seen in the direction of flow, are arranged in the first third of the primary burner chamber (6) and their cross-section amounts to 5 to 20% of the cross-section of the primary burner chamber (6).
- A particle filter system according to any one of the preceding Claims, characterised in that a baffle plate (13) is arranged to be mounted before the particle filter (7), coaxially with the outlet opening (8) of the primary burner chamber (6).
- A particle filter system according to Claim 5, characterised in that the baffle plate (13) is preferably of circular form and its diameter amounts to about 60% and its distance from the primary chamber end to about 150% of the diameter of the primary burner chamber (6).
- A particle filter system according to Claim 5 or Claim 6, characterised in that the baffle plate (13) is made of refractory material.
- A particle filter system according to any one of the preceding Claims, characterised in that the gas conduit (4) is connected with the delivery side of a positive-displacement blower (15) driven by the internal combustion engine (1).
- A particle filter system according to Claim 8, characterised in that a blow-off valve (11) is arranged in the gas conduit (4).
- A particle filter system according to any one of Claims 1-7, characterised in that the gas conduit (4) is connected, through a magnetic valve (18) and a flow constrictor (19) which is preferably made as a super-critical nozzle, to a pressure vessel (20) at constant or approximately constant pressure.
- A particle filter system according to any one of the Claims 1-7, characterised in that the gas conduit (4) is connected through a magnetic valve (16) to the exhaust gas conduit (10), and that, in the direction of flow, a throttle flap (17) is arranged behind the branch-off of the conduit (4) in the exhaust gas conduit (10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89120374T ATE79921T1 (en) | 1988-11-04 | 1989-11-03 | PARTICULATE FILTER SYSTEM. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3837472A DE3837472C2 (en) | 1988-11-04 | 1988-11-04 | Particulate filter system |
DE3837472 | 1988-11-04 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0367280A1 EP0367280A1 (en) | 1990-05-09 |
EP0367280B1 EP0367280B1 (en) | 1992-08-26 |
EP0367280B2 true EP0367280B2 (en) | 1998-04-08 |
Family
ID=6366498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89120374A Expired - Lifetime EP0367280B2 (en) | 1988-11-04 | 1989-11-03 | Particle filter system |
Country Status (5)
Country | Link |
---|---|
US (1) | US5094075A (en) |
EP (1) | EP0367280B2 (en) |
AT (1) | ATE79921T1 (en) |
CA (1) | CA2002331A1 (en) |
DE (2) | DE3837472C2 (en) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4015013B4 (en) * | 1990-05-10 | 2004-09-16 | Deutz Ag | mixing device |
DE4034313A1 (en) * | 1990-10-29 | 1992-04-30 | Kloeckner Humboldt Deutz Ag | Appts. for mixing hot gases - suitable for preheating Diesel engine exhaust gases for the cleaning cycle of a regenerable soot filter |
DE4120702A1 (en) * | 1991-06-22 | 1992-12-24 | Man Technologie Gmbh | BURNER FOR REGENERATING PARTICLE FILTERS |
US5470364A (en) * | 1992-01-07 | 1995-11-28 | Pall Corporation | Regenerable diesel exhaust filter |
US5457945A (en) * | 1992-01-07 | 1995-10-17 | Pall Corporation | Regenerable diesel exhaust filter and heater |
US5228891A (en) * | 1992-01-07 | 1993-07-20 | Pall Corporation | Regenerable diesel exhaust filter |
DE4239079A1 (en) * | 1992-11-20 | 1994-05-26 | Pierburg Gmbh | Burner system for exhaust gas detoxification or purification of an internal combustion engine |
DE4242521A1 (en) * | 1992-12-16 | 1994-06-23 | Bayerische Motoren Werke Ag | Exhaust gas catalytic converter for combustion engine |
DE4303720C2 (en) * | 1993-02-09 | 2003-12-24 | Deutz Ag | particulate filter system |
US5766458A (en) * | 1993-03-12 | 1998-06-16 | Micropyretics Heaters International, Inc. | Modulated and regenerative ceramic filter with insitu heating element |
US5655212A (en) * | 1993-03-12 | 1997-08-05 | Micropyretics Heaters International, Inc. | Porous membranes |
US5558760A (en) * | 1994-12-12 | 1996-09-24 | Micropyretics Heaters International, Inc. | Filter/heating body produced by a method of spraying a shape |
DE4440716C2 (en) * | 1994-11-15 | 1997-02-27 | Daimler Benz Ag | Soot filter system for internal combustion engines |
US5771683A (en) * | 1995-08-30 | 1998-06-30 | Southwest Research Institute | Active porous medium aftertreatment control system |
US6694727B1 (en) | 2002-09-03 | 2004-02-24 | Arvin Technologies, Inc. | Exhaust processor |
US7337607B2 (en) * | 2003-06-12 | 2008-03-04 | Donaldson Company, Inc. | Method of dispensing fuel into transient flow of an exhaust system |
GB2408470B (en) * | 2003-11-25 | 2007-06-13 | Arvin Internat | An internal combustion engine exhaust system |
US20060283181A1 (en) * | 2005-06-15 | 2006-12-21 | Arvin Technologies, Inc. | Swirl-stabilized burner for thermal management of exhaust system and associated method |
US7297174B2 (en) * | 2004-02-11 | 2007-11-20 | Et Us Holdings, Llc | Particulate filter assembly |
DE102004008415A1 (en) * | 2004-02-20 | 2005-09-01 | Arvin Technologies, Inc., Troy | Device for cleaning vehicle exhaust gases, in particular diesel soot filters |
DE102004013458A1 (en) * | 2004-03-18 | 2005-10-20 | Arvin Technologies Inc | Device for cleaning vehicle exhaust gases |
DE102004016690A1 (en) * | 2004-04-05 | 2005-10-27 | Arvin Technologies, Inc., Troy | Device for cleaning vehicle exhaust gases, in particular diesel soot filters, and vehicle with corresponding device |
US20060101810A1 (en) * | 2004-11-15 | 2006-05-18 | Angelo Theodore G | System for dispensing fuel into an exhaust system of a diesel engine |
FR2881793B1 (en) * | 2005-02-04 | 2007-05-11 | Melchior Jean F | INTERNAL COMBUSTION ALTERNATIVE MOTOR AND METHOD FOR REMOVING BURNER GAS PARTICLES FOR SUCH AN ALTERNATIVE ENGINE |
US20060254260A1 (en) * | 2005-05-16 | 2006-11-16 | Arvinmeritor Emissions Technologies Gmbh | Method and apparatus for piezoelectric injection of agent into exhaust gas for use with emission abatement device |
US7246005B2 (en) * | 2005-06-07 | 2007-07-17 | Arvin Technologies, Inc. | Method and apparatus for controlling a component by feed-forward closed-loop controller state modification |
US7332142B2 (en) * | 2005-06-17 | 2008-02-19 | Emcon Tehnologies Germany (Augsburg) Gmbh | Method and apparatus for bubble injection of agent into exhaust gas for use with emission abatement device |
US7481048B2 (en) * | 2005-06-30 | 2009-01-27 | Caterpillar Inc. | Regeneration assembly |
US7406822B2 (en) * | 2005-06-30 | 2008-08-05 | Caterpillar Inc. | Particulate trap regeneration system and control strategy |
DE102005037969A1 (en) * | 2005-08-11 | 2007-02-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for producing hot gas in the exhaust system of an internal combustion engine |
US20070158466A1 (en) * | 2005-12-29 | 2007-07-12 | Harmon Michael P | Nozzle assembly |
US7862640B2 (en) | 2006-03-21 | 2011-01-04 | Donaldson Company, Inc. | Low temperature diesel particulate matter reduction system |
US20070228191A1 (en) * | 2006-03-31 | 2007-10-04 | Caterpillar Inc. | Cooled nozzle assembly for urea/water injection |
DE102006015841B3 (en) * | 2006-04-03 | 2007-08-02 | TWK Engineering Entwicklungstechnik (GbR) (vertretungsberechtigte Gesellschafter Herrn Thomas Winter, Jagdhaus am Breitenberg, 56244 Ötzingen und Herrn Waldemar Karsten, Am Merzenborn 6, 56422 Wirges) | Regeneration of particle filters comprises burning fuel under oxygen deficiency in first combustion chamber, and introducing gas produced to second chamber where air current is produced flowing in direction counter to direction of gas flow |
FR2902137B1 (en) * | 2006-06-07 | 2008-08-01 | Jean Claude Fayard | BURNER AND METHOD FOR REGENERATING FILTRATION CARTRIDGES AND DEVICES EQUIPPED WITH SUCH A BURNER |
DE102006060471A1 (en) | 2006-12-19 | 2008-06-26 | J. Eberspächer GmbH & Co. KG | Motor exhaust assembly has a heater, upstream of the catalyst or particle filter, to raise the exhaust gas temperature when the motor is started from cold |
US20090180937A1 (en) * | 2008-01-15 | 2009-07-16 | Nohl John P | Apparatus for Directing Exhaust Flow through a Fuel-Fired Burner of an Emission Abatement Assembly |
US8322132B2 (en) * | 2008-04-30 | 2012-12-04 | Perkins Engines Company Limited | Exhaust treatment system implementing regeneration control |
DE102008026477A1 (en) * | 2008-06-03 | 2009-12-10 | Deutz Ag | Exhaust after-treatment system for a self-igniting internal combustion engine |
DE102008032601A1 (en) | 2008-07-11 | 2010-01-14 | Volkswagen Ag | Exhaust gas flow condition adjusting method for e.g. diesel engine, of motor vehicle, involves supplying secondary air mass flow to burner, where burner lambda value produced from injection amount and mass flow amounts to less than one |
DE102008032600A1 (en) | 2008-07-11 | 2010-01-14 | Volkswagen Ag | Internal combustion engine's exhaust system operating method for motor vehicle, involves transmitting parts of fuel quantity supplied to burner into respective reaction zones of burner when operating burner with combustion air ratio |
DE102008032604A1 (en) | 2008-07-11 | 2010-01-14 | Volkswagen Ag | Exhaust gas flow condition adjusting method for e.g. diesel engine of motor vehicle for desulfurization of catalysts, involves increasing or adjusting pressure gradient from diverging area to junction area |
DE102009023550A1 (en) * | 2009-05-30 | 2010-12-09 | Deutz Ag | aftertreatment system |
JP5353822B2 (en) * | 2009-09-30 | 2013-11-27 | 株式会社Ihi | Ignition device |
EP2551588B1 (en) * | 2010-03-24 | 2019-01-30 | IHI Corporation | Burner device |
US8852393B2 (en) * | 2010-06-10 | 2014-10-07 | Inproheat Industries Ltd. | Submerged combustion heating water evaporation for natural gas wells |
JP5146605B2 (en) * | 2010-06-21 | 2013-02-20 | トヨタ自動車株式会社 | Exhaust heating device |
DE102010037293A1 (en) * | 2010-09-02 | 2012-03-08 | Hjs Emission Technology Gmbh & Co. Kg | Method for operating exhaust gas burner at output of combustion chamber of internal combustion engine, particularly diesel engine, pressurizing combustion chamber of burner by generating exhaust gas pressure in exhaust section |
FR2976020A1 (en) * | 2011-05-31 | 2012-12-07 | Renault Sa | Reforming device for use in treatment system utilized for treating exhaust fumes coming from diesel engine in car, has oxidizer whose inlet tangentially emerges into cylindrical body to inner wall to obtain tangential flow of oxidant |
US20140053519A1 (en) * | 2012-08-27 | 2014-02-27 | Wen-Lo Chen | Device for combustion and purification treatment of automobile smoky exhaust |
US9314750B2 (en) | 2013-05-07 | 2016-04-19 | Tenneco Automotive Operating Company Inc. | Axial flow atomization module |
US9291081B2 (en) | 2013-05-07 | 2016-03-22 | Tenneco Automotive Operating Company Inc. | Axial flow atomization module |
US9289724B2 (en) | 2013-05-07 | 2016-03-22 | Tenneco Automotive Operating Company Inc. | Flow reversing exhaust gas mixer |
US9334781B2 (en) | 2013-05-07 | 2016-05-10 | Tenneco Automotive Operating Company Inc. | Vertical ultrasonic decomposition pipe |
US9352276B2 (en) | 2013-05-07 | 2016-05-31 | Tenneco Automotive Operating Company Inc. | Exhaust mixing device |
US9364790B2 (en) | 2013-05-07 | 2016-06-14 | Tenneco Automotive Operating Company Inc. | Exhaust mixing assembly |
US9534525B2 (en) | 2015-05-27 | 2017-01-03 | Tenneco Automotive Operating Company Inc. | Mixer assembly for exhaust aftertreatment system |
CN107956553A (en) * | 2017-11-03 | 2018-04-24 | 黄育新 | A kind of burner for dpf regeneration |
WO2024118351A1 (en) * | 2022-11-29 | 2024-06-06 | Corning Incorporated | Nozzle designs for secondary air injection in exhaust aftertreatment systems with electrical heaters |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2004909A1 (en) * | 1970-02-04 | 1971-08-12 | Institut Gornogo Dela, Swerdlowsk (Sowjetunion) | Therocatalytic neutralizer for exhaust gases from internal combustion engines |
DE3121274A1 (en) * | 1981-05-29 | 1982-12-16 | Robert Bosch Gmbh, 7000 Stuttgart | Device for cleaning a filter for an exhaust system of a heat engine |
DE3219948A1 (en) * | 1982-05-27 | 1983-12-01 | Bayerische Motoren Werke AG, 8000 München | BURNER FOR A SOOT FILTER OF INTERNAL COMBUSTION ENGINES |
JPS5939915A (en) * | 1982-08-27 | 1984-03-05 | Mazda Motor Corp | Exhaust gas purifying device for diesel engine |
JPS5976712U (en) * | 1982-11-16 | 1984-05-24 | 三菱電機株式会社 | Exhaust gas particulate removal device |
JPS5993913A (en) * | 1982-11-19 | 1984-05-30 | Nissan Motor Co Ltd | Exhaust particle disposal for internal-combustion engine |
JPS5988209U (en) * | 1982-12-04 | 1984-06-14 | マツダ株式会社 | Diesel engine exhaust gas purification device |
DE3475814D1 (en) * | 1983-01-24 | 1989-02-02 | Hitachi Ltd | A method and a device for exhaust emission control for diesel engines |
JPH0621544B2 (en) * | 1983-11-09 | 1994-03-23 | 株式会社日立製作所 | Diesel engine exhaust purification system |
JPS60187709A (en) * | 1984-03-08 | 1985-09-25 | Nissan Motor Co Ltd | Treater for fine particle in exhaust from internal-combustion engine |
US4651524A (en) * | 1984-12-24 | 1987-03-24 | Arvin Industries, Inc. | Exhaust processor |
US4665690A (en) * | 1985-01-14 | 1987-05-19 | Mazda Motor Corporation | Exhaust gas cleaning system for vehicle |
DE3532778A1 (en) * | 1985-09-13 | 1987-03-19 | Man Technologie Gmbh | DEVICE FOR REGENERATING SOOT FILTERS |
US4677823A (en) * | 1985-11-01 | 1987-07-07 | The Garrett Corporation | Diesel engine particulate trap regeneration system |
DE3621913A1 (en) * | 1986-06-30 | 1988-01-07 | Bosch Gmbh Robert | DEVICE FOR BURNING SOLID PARTICLES IN THE EXHAUST GAS FROM COMBUSTION ENGINES |
EP0283240B1 (en) * | 1987-03-20 | 1992-09-30 | Matsushita Electric Industrial Co., Ltd. | Diesel engine exhaust gas particle filter |
DE3710052A1 (en) * | 1987-03-27 | 1988-10-06 | Webasto Ag Fahrzeugtechnik | Burner for regenerating a soot filter of internal-combustion engines |
DE3729861C2 (en) * | 1987-09-05 | 1995-06-22 | Deutsche Forsch Luft Raumfahrt | Method for operating a soot filter device for a diesel engine and soot filter device for carrying out this method |
-
1988
- 1988-11-04 DE DE3837472A patent/DE3837472C2/en not_active Expired - Fee Related
-
1989
- 1989-10-30 US US07/429,019 patent/US5094075A/en not_active Expired - Fee Related
- 1989-11-03 DE DE8989120374T patent/DE58902147D1/en not_active Expired - Lifetime
- 1989-11-03 AT AT89120374T patent/ATE79921T1/en not_active IP Right Cessation
- 1989-11-03 EP EP89120374A patent/EP0367280B2/en not_active Expired - Lifetime
- 1989-11-06 CA CA002002331A patent/CA2002331A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE3837472C2 (en) | 1998-09-24 |
EP0367280B1 (en) | 1992-08-26 |
CA2002331A1 (en) | 1990-05-04 |
ATE79921T1 (en) | 1992-09-15 |
DE58902147D1 (en) | 1992-10-01 |
EP0367280A1 (en) | 1990-05-09 |
DE3837472A1 (en) | 1990-05-10 |
US5094075A (en) | 1992-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0367280B2 (en) | Particle filter system | |
EP0193838B1 (en) | Burner disposition for combustion installations, especially for combustion chambers of gas turbine installations, and method for its operation | |
DE3729861C2 (en) | Method for operating a soot filter device for a diesel engine and soot filter device for carrying out this method | |
EP0571782B1 (en) | Gasturbine combustor and operating method | |
DE69522895T2 (en) | Pulverized coal burner | |
EP0933593B1 (en) | Dual fuel burner | |
DE2539993C2 (en) | Burners for liquid or gaseous fuel | |
DE3217674C2 (en) | Combustion chamber for a gas turbine | |
DE69407545T2 (en) | DUAL FUEL INJECTION NOZZLE FOR USE IN A GAS TURBINE ENGINE | |
DE3734197C2 (en) | ||
DE19504183A1 (en) | Diesel engine particle filter regenerating burner | |
DE3011361A1 (en) | COMBUSTION DEVICE AND METHOD FOR A GAS TURBINE | |
DE2336469A1 (en) | COMBUSTION MACHINE WITH CONTINUOUS COMBUSTION PROCESS | |
DE4025017A1 (en) | EXHAUST PIPE WITH A PARTICLE FILTER AND A REGENERATION BURNER | |
DE3916413A1 (en) | FUEL INJECTOR | |
DE2828826A1 (en) | BURNER FOR LIQUID FUEL | |
DE3330373A1 (en) | COMBUSTION SYSTEM AND METHOD FOR OPERATING A COAL STOVE USING A LOW-POWER COAL BURNER | |
DE2456837C3 (en) | Combustion chamber for internal combustion engines, especially supercharged diesel engines | |
DE10205573B4 (en) | Atomizing nozzle for a burner | |
DE60125892T2 (en) | combustion chamber | |
DE3431572A1 (en) | SYSTEM AND METHOD FOR BURNING A COAL-AIR MIXTURE | |
DE2849945A1 (en) | TURBOCHARGER COMBUSTION DEVICES | |
EP0599061A1 (en) | Method to purify the exhaust gas of an internal combustion engine | |
DE69423900T2 (en) | V-JET ATOMISATEUR | |
EP1752633B1 (en) | Device for generating a hot gas in an exhaust system of a combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19900426 |
|
17Q | First examination report despatched |
Effective date: 19910327 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KLOECKNER-HUMBOLDT-DEUTZ AG |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920826 Ref country code: GB Effective date: 19920826 |
|
REF | Corresponds to: |
Ref document number: 79921 Country of ref document: AT Date of ref document: 19920915 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 58902147 Country of ref document: DE Date of ref document: 19921001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921010 Year of fee payment: 4 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19921103 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19920826 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ZEUNA-STAERKER GMBH & CO. KG Effective date: 19930511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DEUTZ AKTIENGESELLSCHAFT |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19980408 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT DE FR GB IT NL |
|
EN | Fr: translation not filed | ||
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051130 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070601 |