EP0365782B1 - Method and device for the group control of double-compartment lifts - Google Patents

Method and device for the group control of double-compartment lifts Download PDF

Info

Publication number
EP0365782B1
EP0365782B1 EP89115629A EP89115629A EP0365782B1 EP 0365782 B1 EP0365782 B1 EP 0365782B1 EP 89115629 A EP89115629 A EP 89115629A EP 89115629 A EP89115629 A EP 89115629A EP 0365782 B1 EP0365782 B1 EP 0365782B1
Authority
EP
European Patent Office
Prior art keywords
costs
cage
double
operating costs
call
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89115629A
Other languages
German (de)
French (fr)
Other versions
EP0365782A1 (en
Inventor
Johannes C. Van Straaten
Miroslav Kostka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to AT89115629T priority Critical patent/ATE96124T1/en
Publication of EP0365782A1 publication Critical patent/EP0365782A1/en
Application granted granted Critical
Publication of EP0365782B1 publication Critical patent/EP0365782B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • B66B2201/102Up or down call input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/211Waiting time, i.e. response time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/212Travel time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/222Taking into account the number of passengers present in the elevator car to be allocated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/30Details of the elevator system configuration
    • B66B2201/306Multi-deck elevator cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S187/00Elevator, industrial lift truck, or stationary lift for vehicle
    • Y10S187/902Control for double-decker car

Definitions

  • the invention relates to a method and a device for group control of elevators with double cabins, according to the preambles of claims 1 and 10, wherein to determine the elevator that is optimally usable for the operation of a floor call on a floor E in a scanning position ⁇ as the lost time of all
  • passengers involved with defined operating costs serve as a decision criterion and these operating costs are calculated and stored separately for each elevator, within the framework of a cost calculation cycle for each scanning position ⁇ - regardless of whether there is a floor call or not - and subsequently for all elevators together as part of one Cost comparison cycle are compared in order to allocate the elevator with the lowest operating costs to the relevant scanning position ⁇ as a favorite for the operation of a possible floor call by means of a control device and also to assign the Z to provide a certain single cabin of the corresponding double cabin for the scanning position to be operated.
  • Such group controls are intended to make it possible to allocate the double cabins to the floor calls in such a way that minimum average waiting times and minimum average destination travel times of the passengers are achieved.
  • This loss also called service costs, is stored in a cost memory.
  • an allocation instruction which designates the floor to which the relevant car is optimally assigned in time can be stored in an allocation memory of the elevator with the lowest operating costs.
  • the lower operating costs of the individual cabins of a double cabin are then stored in the cost storage of the elevator in question and are compared by floors with the lower operating costs of the other double cabins in the elevator group. In such controls, the floor calls are not assigned to the optimal double cabin, but to the optimal individual cabin. A uniform distribution of the passengers to the double cabins in the elevator group is therefore impaired during normal operation of the elevator system.
  • the invention is based on the object, starting from Swiss Patent No. 660 585, to a method and a device create, in group controls for elevators with double cabins, the two degrees of freedom given by the single cabins of each double cabin and the double cabins of each group to be fully used for call control.
  • the usability of a double cabin with regard to a floor call should not only be determined by the position and direction of this floor call as well as the load and operating states of the two single cabins, but also by the different types of call operation resulting from the possibility of operating two adjacent calls at the same time the two single cabins result.
  • the mutual cost effects of the two single cabins must therefore be taken into account.
  • the method and equipment should be designed in such a way that they can be easily and quickly adapted to different operating and traffic conditions and that the required computing effort is minimal.
  • the invention proposes with the features characterized in claims 1 and 10, taking into account the mutual influence of the partial operating costs calculated separately for each single cabin, total operating costs (e.g. recursively) for each double cabin in the elevator group for all scanning positions to calculate, whereby if there are allocation instructions for the same floor calls of two adjacent floors (congruence) and / or coincidences of cabin calls and scanning positions, the total operating costs to be saved are reduced, the total operating costs of all elevators are compared using a comparison device, each in An allocation instruction can be stored in an allocation memory of the elevator with the lowest total operating costs, which indicates the floor to which the respective double cabin is optimally assigned in time, and by means of an Au selection based on criteria chains of Each double cabin is assigned a specific single cabin to the floor call in such a way that the servicing of cabin calls and rectified floor calls on the same floor, of rectified floor calls from two adjacent floors and of car calls and rectified floor calls from two adjacent floors is promoted so that overlaps of "own" stop positions, ie stop a
  • the double cabin with the lowest total operating costs is allocated to a floor call, with a single floor call and non-existent coincidence and / or congruence
  • the less loaded cabin or optionally also the one in the direction of travel " front "or" rear "cabin is allocated to the floor call and the stopping on the same floor with cabin call and rectified floor call and / or on adjacent floors with rectified floor calls or cabins and rectified floor calls is promoted in such a way that there are fewer stops
  • the individual double cabins den Distribute total traffic evenly among each other, the two single cabins of a double cabin are filled evenly, which reduces waiting times on the floors and reduces travel times, while waiting times in the non-operating cabin for any intermediate stops for the "absolutely n necessary "minimum remain limited and the delivery rate is increased.
  • this solution is characterized in that priorities for the operating behavior of the elevators can be achieved through the adjustable parameters, so that, for example, in both single cabins the same load is aimed for, or that the load balancing only becomes effective when the imbalance of the two single cabins can be set.
  • 1, 1 denotes an elevator shaft of an elevator a, an elevator group consisting of, for example, three elevators a, b and c.
  • a conveyor machine 2 drives, via a conveyor cable 3, a double cabin 4, which is guided in the elevator shaft 1 and is formed from two single cabins 5, 6 arranged in a common car frame, sixteen floors E1 to E16 being operated according to the elevator system chosen as an example.
  • the distance between the two single cabins 5, 6 is selected so that it corresponds to the distance between two adjacent floors.
  • the carrier 2 is controlled by a drive control known from European Patent No.
  • the setpoint generation, the control functions and the initiation of the stop being implemented by means of a microcomputer system 7, and with 8 the measuring and actuating elements of the drive control which are symbolized are connected to the microcomputer system 7 via a first interface IF 1.
  • Each single cabin 5, 6 of the double cabin 4 has a load measuring device 9, the respective operating state Z the cabin signaling device 10 and cabin call transmitter 11.
  • the devices 9, 10 are connected to the microcomputer system 7 via the first interface IF 1.
  • the car call transmitter 11 and the floor call transmitter 12 provided on the floors are connected to the microcomputer system 7, for example, via an input device 13 which has become known with European Patent No. 0 062 141 and a second interface IF 2.
  • the microcomputer system 7 consists of a storey call memory RAM 1, two cabin call memories RAM 2, RAM 3 assigned to the single cabins 5, 6 of the double cabin 4, a load memory RAM 4 storing the current load P M of each single cabin 5, 6, two the operating state Z of the single cabins 5 , 6 storing memories RAM 5, RAM 6, two tabular partial cost memories RAM 7, RAM 8 assigned to the single cabins of the elevator, a first total cost memory RAM 9, a second total cost memory RAM 10, a single cabin / call assignment memory RAM 11, one with the elevator the lowest operating costs per scanner position and direction of operation, characterizing the double cabin / call allocation memory RAM 12, a program memory EPROM, a power failure-proof data memory DBRAM and a microprocessor CPU which is connected via a bus B to the memories RAM 1 to RAM 12, EPROM and DBRAM.
  • R1 and R2 denote a first and a second scanner of a scanner, the scanner R1, R2 being registers by means of which addresses corresponding to the floor numbers and the direction of travel are formed.
  • the cost memories RAM 7 to RAM 10 each have one or more storage locations which can be assigned to the individual possible cabin positions.
  • R3 and R4 denote the selectors corresponding to the individual cabins in the form of a register which, when the cabin is moving, indicates the address of the floor on which the cabin can still stop. At a standstill, R3 and R4 point to the floor where a call can be answered or to a possible cabin position (for "blind" floors).
  • the selector addresses are assigned target paths which are compared with a target path generated in a setpoint generator. If these paths are identical and a stop command is present, the delay phase is initiated. If there is no stop command, the selectors R3 and R4 are switched to the next floor.
  • the microcomputer systems 7 of the individual elevators a, b, c are via a comparison device 14 known from European Patent No. 0 050 304 and a third interface IF 3 as well as via a Partyline transmission system 15 and known from European Patent No. 0 050 305 a fourth interface IF 4 connected to one another and in this way form the group control according to the invention.
  • the first scanner R1 assigned to the elevator in question begins with one cycle, hereinafter referred to as the KBZ cost calculation cycle, starting from the "rear" selector position in the direction of travel of the cabin (in the case of no direction of travel starting with the lower cabin), with the circulation also being possible in a different direction or sequence.
  • the event may occur at elevator a (time I).
  • the microprocessor CPU of the microcomputer system 7 With each scanning position, the microprocessor CPU of the microcomputer system 7 now creates one for each single cabin 5, 6 and for the double cabin 4 according to the patent claims the time loss of all passengers involved is calculated as a sum, also known as operating costs K, the individual cost components being determined by the group control for elevators with double cabins, which works according to the following principle.
  • the second scanners R2 simultaneously begin one round for all elevators a, b, c, hereinafter referred to as the KVZ cost comparison cycle, starting from the first floor (time III).
  • the cost comparison cycles KVZ start, for example, five to ten times a second.
  • the modified total service costs K gm contained in the total cost memories RAM 10 of the elevators a, b, c are fed to the comparison device 14 and compared with one another, wherein in the allocation memory RAM 12 of the elevator a, b, c with the lowest modified total -Operating costs K gm an allocation instruction can be stored in the form of a logical "1", which designates the floor to which the elevator a, b, c in question is optimally assigned in terms of time. For example, based on the comparison in the scanning position 9, a reassignment may take place by deleting an assignment instruction for elevator b and enrolling one for elevator a (FIG. 1).
  • deck allocation algorithm DZA it can be said that it is based on hierarchically ordered chains of criteria, the criteria of highest priority being combined in a group “compulsory allocation” and the criteria of lower priority in a group “free allocation”.
  • the deck assignments for the "Forced Allocation” group are mandatory, based on the following descending priority: coincidence "cabin call floor call”; Not operating a scanner position ( ⁇ ) with single cab 5, 6 at full load; Not operating a scanner position ( ⁇ ) with single cab 5, 6 in the "non-operating" operating mode.
  • the cost comparison is then continued from scanner position 10 in order to be interrupted again at scanner position 9 (downward) by the occurrence of an event in elevator c, for example a change in the selector position (time IV).
  • the cost comparison cycle KVZ continues and its termination with scanning position 2 (downward).
  • a further cost calculation cycle KBZ for elevator a triggered for example by a car call, runs between times VIII and IX, whereupon the next cost comparison cycle KVZ is started at time X.
  • the entire cost comparison cycle can (selectable) also run uninterrupted (regardless of incoming events).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

In a group of elevators with double cars, the assignment of such double cars to floor calls takes place at scanner positions alpha in two procedural steps, according to two parameters: primarily by assignment of the individual cars of all double cars by logical decision, according to a criteria chain (KK), and subsidiarily by assignment of the double cars according to the minimal loss time of all involved passengers. The individual elevators each have a microcomputer system with a calculating device and are connected with each other by way of a comparator circuit to form a group control. The optimal individual cars are assigned for each elevator by floor in the associated individual car/call assignment memories. The optimal double car is selected by comparison of the loss times of all elevators calculated as the total operating costs Kg ( alpha ) and is assigned to the respective floor in the associated double car/call assignment memory. For the total servicing costs Kg ( alpha ), a special cost calculating algorithm is provided. With the separate assignment of individual cars and double cars, this group control renders possible a complete utilization of the double car functions as well as a good matching to different operating and traffic conditions. At the same time, the minimal waiting time of the passengers is optimized.

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Einrichtung zur Gruppensteuerung von Aufzügen mit Doppelkabinen, gemäß der Oberbergriffen der Ansprüche 1 und 10, wobei zur Ermittlung des für die Bedienung eines Stockwerkrufes auf einem Stockwerk E in einer Abtasterstellung α optimal einsatzfähigen Aufzuges die als Verlustzeit aller bei einer Rufbedienung involvierten Fahrgäste definierten Bedienungskosten als Entscheidungskriterium dienen und wobei diese Bedienungskosten für jeden Aufzug separat, im Rahmen eines Kostenberechnungszyklus für jede Abtasterstellung α - gleich ob ein Stockwerkruf vorhanden ist oder nicht - berechnet und abgespeichert werden und nachfolgend für alle Aufzüge gemeinsam im Rahmen eines Kostenvergleichszyklus verglichen werden, um mittels einer Steuerungseinrichtung den Aufzug mit den geringsten Bedienungskosten der betreffenden Abtasterstellung α als Favorit für die Bedienung eines allfälligen Stockwerkrufes zuzuteilen und dabei auch die Zuordnung einer bestimmten Einfachkabine der entsprechenden Doppelkabine zu der zu bedienenden Abtasterstellung vorzusehen. Mit solchen Gruppensteuerungen soll ermöglicht werden, die Doppelkabinen den Stockwerkrufen derart zuzuteilen, dass minimale durchschnittliche Wartezeiten und minimale durchschnittliche Zielfahrzeiten der Fahrgäste erreicht werden. Dies führt bei Aufzugsgruppen zu einer Erhöhung der Förderleistung, zu einem verbesserten Betriebsverhalten und damit zu einer allgemeinen Verkehrserleichterung.The invention relates to a method and a device for group control of elevators with double cabins, according to the preambles of claims 1 and 10, wherein to determine the elevator that is optimally usable for the operation of a floor call on a floor E in a scanning position α as the lost time of all In the case of a call operation, passengers involved with defined operating costs serve as a decision criterion and these operating costs are calculated and stored separately for each elevator, within the framework of a cost calculation cycle for each scanning position α - regardless of whether there is a floor call or not - and subsequently for all elevators together as part of one Cost comparison cycle are compared in order to allocate the elevator with the lowest operating costs to the relevant scanning position α as a favorite for the operation of a possible floor call by means of a control device and also to assign the Z to provide a certain single cabin of the corresponding double cabin for the scanning position to be operated. Such group controls are intended to make it possible to allocate the double cabins to the floor calls in such a way that minimum average waiting times and minimum average destination travel times of the passengers are achieved. With elevator groups, this leads to an increase in the conveying capacity, to an improved operating behavior and thus to a general traffic relief.

Bei einer aus dem europäischen Patent Nr. 0 032 213 bekannten Gruppensteuerung für Aufzüge mit Einzelkabinen werden Zuordnungen der Kabinen zu den Stockwerkrufen zeitlich (und wegabhängig) optimiert. Hierbei wird mittels einer Recheneinrichtung in Form eines Mikroprozessors während eines Abtasterzyklus eines ersten Abtasters bei jedem Stockwerk, ob ein Stockwerkruf vorhanden ist oder nicht, aus der Distanz zwischen dem Stockwerk und der von einem Selektor angezeigten Kabinenposition, den innerhalb von dieser Distanz zu erwartenden Zwischenhalten und der momentanen Kabinenlast eine den Zeitverlusten von wartenden Fahrgästen und den Zeitverlusten der Fahrgäste in der Kabine proportionale Verlustsumme errechnet. Dabei wird die im Berechnungszeitpunkt vorhandene Kabinenlast derart korrigiert, dass die voraussichtlichen Aussteiger und aus den Aus- und Zusteigerzahlen der Vergangenheit abgeleiteten Zusteiger bei den zukünftigen Zwischenhalten berücksichtigt werden. Diese, auch Bedienungskosten genannte, Verlustsumme wird in einem Kostenspeicher gespeichert. Während eines Kostenvergleichszyklus mittels eines zweiten Abtasters werden die Bedienungskosten aller Aufzüge über eine Vergleichseinrichtung miteinander verglichen, wobei jeweils in einem Zuteilungsspeicher des Aufzuges mit den geringsten Bedienungskosten eine Zuteilungsanweisung speicherbar ist, die dasjenige Stockwerk bezeichnet, dem die betreffende Kabine zeitlich optimal zugeordnet ist.In a group control for elevators with single cabins known from European Patent No. 0 032 213, assignments of the cabins to the floor calls are optimized in terms of time (and route-dependent). Here, by means of a computing device in the form of a microprocessor Scanning cycle of a first scanner on each floor, whether there is a floor call or not, from the distance between the floor and the car position indicated by a selector, the intermediate stops to be expected within this distance and the current car load, the time lost by waiting passengers and the Time lost by passengers in the cabin is calculated as a proportional loss. The cabin load at the time of the calculation is corrected in such a way that the anticipated passengers and those who have derived from the number of passengers in and out of the past are taken into account in future stops. This loss, also called service costs, is stored in a cost memory. During a cost comparison cycle using a second scanner, the operating costs of all elevators are compared with one another by means of a comparison device, an allocation instruction which designates the floor to which the relevant car is optimally assigned in time can be stored in an allocation memory of the elevator with the lowest operating costs.

Mit dem schweizerischen Patent Nr. 660 585 ist eine Steuerung für eine Aufzugsgruppe mit Doppelkabinen bekannt geworden, bei der die vorstehend beschriebene Gruppensteuerung derartig verbessert worden ist, dass die Zuordnung der einzelnen Kabinen von Doppelkabinen zu den Stockwerkrufen zeitlich optimiert werden kann. Hierbei werden die Bedienungskosten für jede der beiden einzelnen Kabinen einer Doppelkabine errechnet und mittels einer Vergleichsschaltung miteinander verglichen, wobei die geringeren Bedienungskosten im Kostenspeicher des betreffenden Aufzuges gespeichert werden, und wobei bei Vorliegen von Zuteilungsanweisungen für gleichgerichtete Stockwerkrufe zweier benachbarter Stockwerke und/oder Koinzidenzen von Kabinenrufen und Abtasterstellungen die zu speichernden Bedienungskosten reduziert werden. Die Steuerung der Aufzugsgruppe interpretiert die Doppelkabine als zwei Einzelkabinen, die miteinander konkurrieren.With the Swiss patent No. 660 585, a control for an elevator group with double cabins has become known, in which the group control described above has been improved in such a way that the assignment of the individual cabins from double cabins to the floor calls can be optimized in terms of time. The operating costs for each of the two individual cabins of a double cabin are calculated and compared with each other by means of a comparison circuit, the lower operating costs being stored in the cost memory of the elevator in question, and where there are assignment instructions for rectified floor calls from two adjacent floors and / or coincidences of car calls and scanning positions the operating costs to be saved are reduced. The control of the elevator group interprets the double cabin as two single cabins that compete with each other.

Die aus dem europäischen Patent Nr. 0 032 213 bekannte Verlustsumme, auch Bedienungskosten genannt, ist lediglich von der Lage und Richtung der Rufe, von der Kabinenlast und vom Betriebszustand der Kabine abhängig, und wird in der schweizerischen Patentschrift Nr. 660 585 für jede einzelne Kabine der Doppelkabinen berechnet. Bei solcher Berechnung werden die gegenseitigen Beeinflussungen und Abhängigkeiten der beiden einzelnen Kabinen nicht voll berücksichtigt. Die geringeren Bedienungskosten der einzelnen Kabinen einer Doppelkabine werden dann im Kostenspeicher des betreffenden Aufzuges gespeichert und stockwerkweise mit den geringeren Bedienungskosten der anderen Doppelkabinen in der Aufzugsgruppe verglichen. Bei derartigen Steuerungen werden die Stockwerkrufe nicht der optimalen Doppelkabine, sondern der optimalen einzelnen Kabine zugeordnet. Eine gleichmässige Verteilung der Fahrgäste auf die Doppelkabinen in der Aufzugsgruppe ist daher bei Normalbetrieb der Aufzugsanlage beeinträchtigt. Durch separate Berechnung der Bedienungskosten der beiden einzelnen Kabinen können nur Koinzidenzen von Kabinenrufen der betreffenden Kabine und Abtasterstellung, durch Reduzierung der Bedienungskosten der betreffenden Kabine, gefördert werden. Das Anhalten an benachbarten Stockwerken, wobei die andere nicht an einem Kabinenruf beteiligte einzelne Kabine betroffen ist, wird nicht gefördert. Eine optimale Zuweisung der Stockwerkrufe zu den Doppelkabinen wird daher nicht in allen Fällen möglich sein. Aus dem Vorgenannten ergibt sich als Folgerung, dass eine Gruppensteuerung für Aufzüge mit Doppelkabinen, welche die beiden Kabinen einer Doppelkabine als Einzelkabinen betrachtet, in Bezug auf minimum der Anzahl Halte, kurze durchschnittliche Wartezeiten der Fahrgäste und erhöhte Förderleistung keine optimalen Ergebnisse erzielen kann.The total loss known from European Patent No. 0 032 213, also known as operating costs, depends only on the position and direction of the calls, the cabin load and the operating state of the cabin, and is described in Swiss Patent No. 660 585 for each one Double cabins calculated. With such a calculation, the mutual influences and dependencies of the two individual cabins are not fully taken into account. The lower operating costs of the individual cabins of a double cabin are then stored in the cost storage of the elevator in question and are compared by floors with the lower operating costs of the other double cabins in the elevator group. In such controls, the floor calls are not assigned to the optimal double cabin, but to the optimal individual cabin. A uniform distribution of the passengers to the double cabins in the elevator group is therefore impaired during normal operation of the elevator system. By separately calculating the operating costs of the two individual cabins, only coincidences between cabin calls of the relevant cabin and scanning position can be promoted by reducing the operating costs of the relevant cabin. Stopping on adjacent floors, whereby the other single car not involved in a car call is not promoted. An optimal allocation of floor calls to the double cabins will therefore not be possible in all cases. It follows from the above that a group control for elevators with double cabins, which considers the two cabins of a double cabin as single cabins, cannot achieve optimal results in terms of minimum number of stops, short average waiting times for passengers and increased conveying capacity.

Der Erfindung liegt die Aufgabe zugrunde, ausgehend vom CH-Patent Nr. 660 585 ein Verfahren und eine Einrichtung zu schaffen, um bei Gruppensteuerungen für Aufzüge mit Doppelkabinen die durch die Einfachkabinen jeder Doppelkabine und die Doppelkabinen jeder Gruppe gegebenen zwei Freiheitsgrade für die Rufbedienung voll zu nutzen. Dabei soll die Einsatzfähigkeit einer Doppelkabine hinsichtlich eines Stockwerkrufes nicht bloss durch Lage und Richtung dieses Stockwerkrufes sowie die Last- und Betriebszustände der beiden Einfachkabinen bestimmt sein, sondern auch durch die verschiedenen Varianten der Rufbedienung, die sich aus der Möglichkeit der gleichzeitigen Bedienung zweier benachbarter Rufe durch die beiden Einfachkabinen ergeben. Bei der Berechnung der Bedienungskosten einer Doppelkabine sind deshalb die gegenseitigen kostenmässigen Beeinflussungen der beiden Einfachkabinen zu berücksichtigen. Im weitern sollen Verfahren und Einrichtung so gestaltet sein, dass sie leicht und rasch an unterschiedliche Betriebsbedingungen und Verkehrsverhältnisse angepasst werden können und dass der erforderliche Rechenaufwand minimal ist.The invention is based on the object, starting from Swiss Patent No. 660 585, to a method and a device create, in group controls for elevators with double cabins, the two degrees of freedom given by the single cabins of each double cabin and the double cabins of each group to be fully used for call control. The usability of a double cabin with regard to a floor call should not only be determined by the position and direction of this floor call as well as the load and operating states of the two single cabins, but also by the different types of call operation resulting from the possibility of operating two adjacent calls at the same time the two single cabins result. When calculating the operating costs of a double cabin, the mutual cost effects of the two single cabins must therefore be taken into account. Furthermore, the method and equipment should be designed in such a way that they can be easily and quickly adapted to different operating and traffic conditions and that the required computing effort is minimal.

Zur Lösung dieser Aufgabe schlägt die Erfindung mit den in den Patentansprüchen 1 und 10 gekennzeichneten Merkmalen vor, unter Berücksichtigung der gegenseitigen Beeinflussung der für jede Einfachkabine separat berechneten Teil-Bedienungskosten, Gesamt-Bedienungskosten (z.B. rekursiv) für jede Doppelkabine in der Aufzugsgruppe für alle Abtasterstellungen zu berechnen, wobei bei Vorliegen von Zuteilungsanweisungen für gleichgerichtete Stockwerkrufe zweier benachbarter Stockwerke (Kongruenz) und/oder Koinzidenzen von Kabinenrufen und Abtasterstellungen die zu speichernden Gesamt-Bedienungskosten reduziert werden, die Gesamt-Bedienungskosten aller Aufzüge mittels einer Vergleichseinrichtung miteinander zu vergleichen, wobei jeweils in einem Zuteilungsspeicher des Aufzuges mit den geringsten Gesamt-Bedienungskosten eine Zuteilungsanweisung speicherbar ist, die dasjenige Stockwerk bezeichnet, dem die betreffende Doppelkabine zeitlich optimal zugeordnet ist, und wobei mittels einer Auswahl aufgrund von Kriterienketten von jeder Doppelkabine eine bestimmte Einfachkabine dem Stockwerkruf so zugeteilt wird, dass die Bedienung von Kabinenrufen und gleichgerichteten Stockwerkrufen auf dem gleichen Stockwerk, von gleichgerichteten Stockwerkrufen zweier benachbarter Stockwerke und von Kabinenrufen und gleichgerichteten Stockwerkrufen zweier benachbarter Stockwerke gefördert wird, dass Überlappungen "eigener" Haltepositionen d.h. Halte einer Einfachkabine in einem Stockwerk, wo die andere Einfachkabine kurz vorher angehalten hat oder kurz nachher anhalten wird, auf unumgängliche Ausnahmen reduziert werden und dass Überlappungen "fremder" Haltepositionen d.h. Halte einer Doppelkabine in einem Stockwerk, wo eine andere Doppelkabine der gleichen Gruppe gleichzeitig anhält, nach Möglichkeit vermieden̂ werden.To achieve this object, the invention proposes with the features characterized in claims 1 and 10, taking into account the mutual influence of the partial operating costs calculated separately for each single cabin, total operating costs (e.g. recursively) for each double cabin in the elevator group for all scanning positions to calculate, whereby if there are allocation instructions for the same floor calls of two adjacent floors (congruence) and / or coincidences of cabin calls and scanning positions, the total operating costs to be saved are reduced, the total operating costs of all elevators are compared using a comparison device, each in An allocation instruction can be stored in an allocation memory of the elevator with the lowest total operating costs, which indicates the floor to which the respective double cabin is optimally assigned in time, and by means of an Au selection based on criteria chains of Each double cabin is assigned a specific single cabin to the floor call in such a way that the servicing of cabin calls and rectified floor calls on the same floor, of rectified floor calls from two adjacent floors and of car calls and rectified floor calls from two adjacent floors is promoted so that overlaps of "own" stop positions, ie stop a single cabin on a floor where the other single cabin has stopped shortly before or will stop shortly afterwards is reduced to unavoidable exceptions and that overlaps of "foreign" stopping positions, ie stopping a double cabin on a floor where another double cabin of the same group stops simultaneously, be avoided if possible.

Die mit der Erfindung erzielten Vorteile liegen darin, dass jeweils die Doppelkabine mit den geringsten Gesamt-Bedienungskosten einem Stockwerkruf zugeteilt wird, wobei bei einem einzelnen Stockwerkruf und nicht vorhandener Koinzidenz und/- oder Kongruenz, die weniger beladene Kabine oder wählbar auch die in Fahrtrichtung "vordere" oder "hintere" Kabine dem Stockwerkruf zugeteilt wird und wobei das Anhalten am gleichen Stockwerk mit Kabinenruf und gleichgerichteten Stockwerkruf und/oder an benachbarten Stockwerken mit gleichgerichteten Stockwerkrufen oder Kabinen und gleichgerichteten Stockwerkrufen derart gefördert wird, dass weniger Halte entstehen, die einzelnen Doppelkabinen den Gesamtverkehr gleichmässig untereinander aufteilen die beiden Einfachkabinen einer Doppelkabine gleichmässig gefüllt werden, wodurch die Wartezeiten auf den Stockwerken und die Fahrzeiten verringert werden, die Wartezeiten in der nichtbedienenden Kabine bei eventuellen Zwischenhalten auf das "absolut notwendige" Minimum beschränkt bleiben und die Förderleistung gesteigert wird. Weiterhin zeichnet sich diese Lösung dadurch aus, dass durch die einstellbaren Parameter Prioritäten für das Bedienungsverhalten der Aufzüge erreicht werden können, so dass z.B. in beiden Einfachkabinen die gleiche Last angestrebt wird, oder dass der Lastausgleich erst ab einstellbarem Ungleichgewicht der beiden Einfachkabinen wirksam wird.The advantages achieved by the invention are that the double cabin with the lowest total operating costs is allocated to a floor call, with a single floor call and non-existent coincidence and / or congruence, the less loaded cabin or optionally also the one in the direction of travel " front "or" rear "cabin is allocated to the floor call and the stopping on the same floor with cabin call and rectified floor call and / or on adjacent floors with rectified floor calls or cabins and rectified floor calls is promoted in such a way that there are fewer stops, the individual double cabins den Distribute total traffic evenly among each other, the two single cabins of a double cabin are filled evenly, which reduces waiting times on the floors and reduces travel times, while waiting times in the non-operating cabin for any intermediate stops for the "absolutely n necessary "minimum remain limited and the delivery rate is increased. Furthermore, this solution is characterized in that priorities for the operating behavior of the elevators can be achieved through the adjustable parameters, so that, for example, in both single cabins the same load is aimed for, or that the load balancing only becomes effective when the imbalance of the two single cabins can be set.

Im folgenden wird die Erfindung anhand eines auf der Zeichnung dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung der erfindungsgemässen Gruppensteuerung für einen Aufzug einer aus drei Aufzügen bestehenden Aufzugsgruppe,
Fig. 2
eine schematische Darstellung einer Vergleichsschaltung eines Aufzuges der Gruppensteuerung gemäss Fig. 1 und
Fig. 3
ein Diagramm des zeitlichen Ablaufes der Steuerung.
The invention is explained in more detail below with reference to an exemplary embodiment shown in the drawing. Show it:
Fig. 1
1 shows a schematic representation of the group control according to the invention for an elevator of an elevator group consisting of three elevators,
Fig. 2
a schematic representation of a comparison circuit of an elevator of the group control according to FIG. 1 and
Fig. 3
a diagram of the timing of the control.

In der Fig. 1 ist mit 1 ein Aufzugsschacht eines Aufzuges a, einer aus beispielsweise drei Aufzügen a, b und c bestehenden Aufzugsgruppe bezeichnet. Eine Fördermaschine 2 treibt über ein Förderseil 3 eine im Aufzugsschacht 1 geführte, aus zwei in einem gemeinsamen Fahrkorbrahmen angeordnete Einfachkabinen 5, 6 gebildete Doppelkabine 4 an, wobei gemäss der als Beispiel gewählten Aufzugsanlage sechzehn Stockwerke E1 bis E16 bedient werden. Der Abstand der beiden Einfachkabinen 5, 6 voneinander ist so gewählt, dass er mit dem Abstand zweier benachbarter Stockwerke übereinstimmt. Die Fördermaschine 2 wird von einer aus dem europäischen Patent Nr. 0 026 406 bekannten Antriebssteuerung gesteuert, wobei die Sollwerterzeugung, die Regelfunktionen und die Stoppeinleitung mittels eines Mikrocomputersystems 7 realisiert werden, und wobei mit 8 die Mess- und Stellglieder der Antriebssteuerung symbolisiert sind, die über ein erstes Interface IF 1 mit dem Mikrocomputersystem 7 in Verbindung stehen. Jede Einfachkabine 5, 6 der Doppelkabine 4 weist eine Lastmesseinrichtung 9, eine den jeweiliegen Betriebszustand Z der Kabine signalisierende Einrichtung 10 und Kabinenrufgeber 11 auf. Die Einrichtungen 9, 10 sind über das erste Interface IF 1 mit dem Mikrocomputersystem 7 verbunden. Die Kabinenrufgeber 11 und auf den Stockwerken vorgesehene Stockwerkrufgeber 12 sind beispielsweise über eine mit dem europäischen Patent Nr. 0 062 141 bekannt gewordene Eingabeeinrichtung 13 und ein zweites Interface IF 2 am Mikrocomputersystem 7 angeschlossen.
Das Mikrocomputersystem 7 besteht aus einem Stockwerkrufspeicher RAM 1, zwei den Einfachkabinen 5, 6 der Doppelkabine 4 zugeordneten Kabinenrufspeichern RAM 2, RAM 3, einem die momentane Last PM jeder Einfachkabine 5, 6 speichernden Lastspeicher RAM 4, zwei den Betriebszustand Z der Einfachkabinen 5, 6 speichernden Speichern RAM 5, RAM 6, zwei den Einfachkabinen des Aufzuges zugeordneten, tabellenförmigen Teilkostenspeichern RAM 7, RAM 8, einem ersten Gesamtkostenspeicher RAM 9, einem zweiten Gesamtkostenspeicher RAM 10, einem Einfachkabine/Ruf-Zuordnungsspeicher RAM 11, einem den Aufzug mit den kleinsten Bedienungskosten pro Abtasterstellung und Bedienungsrichtung bezeichnenden Doppelkabine/Ruf-Zuteilungsspeicher RAM 12, einem Programmspeicher EPROM, einem spannungsausfallsicheren Datenspeicher DBRAM und einem Mikroprozessor CPU, der über einen Bus B mit den Speichern RAM 1 bis RAM 12, EPROM und DBRAM verbunden ist. Mit R1 und R2 sind ein erster und ein zweiter Abtaster einer Abtasteinrichtung bezeichnet, wobei die Abtaster R1, R2 Register sind, mittels welcher den Stockwerknummern und der Laufrichtung entsprechende Adressen gebildet werden. Die Kostenspeicher RAM 7 bis RAM 10 weisen je einen bis mehrere Speicherplätze auf, welche den einzelnen möglichen Kabinenpositionen zugeordnet werden können. Mit R3 und R4 sind die den einzelnen Kabinen entsprechenden Selektoren in Form eines Registers bezeichnet, welches bei fahrender Kabine die Adresse desjenigen Stockwerkes anzeigt, auf dem die Kabine noch anhalten kann. Im Stillstand zeigen R3 und R4 auf das Stockwerk, wo ein Ruf bedient werden kann oder auf eine mögliche Kabinenposition (bei "blinden" Stockwerken). Wie aus vorstehend genannter Antriebssteuerung bekannt, sind den Selektoradressen Zielwege zugeordnet, die mit einem in einem Sollwertgeber erzeugten Zielweg verglichen werden. Bei Gleichheit dieser Wege und Vorliegen eines Haltebefehls wird die Verzögerungsphase eingeleitet. Ist kein Haltebefehl vorhanden, so werden die Selektoren R3 und R4 auf das nächste Stockwerk geschaltet.
Eine mit den Teilkostenspeichern RAM 7, RAM 8 den Gesamtkostenspeichern RAM 9, RAM 10 und dem Einfachkabine/Ruf-Zuordnungsspeicher RAM 11 verknüpfte Vergleichsschaltung VS siehe Fig. 2.
Die Mikrocomputersysteme 7 der einzelnen Aufzüge a, b, c sind über eine aus dem europäischen Patent Nr. 0 050 304 bekannte Vergleichseinrichtung 14 und ein drittes Interface IF 3 sowie über ein aus dem europäischen Patent Nr. 0 050 305 bekanntes Partyline-Übertragungssystem 15 und ein viertes Interface IF 4 miteinander verbunden und bilden in dieser Weise die erfindungsgemässe Gruppensteuerung.
1, 1 denotes an elevator shaft of an elevator a, an elevator group consisting of, for example, three elevators a, b and c. A conveyor machine 2 drives, via a conveyor cable 3, a double cabin 4, which is guided in the elevator shaft 1 and is formed from two single cabins 5, 6 arranged in a common car frame, sixteen floors E1 to E16 being operated according to the elevator system chosen as an example. The distance between the two single cabins 5, 6 is selected so that it corresponds to the distance between two adjacent floors. The carrier 2 is controlled by a drive control known from European Patent No. 0 026 406, the setpoint generation, the control functions and the initiation of the stop being implemented by means of a microcomputer system 7, and with 8 the measuring and actuating elements of the drive control which are symbolized are connected to the microcomputer system 7 via a first interface IF 1. Each single cabin 5, 6 of the double cabin 4 has a load measuring device 9, the respective operating state Z the cabin signaling device 10 and cabin call transmitter 11. The devices 9, 10 are connected to the microcomputer system 7 via the first interface IF 1. The car call transmitter 11 and the floor call transmitter 12 provided on the floors are connected to the microcomputer system 7, for example, via an input device 13 which has become known with European Patent No. 0 062 141 and a second interface IF 2.
The microcomputer system 7 consists of a storey call memory RAM 1, two cabin call memories RAM 2, RAM 3 assigned to the single cabins 5, 6 of the double cabin 4, a load memory RAM 4 storing the current load P M of each single cabin 5, 6, two the operating state Z of the single cabins 5 , 6 storing memories RAM 5, RAM 6, two tabular partial cost memories RAM 7, RAM 8 assigned to the single cabins of the elevator, a first total cost memory RAM 9, a second total cost memory RAM 10, a single cabin / call assignment memory RAM 11, one with the elevator the lowest operating costs per scanner position and direction of operation, characterizing the double cabin / call allocation memory RAM 12, a program memory EPROM, a power failure-proof data memory DBRAM and a microprocessor CPU which is connected via a bus B to the memories RAM 1 to RAM 12, EPROM and DBRAM. R1 and R2 denote a first and a second scanner of a scanner, the scanner R1, R2 being registers by means of which addresses corresponding to the floor numbers and the direction of travel are formed. The cost memories RAM 7 to RAM 10 each have one or more storage locations which can be assigned to the individual possible cabin positions. R3 and R4 denote the selectors corresponding to the individual cabins in the form of a register which, when the cabin is moving, indicates the address of the floor on which the cabin can still stop. At a standstill, R3 and R4 point to the floor where a call can be answered or to a possible cabin position (for "blind" floors). As is known from the drive control mentioned above, the selector addresses are assigned target paths which are compared with a target path generated in a setpoint generator. If these paths are identical and a stop command is present, the delay phase is initiated. If there is no stop command, the selectors R3 and R4 are switched to the next floor.
A comparison circuit VS linked to the partial cost memories RAM 7, RAM 8, the total cost memories RAM 9, RAM 10 and the single cabin / call assignment memory RAM 11, see FIG. 2.
The microcomputer systems 7 of the individual elevators a, b, c are via a comparison device 14 known from European Patent No. 0 050 304 and a third interface IF 3 as well as via a Partyline transmission system 15 and known from European Patent No. 0 050 305 a fourth interface IF 4 connected to one another and in this way form the group control according to the invention.

Anhand der Fig. 3 wird im folgenden der zeitliche Ablauf und die Funktion der vorstehend beschriebenen Gruppensteuerung erläutert:
Beim Auftreten eines einen bestimmten Aufzug a, b, c der Gruppe betreffenden Ereignisses, wie beispielsweise Eingabe eines Kabinenrufes, Zuteilung eines Stockwerkrufes, Änderung der Last- oder Türzustände oder Änderung der Selektorstellung, beginnt der dem betreffenden Aufzug zugeordnete erste Abtaster R1 mit einem Umlauf, im folgenden Kostenberechnungszyklus KBZ genannt, ausgehend von der "hinteren" Selektorstellung in Fahrtrichtung der Kabine (bei keiner Fahrtrichtung beginnend bei der unteren Kabine), wobei der Umlauf auch in anderer Richtung oder Reihenfolge erfolgen kann. Das Ereignis möge eintreten beim Aufzug a (Zeitpunkt I). Bei jeder Abtasterstellung wird nun vom Mikroprozessor CPU des Mikrocomputersystems 7 für jede Einfachkabine 5, 6 und für die Doppelkabine 4 gemäss den Patentansprüchen eine den Zeitverlusten von allen involvierten Fahrgästen proportionale Summe, auch Bedienungskosten K genannt, errechnet, wobei die einzelnen Kostenanteile durch die nach folgendem Prinzip arbeitende Gruppensteuerung für Aufzüge mit Doppelkabinen ermittelt werden.
The time sequence and the function of the group control described above are explained below with reference to FIG. 3:
When an event relating to a specific elevator a, b, c of the group occurs, such as entering a car call, assigning a floor call, changing the load or door states or changing the selector position, the first scanner R1 assigned to the elevator in question begins with one cycle, hereinafter referred to as the KBZ cost calculation cycle, starting from the "rear" selector position in the direction of travel of the cabin (in the case of no direction of travel starting with the lower cabin), with the circulation also being possible in a different direction or sequence. The event may occur at elevator a (time I). With each scanning position, the microprocessor CPU of the microcomputer system 7 now creates one for each single cabin 5, 6 and for the double cabin 4 according to the patent claims the time loss of all passengers involved is calculated as a sum, also known as operating costs K, the individual cost components being determined by the group control for elevators with double cabins, which works according to the following principle.

Beim Berechnungsvorgang werden die inneren Bedienungskosten und die Zunahme der äusseren Bedienungskosten für beide Einfachkabinen 5, 6 getrennt ermittelt: Die gesamten Innenkosten für eine Doppelkabinenposition (α, α+1) werden durch Addierung der separat berechneten inneren Bedienungskosten der beiden Einfachkabinen auf den Stockwerken α und α+1 ermittelt. Die äusseren Bedienungskosten bestehen wie bei der Gruppensteuerung für Einzelkabinen aus drei Anteilen;

  • einem von der Stockwerkdistanzen-Fahrzeit abhängigen Anteil m·tm
  • einem vom Betriebszustand der beiden Einfachkabinen abhängigen Anteil KAE
  • einem von Rufbedienung an Zwischenstockwerken (beide Kabinen) abhängigen Anteil KAZ.
Die Zuschläge wegen Betriebszustand und Rufbedienung werden je pro Einfachkabine separat berechnet. Als Zunahme der äusseren Bedienungskosten wegen Rufbedienung durch die Doppelkabine wird die grössere Zunahme der beiden Einfachkabinen genommen. Gleich so wird die Zunahme definiert als die grösste Zunahme aus den beiden für einzelne Kabinen. In beiden Fällen werden also die "worst case" Werte genommen. Die gesamten äusseren Bedienungskosten für eine Doppelkabinenposition ergeben sich dadurch, dass zu den äusseren Bedienungskosten der vorherigen Doppelkabinenposition die drei obengenannten Anteile addiert werden. Die gesamten Bedienungskosten bestehen aus den inneren und äusseren Bedienungskosten. Die Gesamtkosten Kg(α) für eine Aufzugsposition (α, α+1) werden im Platz (α+1) des Gesamtkostenspeichers RAM 9 abgelegt, der Abtaster R1 auf das nächste Stockwerk geschaltet und die Berechnung sinngemäss wiederholt. Hinsichtlich der Bedienung eines Stockwerkrufes in einer das Stockwerk in welcher sich der Aufzug befindet bezeichnenden Abtasterstellung (α) werden für die Doppelkabine 4 Gesamt-Bedienungskosten Kg(α) definiert:

K g (α) = G · K Ig (α) + K Ag (α)   (I)
Figure imgb0001


wobei bedeuten:
Kg(α) :
die Gesamt-Bedienungskosten einer Doppelkabine für die Abtasterstellung α
KIg(α) :
die inneren Gesamt-Bedienungskosten einer Doppelkabine für die Abtasterstellung α
KAg(α) :
die äusseren Gesamt-Bedienungskosten einer Doppelkabine für die Abtasterstellung α
G :
ein Gewichtungsfaktor.
In the calculation process, the internal service costs and the increase in the external service costs for both single cabins 5, 6 are determined separately: The total internal costs for a double cabin position (α, α + 1) are calculated by adding the separately calculated internal service costs of the two single cabins on floors α and α + 1 determined. As with group control for individual cabins, the external operating costs consist of three parts;
  • a portion depending on the floor distance travel time m · m
  • a proportion of KAE depending on the operating state of the two single cabins
  • a share of KAZ that is dependent on call control on mezzanine floors (both cabins).
The surcharges for operating status and call operation are calculated separately for each single cabin. The greater increase in the two single cabins is taken as an increase in the external operating costs due to call control by the double cabin. In the same way, the increase is defined as the largest increase from the two for individual cabins. In both cases, the "worst case" values are used. The total external operating costs for a double cabin position result from the fact that the three parts mentioned above are added to the external operating costs of the previous double cabin position. The total operating costs consist of the inner and outer operating costs. The total costs K g (α) for an elevator position (α, α + 1) are stored in the space (α + 1) of the total cost memory RAM 9, the scanner R1 is switched to the next floor and the calculation is analogous repeated. With regard to the operation of a floor call in a scanning position (α) which designates the floor in which the elevator is located, 4 total operating costs K g (α) are defined for the double cabin:

K G (α) = GK Ig (α) + K Ag (α) (I)
Figure imgb0001


where mean:
K g (α):
the total operating costs of a double cabin for the scanning position α
K Ig (α):
the total internal operating costs of a double cabin for the scanning position α
K Ag (α):
the total external operating costs of a double cabin for the scanning position α
G:
a weighting factor.

Im weitern werden für die Bedienung einer Abtasterstellung (α) durch eine Doppelkabine 4 - je nach Bedienungsrichtung - durch die Lage der Einfachkabinen 5, 6 bestimmte Standard-Bedienungspositionen festgelegt, nämlich die Bedienungsposition α, α+1 für die Abwärtsbedienungsrichtung, sowie die Bedienungsposition α, α-1 für die Aufwärtsbedienungsrichtung und dabei standardisierte Gesamt-Bedienungskosten Kgs(α) wie folgt definiert:

K gs (α)=G·[S·[K Iv (α)+K Ih (α±1)]]+[K Av (α)+K Ah (α±1)]   (II)

Figure imgb0002


wobei gilt:

Kgs(α) :
die standardisierten Gesamt-Bedienungskosten einer Doppelkabine für die Abtasterstellung α
G :
ein Gewichtungsfaktor
S :
ein Statusfaktor für Koinzidenz von Abtasterstellung und Kabinenruf mit S = 0 bei Koinzidenz und S = 1 bei fehlender Koinzidenz
KIv(α) :
die inneren Teil-Bedienungskosten der in Fahrtrichtung vorderen Einfachkabine für die Abtasterstellung α
KIh(α±1) :
die inneren Teil-Bedienungskosten der in Fahrtrichtung hinteren Einfachkabine in der Position (α+1) bzw. (α-1)
KAv(α) :
die äusseren Teil-Bedienungskosten der in Fahrtrichtung vorderen Einfachkabine für die Abtasterstellung α
KAh(α±1) :
die äusseren Teil-Bedienungskosten der in Fahrtrichtung hinteren Einfachkabine in der Position (α+1) bzw. (α-1)
KIv(α)+KIh(α±1) =KIg(α) :innere Gesamt-Bedienungskosten
KAv(α)+KAh(α±1) =KAg(α) :äussere Gesamt-Bedienungskosten
Für die Berechnung der standardisierten Gesamt-Bedienungskosten Kgs(α) mittels eines Kostenberechnungsalgorithmus KBA gilt folgende Berechnungsformel:

K gs (α)=G·S·t v ·[[P Mv +K 1v ·R Ev -k 2v ·R Cv ]+[P Mh +k 1h ·R Eh -k 2h ·R Ch ]] + [m·t m + KAE + KAZ]·k 1g    (III)
Figure imgb0003


wobei gilt:
tv :
die mittlere, die Innenkosten betreffende Verlustzeit, die sich bei einem Halt in der Abtasterstellung α ergibt
tv' :
die mittlere, die Aussenkosten betreffende Verlustzeit, die sich bei einem Halt in der Abtasterstellung α ergibt
PMv;PMh :
die momentane Kabinenlast in der vorderen bzw. hinteren Kabine im Zeitpunkt der Berechnung
REv;REh :
die Anzahl zugeteilter Stockwerkrufe zwischen Selektor- und Abtasterstellung, für die vordere bzw. hintere Kabine
RCv;RCh :
die Anzahl Kabinenrufe zwischen Selektor-und Abtasterstellung, für die vordere bzw. hintere Kabine
k1v;k1h :
eine in Abhängigkeit von den Verkehrsverhältnissen ermittelte voraussichtliche Anzahl zusteigende Personen pro Stockwerkruf, für die vordere bzw. hintere Kabine
k2v;k2h :
eine in Abhängigkeit von den Verkehrsverhältnissen ermittelte voraussichtliche Anzahl aussteigende Personen pro Kabinenruf, für die vordere bzw. hintere Kabine
m :
die Anzahl Stockwerkdistanzen zwischen Selektor- und Abtasterstellung
tm :
die mittlere Fahrzeit pro Stockwerkdistanz
m·tm :
die mittlere, die Aussenkosten betreffende Verlustzeit, die sich aus dem Durchfahren der Stockwerkdistanzen zwischen Selektor-und Abtasterstellung ergibt
KAE :
die mittlere, die Aussenkosten betreffende Verlustzeit, die sich aus der Einfahrt in eine Abtasterstellung (α) ergibt
KAZ :
die mittlere, die Aussenkosten betreffende Verlustzeit, die sich aus den Zwischenhalten ergibt
[m·tm + KAE + KAZ] :
die totale, die Aussenkosten betreffende Verlustzeit
k1g = k1v + k1h :
die in Abhängigkeit von den Verkehrsverhältnissen ermittelte voraussichtliche Gesamtzahl pro Stockwerkruf zusteigende Personen in der vorderen und hinteren Kabine
[PMv + k1v·REv - k2v·RCv] :
die Anzahl Fahrgäste, die bei einem Halt in Abtasterstellung (α) in der vorderen Kabine warten müssen
[PMh + k1h·REh - k2h·RCh] :
die Anzahl Fahrgäste, die bei einem Halt in Abtasterstellung (α) in der hinteren Kabine warten müssen.
Furthermore, certain standard operating positions are determined for the operation of a scanning position (α) by a double cabin 4 - depending on the direction of operation - by the position of the single cabins 5, 6, namely the operating position α, α + 1 for the downward operating direction, and the operating position α , α-1 for the upward operating direction and thereby standardized total operating costs K gs (α) defined as follows:

K gs (α) = G · [S · [K Iv (α) + K You (α ± 1)]] + [K Av (α) + K Ah (α ± 1)] (II)
Figure imgb0002


where:
K gs (α):
the standardized total operating costs of a double cabin for the scanning position α
G:
a weighting factor
S:
a status factor for the coincidence of scanning and cabin call with S = 0 for coincidence and S = 1 for missing coincidence
K Iv (α):
the inner part operating costs of the front single cab in the direction of travel for the scanning position α
K Ih (α ± 1):
the inner part operating costs of the single cab at the rear in the direction of travel in position (α + 1) or (α-1)
K Av (α):
the outer part operating costs of the front single cab in the direction of travel for the scanning position α
K Ah (α ± 1):
the outer part operating costs of the rear single cab in the direction of travel in the position (α + 1) or (α-1)
K Iv (α) + K Ih (α ± 1) = K Ig (α): total internal service costs
K Av (α) + K Ah (α ± 1) = K Ag (α): external total operating costs
The following calculation formula applies to the calculation of the standardized total service costs K gs (α) using a cost calculation algorithm KBA:

K gs (α) = G · S · t v · [[P Mv + K 1v · R Ev -k 2v · R Cv ] + [P Mh + k 1h · R Eh -k 2h · R Ch ]] + [m · t m + KAE + KAZ] · k 1g (III)
Figure imgb0003


where:
t v :
the average loss time relating to the internal costs, which results from a stop in the scanning position α
t v ':
the average loss time relating to the external costs, which results from a stop in the scanning position α
P Mv ; P Mh :
the current cabin load in the front or rear cabin at the time of the calculation
R Ev ; R Eh :
the number of floor calls allocated between the selector and scanner position, for the front or rear cabin
R Cv ; R Ch :
the number of cabin calls between selector and scanner position, for the front or rear cabin
k 1v ; k 1h :
an anticipated number of people getting in per floor call, depending on the traffic conditions, for the front or rear cabin
k 2v ; k 2h :
an estimated number of people getting out per cabin call, depending on the traffic conditions, for the front or rear cabin
m:
the number of floor distances between Selector and scanner creation
t m :
the average travel time per floor distance
m · m :
the average loss time relating to the external costs, which results from driving through the floor distances between the selector and scanner positions
KAE:
the average loss time relating to the external costs, which results from the entry into a scanning position (α)
KAZ:
the average loss of time related to external costs, which results from the intermediate stops
[m · t m + KAE + KAZ]:
the total loss time related to external costs
k 1g = k 1v + k 1h :
the estimated total number of people boarding per floor call in the front and rear cab depending on the traffic conditions
[P Mv + k 1v · R Ev - k 2v · R Cv ]:
the number of passengers who have to wait in the front cabin when stopped in the scanning position (α)
[P Mh + k 1h · R Eh - k 2h · R Ch ]:
the number of passengers who have to wait in the rear cabin when stopped in the scanning position (α).

Dabei wird der erste Zuschlag KAE aus den Betriebszuständen der Doppelkabine 4 bestimmt, aus denen in die Abtasterstellung (α) eingefahren werden soll, wobei für die Betriebszustände "Beschleunigung", "volle Fahrt", und "Bremsung" KAE aus dem entsprechenden Antriebsstatusfaktor SA nach der Formel

KAE = S A ·t v '   (IV)

Figure imgb0004


und für den Betriebsstatus "Halt" aus dem grösseren der Türstatusfaktoren STv;STh für die vordere bzw. die hintere Einfachkabine 4, 5 nach der Formel

KAE = max[S Tv /S Th ]·t v '   (V)
Figure imgb0005


berechnet wird.The first surcharge KAE is determined from the operating states of the double cabin 4, from which the scanning position (α) is to be entered, the operating states "acceleration", "full speed" and "braking" KAE from the corresponding drive status factor S A according to the formula

KAE = S A · T v '(IV)
Figure imgb0004


and for the operating status "Halt" from the larger of the door status factors S Tv ; S Th for the front or the rear single cabin 4, 5 according to the formula

KAE = max [p TV / S Th ] · T v '(V)
Figure imgb0005


is calculated.

Im weitern wird der zweite Zuschlag KAZ aus dem Zeitverlust KAZinit bei einem allfälligen Zwischenhalt in der Selektorstellung und aus den Zeitverlusten ΔKAZ bei allfälligen Zwischenhalten zwischen Selektor- und Abtasterstellung nach der Formel

KAZ = KAZ init + ΣΔKAZ   (VI)

Figure imgb0006


rekursiv berechnet wird, wobei KAZinit gemäss Anspruch 4 aus den Antriebs-und Türstatusfaktoren der Doppelkabine 4 ermittelt wird, und für ΔKAZ, die grössere der für die vordere oder hintere Einfachkabine berechneten Verlustzeiten tv' + k1v + k2v bzw. tv' + k1h + k2h genommen wird.Furthermore, the second surcharge KAZ becomes the loss of time KAZ init in the event of an intermediate stop in the selector position and the time loss ΔKAZ in the event of any intermediate stops between the selector and scanner position according to the formula

KAZ = KAZ init + ΣΔKAZ (VI)
Figure imgb0006


is calculated recursively, wherein KAZ init is determined according to claim 4 from the drive and door status factors of the double cabin 4, and for ΔKAZ, the greater of the loss times t v '+ k 1v + k 2v or t v calculated for the front or rear single cabin '+ k 1h + k 2h is taken.

Nach Beendigung des Kostenberechnungszyklus KBZ (Zeitpunkt II) beginnen die zweiten Abtaster R2 bei allen Aufzügen a, b, c gleichzeitig einen Umlauf, im folgenden Kostenvergleichszyklus KVZ genannt, ausgehend vom ersten Stockwerk (Zeitpunkt III). Der Start der Kostenvergleichszyklen KVZ erfolgt beispielsweise fünf- bis zehnmal pro Sekunde. Bei jeder Abtasterstellung werden die in den Gesamtkostenspeichern RAM 10 der Aufzüge a, b, c enthaltenen modifizierten Gesamt-Bedienungskosten Kgm der Vergleichseinrichtung 14 zugeleitet und miteinander verglichen, wobei jeweils im Zuteilungsspeicher RAM 12 des Aufzuges a, b, c mit den geringsten modifizierten Gesamt-Bedienungskosten Kgm eine Zuteilungsanweisung in Form einer logischen "1" speicherbar ist, die dasjenige Stockwerk bezeichnet, dem der betreffende Aufzug a, b, c zeitlich optimal zugeordnet ist. Beispielsweise möge aufgrund des Vergleiches in der Abtasterstellung 9 eine Neuzuteilung durch Löschung einer Zuteilungsanweisung bei Aufzug b und Einschreibung einer solchen bei Aufzug a erfolgen (Fig. 1). Durch die Neuzuteilung bei Abtasterstellung 9 wird bei den Aufzügen a und b je ein neuer Kostenberechnungszyklus KBZ gestartet und der Kostenvergleichszyklus KVZ unterbrochen, da der erstere Priorität hat. Da gemäss Beispiel für Stockwerk E9 ein Stockwerkruf gespeichert ist und der Aufzug a für dessen Bedienung vorgemerkt ist, wird in der Abtasterstellung 9 des Abtasters R1 während des Kostenberechnungszyklus KBZ mittels des Deckzuordnungsalgorithmus DZA im Einfachkabine/Ruf-Zuordnungsspeicher RAM 11 als Resultat der Abklärungen vermerkt, welche Kabine des Aufzuges a die günstigere für die Bedienung des Stockwerkrufes ist.After the end of the cost calculation cycle KBZ (time II), the second scanners R2 simultaneously begin one round for all elevators a, b, c, hereinafter referred to as the KVZ cost comparison cycle, starting from the first floor (time III). The cost comparison cycles KVZ start, for example, five to ten times a second. At each scanning position, the modified total service costs K gm contained in the total cost memories RAM 10 of the elevators a, b, c are fed to the comparison device 14 and compared with one another, wherein in the allocation memory RAM 12 of the elevator a, b, c with the lowest modified total -Operating costs K gm an allocation instruction can be stored in the form of a logical "1", which designates the floor to which the elevator a, b, c in question is optimally assigned in terms of time. For example, based on the comparison in the scanning position 9, a reassignment may take place by deleting an assignment instruction for elevator b and enrolling one for elevator a (FIG. 1). As a result of the reallocation in scanner position 9, a new cost calculation cycle KBZ is started for elevators a and b and the cost comparison cycle KVZ is interrupted, since the former has priority. Since, according to the example for floor E9, a floor call is stored and the elevator a is reserved for its operation, in the scanner position 9 of the scanner R1 during the cost calculation cycle KBZ, the deck allocation algorithm DZA is noted in the single cabin / call allocation memory RAM 11 as a result of the clarifications, which elevator car is the cheaper one for the floor call service.

Hinsichtlich des Deckzuordnungsalgorithmus DZA ist zu sagen, dass ihm hierarchisch geordnete Kriterienketten zugrunde liegen, wobei die Kriterien höchster Priorität in einer Gruppe "Zwangszuteilung" und die Kriterien niederer Priorität in einer Gruppe "Freie Zuteilung" zusammengefasst sind. Dabei sind die Deckzuordnungen für die Gruppe "Zwangszuteilung" zwingend, nach folgender absteigender Priorität: Koinzidenz "Kabinenruf-Stockwerkruf"; Nichtbedienen einer Abtasterstellung (α) mit Einfachkabine 5, 6 in Vollast; Nichtbedienen einer Abtasterstellung (α) mit Einfachkabine 5, 6 in Betriebsart "Nicht-Bedienend". Bei Fehlen einer "Zwangszuteilung" werden folgende Kriterien einer "Freien Zuteilung" angewendet: gleichzeitige Bedienung zweier benachbarter Stockwerke (kongruente Bedienung); Lastausgleich unter den Einfachkabinen 5, 6 mit oder ohne einstellbarem Ungleichgewicht; keine Überlappung "eigener" Haltepositionen, d.h. Bedienung von vier benachbarten Stockwerken durch bloss zwei Kalte des gleichen Aufzuges; keine Überlappung "fremder" Haltepositionen, d.h. Bedienung von vier benachbarten Stockwerken durch je nur einen Halt zweier Aufzüge derselben Aufzugsgruppe; Bevorzugung der vorderen oder der hinteren Einfachkabine 5, 6. Die dem Deckzuordnungsalgorithmus DZA zugrunde liegenden Kriterienketten sind änderbar, indem die einzelnen Kriterien kombiniert werden und/oder in ihren Prioritäten, z.B. durch Parametersteuerung, umgestellt werden.With regard to the deck allocation algorithm DZA, it can be said that it is based on hierarchically ordered chains of criteria, the criteria of highest priority being combined in a group "compulsory allocation" and the criteria of lower priority in a group "free allocation". The deck assignments for the "Forced Allocation" group are mandatory, based on the following descending priority: coincidence "cabin call floor call"; Not operating a scanner position (α) with single cab 5, 6 at full load; Not operating a scanner position (α) with single cab 5, 6 in the "non-operating" operating mode. In the absence of a "compulsory allocation" the following criteria a "free allocation" applied: simultaneous operation of two neighboring floors (congruent operation); Load balancing under single cabins 5, 6 with or without adjustable imbalance; no overlap of "own" stop positions, ie operation of four neighboring floors by just two colds of the same elevator; no overlap of "foreign" stopping positions, ie operation of four adjacent floors by only stopping two elevators of the same elevator group; Preference for the front or rear single cabin 5, 6. The criteria chains on which the deck allocation algorithm DZA is based can be changed by combining the individual criteria and / or changing their priorities, for example by parameter control.

Anschliessend wird der Kostenvergleich ab Abtasterstellung 10 fortgesetzt, um bei Abtasterstellung 9 (abwärts) durch Eintreten eines Ereignisses bei Aufzug c, beispielsweise Anderung der Selektorstellung, wieder unterbrochen zu werden (Zeitpunkt IV). Nach Beendigung des dadurch ausgelösten Kostenberechnungszyklus KBZ bei Aufzug c (Zeitpunkt VII) erfolgt Fortsetzung des Kostenvergleichszyklus KVZ und dessen Beendigung bei Abtasterstellung 2 (abwärts). Zwischen den Zeitpunkten VIII und IX läuft ein weiterer, beispielsweise durch einen Kabinenruf ausgelöster Kostenberechnungszyklus KBZ für Aufzug a ab, worauf zum Zeitpunkt X der nächste Kostenvergleichszyklus KVZ gestartet wird. Der ganze Kostenvergleichszyklus kann (wählbar) auch unterbrechungsfrei (unabhängig von eintreffenden Ereignissen) ablaufen.The cost comparison is then continued from scanner position 10 in order to be interrupted again at scanner position 9 (downward) by the occurrence of an event in elevator c, for example a change in the selector position (time IV). After the resulting cost calculation cycle KBZ has ended for elevator c (time VII), the cost comparison cycle KVZ continues and its termination with scanning position 2 (downward). A further cost calculation cycle KBZ for elevator a, triggered for example by a car call, runs between times VIII and IX, whereupon the next cost comparison cycle KVZ is started at time X. The entire cost comparison cycle can (selectable) also run uninterrupted (regardless of incoming events).

Claims (10)

  1. Method for the group control of lifts with double cages, in which (method) the operating costs, which are defined as the time loss of all passengers involved in the serving of a call, serve as decision criterion for ascertaining the lift (a, b, c), which is optimally usable in a scanner setting (α) designating the storey, at which the lift is situated, for serving a storey call at a storey (E) and in which these operating costs are computed and stored - irrespective of whether a storey call is present or not - for each scanner setting (α) and separately for each lift (a, b, c) within the frame of a costs computing cycle (KBZ) and compared subsequently for all lifts together in the frame of a costs comparing cycle (KVZ), wherein the lift (a, b, c) with the least operating costs of the scanner setting (α) concerned is allocated by means of a control equipment as favourite for the serving of a possibly applicable storey call and the association of a certain single cage (5, 6) of the corresponding double cage (4) with the scanner setting (α ) to be served is also provided in that case, characterised by the following steps:
    a) for the characterisation of the availability of a double cage (4) with a view to the serving of a storey call in a scanner setting (α) designating the storey, at which the lift is situated, the following total operating costs Kg(α) are defined for the double cage (4):

    K g (α) = G.K Ig (α) + K Ag (α),   (I),
    Figure imgb0013


    wherein
    Kg(α)   signifies the total operating costs of a double cage for the scanner setting (α),
    KIg(α)   the internal total operating costs of a double cage for the scanner setting (α)
    KAg(α)   the external total operating costs of a double cage for the scanner setting (α) and
    G   signifies a weighting factor.
    b) For the serving of a scanner setting (α) by a double cage (4), certain standard operating positions determined by the position of the single cages (5, 6) are fixed according to serving direction, namely the operating position α, α+1 for the downward serving direction as well as the operating position α, α-1 for the upward serving direction and standardised total operating costs Kgs(α) are in that case defined as following:

    K gs (α)=G.[S.[K Iv (α)+K Ih (α±1)]]+[K Av (α)=K Ah (α±1)],   (II)
    Figure imgb0014


    wherein
    Kgs(α)   is the standardised total operating costs of a double cage for the scanner setting (α),
    G   is a weighting factor,
    S   is a status factor for co-incidence of scanner setting and cage call with S=0 for co-incidence and S=1 for absent co-incidence,
    KIv(α)   is the inner partial operating costs of the single cage leading in direction of travel for the scanner setting (α)
    KIh(α±1)   is the inner partial operating costs of the single cage trailing in direction of travel in the position (α+1) and (α-1) respectively,
    KAv(α)   is the outer partial operating costs of the single cage leading in direction of travel for the scanner setting (α)
    KAh(α±1)   is the outer partial operating costs of the single cage trailing in direction of travel in the position (α+1) and (α-1) respectively,
    KIv(α) + KIh (α±1) = KIg(α) is the inner total operating costs and
    KAv(α) + KAh (α±1) = KAg(α)is the outer total operating costs.
    c) For each double cage (4), the standardised total operating costs Kgs(α) are computed in the frame of its costs computing cycle (KBZ) in each scanner setting (α) according to step b by means of a costs computing algorithm (KBA) and subsequently stored in a first total costs storage device (RAM9), while the inner operating costs KIv(α) and KIh(α±1) as well as the outer operating costs KAv(α) and KAh(α±1) are computed separately and also stored separately in respectively corresponding partial costs storage devices (RAM7 and RAM8).
    d) For each double cage (4), the single cage (5, 6) optimal for the serving is determined in the frame of its costs computing cycle (KBZ) in each scanner setting (α) and marked in a single cage call-association storage device (RAM11), wherein - immediately after the costs computing algorithm (KBA) and by means of a covering association algorithm (DZA) - that operating position (α, α+1) or (α, α-1) is ascertained, which is optimal for the corresponding scanner setting (α) in the sense of a hierarchically ordered criterion chain (KK).
    e) For each double cage (4), the total operating costs Kg(α), which are denoted as modified total operating costs Kgm(α), are ascertained in the frame of its costs computing cycle (KBZ) in each scanner setting (α) for the optimum operating positions (α, α+1) or (α, α-1) according to step d and stored in a second total costs storage device (RAM10), wherein - immediately after the covering association algorithm (DZA) and by means of a costs modification algorithm (KMA) - the standardised total operating costs Kgs(α) are taken over or modified according to whether or not the covering association according to step d agrees with the standardised operating position according to step b.
    f) The modified total operating costs Kgm(α), of all lifts (a, b, c) are compared for each scanner position (α) in a comparing equipment (14) in the frame of the costs comparison cycle (KVZ) comprehending all lifts of the lift group and the double cage (4) with the least modified total operating costs Kgm(α) is marked in a double cage call allocation storage device (RAM12) as "favourite" for the serving of a possibly applicable storey call in scanner setting (α) and in a given case allocated at once.
  2. Method according to claim 1, characterised thereby, that the costs computing algorithm (KBA) for the computation of the standardised total operating costs Kgs(α) is based on the following computation formula:

    K gs (α)=G.S.t v .[[P Mv +K 1v .R Ev -k 2v .R Cv ]+[P Mh +k 1h .R Eh -k 2h .R Ch ]] +[m.t m + KAE + KAZ].k 1g    (III)
    Figure imgb0015


    wherein
    tv   is the mean time loss which concerns the inner costs and results for a stop in the scanner setting (α),
    tv'   is the mean time loss which concerns the outer costs and results for a stop in the scanner setting (α),
    PMv; PMh   are the momentary cage load respectively in the leading and the trailing cage at the instant of the computation,
    REv; REh   are the number of allocated storey calls between the selector setting and the scanner setting respectively for the leading and the trailing cage,
    RCv; RCh   are the number of cage calls between the selector setting and the scanner setting respectively for the leading and the trailing cage,
    k1v; K1h   are each a foreseeable number, which is ascertained in dependence on the traffic conditions, of boarding persons per storey call respectively for the leading and the trailing cage,
    k2v; k2h   are each a foreseeable number, which is ascertained in dependence on the traffic conditions, of alighting persons per cage call respectively for the leading and the trailing cage,
    m   is the number of storey distances between the selector setting and the scanner setting,
    tm   is the mean travelling time per storey distance,
    m.tm   is the mean time loss which concerns the outer costs and results from travelling through the storey distances between the selector setting and the scanner setting,
    KAE   is the mean time loss which concerns the outer costs and results from the travelling into a scanner setting ( ),
    KAZ   is the mean time loss which concerns the outer costs and results from the intermediate stops,
    [m.tm + KAE + KAZ]   is the total time loss concerning the outer costs,
    k1g = k1v + k1h   is a foreseeable total number, which is ascertained in dependence on the traffic conditions, of boarding persons per storey call in the leading and in the trailing cage,
    Mv + k1v.REv - k2v.RCv]   is the number of passengers who have to wait in the leading cage on a stop in the scanner setting (α) and
    [PMh + k1h.REh - k2h.RCh]   is the number of passengers who have to wait in the trailing cage on a stop in the scanner setting (α).
  3. Method according to claim 2, characterised thereby, that the total time loss determining the total outer costs (KAg) is equal to the time loss (m.tm) from travelling through the storey distances between the selector setting and the scanner setting, respectively, increased by a first supplement (KAE) for the time loss on travelling into the scanner setting (α) and a second supplement (KAZ) for the time loss from one or more intermediate stops.
  4. Method according to claim 3, characterised thereby, that the first supplement (KAE) is determined from the operational states of the cage (4), out of which the scanner setting (α) is to be travelled into, wherein KAE is computed from the corresponding drive status factor (SA) according to the formula

    KAE = S A .t V '   (IV)
    Figure imgb0016


    for the operational states of "acceleration", "full speed", and "braking" and from the greater of the door status factors STv and STh respectively for the leading and the trailing single cage (4, 5) according to the formula

    KAE = max [S Tv /S Th ].t v '   (V)
    Figure imgb0017


    for the operational status "stop".
  5. Method according to claim 3, characterised thereby, that the second supplement (KAZ) is computed recursively from the time loss (KAZinit) in the case of a possibly applicable intermediate stop in the selector setting and from the time losses (ΔKAZ) in the case of possibly applicable intermediate stops between the selector setting and the scanner setting according to the formula

    KAZ = KAZ init + ΣΔKAZ,   (VI)
    Figure imgb0018


    wherein KAZinit is determined according to claim 4 from the drive and door status factors of the double cage (4) and the greater of the time losses tv' + k1v + k2v and tv' + k1h + k2h computed respectively for the leading and the trailing single cage is taken for ΔKAZ.
  6. Method according to claim 1, characterised thereby, that the criteria chains forming the basis of the covering association algorithm (DZA) are ordered hierarchically, wherein the criteria of highest priority are comprehended in a group "constrained allocation" and the criteria of lower priority are comprehended in a group "free allocation".
  7. Method according to claim 6, characterised thereby, that the corresponding covering associations are constrained for the group "constrained allocation" according to claim 6 and the following criteria are in that case provided in decreasing priority:
    - Co-incidence of "cage call - storey call",
    - not serving a scanner setting (α) by a fully loaded single cage (5, 6) and
    - not serving a scanner setting (α) by a single cage (5, 6) in the mode of operation "out of service".
  8. Method according to claim 6, characterised thereby, that the following criteria of a "free allocation" are applied in the absence of a "constrained allocation" according to claim 7:
    - simultaneous service of two adjacent storeys (congruent service),
    - load equalisation among the single cages (5, 6) with or without settable imbalance,
    - no overlapping of "own" stopping positions, i.e. service of four adjacent storeys by only two stops of the same lift,
    - no overlapping of "alien" stopping positions, i.e. service of four adjacent storeys by only one stop each of two lifts of the same lift group and
    - preferment of the leading or the trailing single cage (5, 6).
  9. Method according to claim 6, characterised thereby, that for variation of the criteria chains forming the basis of the covering association algorithm (DZA), the individual criteria are combined and/or altered in their priorities, for example by parameter control.
  10. Equipment for the performance of the method according to claim 1 and consisting of a group control for lifts with double cages which are each formed of two single cages which are arranged in a common cage frame and serve two adjacent storeys at a time, with cage call storage devices and load-measuring equipments associated with the cages, with storey call storage devices, with selectors which are associated with each lift of the group and each time indicate the storey of a possible lift position (stop) and with scanning equipments (R₁, R₂) displaying at least one setting for each storey as well as with a microcomputer system (7) and a computing equipment (CPU), which for each setting of a first scanner (R1) of the scanning equipment (R1, R2) determines operating costs (K) corresponding to the waiting times of all passengers involved, wherein two partial costs storage devices (RAM7, RAM8), which respectively store the inner and the outer partial costs (KI, KA), are each provided with two storage places (v, h) per scanner setting (α) for the partial costs KIv, KIh, KAv and KAh of each single cage (5, 6), characterised by
    - a first total costs storage device (RAM9), in which the standardised total costs Kgs(α), which are determined from the inner operating costs KIv(α) and KIh(α±1) and the outer operating costs KAv(α) and KAh(α±1) , for each scanner setting (α) are stored,
    - a single cage call-association storage device (RAM11) in which that single cage (5, 6) is designated, which is optimally associated with a scanner setting (α) by reason of the hierarchically ordered criteria chains forming the basis of the covering association algorithm (DZA), wherein the criteria of highest priority are comprehended in a group "constrained allocation" and the criteria of lower priority are comprehended in a group "free allocation",
    - a second total costs storage device (RAM10), in which the modified total operating costs Kgm(α), which are determined through modification of the standardised total costs Kgs(α) by reason of the single cage call-association, are stored for each scanner setting (α),
    - a comparing equipment (14), which is connected by a bus (B) with the total costs storage devices (RAM10) for the modified total operating costs Kgm(α) and with the double cage call-allocation storage devices (RAM12) of all lifts, wherein the comparison of the modified total operating costs Kgm(α) takes place for each scanner setting (α) during one rotation of the second scanner (R2),
    - a double cage call-allocation storage device (RAM12), into which an allocation instruction is enterable for the lift (a, b, c), which in respect of a scanner setting (α) displays the least modified total operating costs Kgm(α), and
    - a comparing circuit (VS), which is connected with the operational state storage devices (RAM5, RAM6) of the single cages (5, 6) wherein the greater of the door status factors STv and STh respectively for the leading and the trailing single cage (5, 6) is selectable for the computation of the first time loss supplement (KAE) dependent on the operational state of both the single cages and the greater of the time losses tv' + k1v + k2v and tv' + k1h + k2h respectively for the leading and the trailing single cage (5, 6) is selectable for the computation of the second time loss supplement (KAZ) dependent on call conditions at intermediate storeys (both cages).
EP89115629A 1988-10-28 1989-08-24 Method and device for the group control of double-compartment lifts Expired - Lifetime EP0365782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89115629T ATE96124T1 (en) 1988-10-28 1989-08-24 METHOD AND DEVICE FOR GROUP CONTROL OF ELEVATORS WITH DOUBLE CARS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4032/88 1988-10-28
CH403288 1988-10-28

Publications (2)

Publication Number Publication Date
EP0365782A1 EP0365782A1 (en) 1990-05-02
EP0365782B1 true EP0365782B1 (en) 1993-10-20

Family

ID=4268537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115629A Expired - Lifetime EP0365782B1 (en) 1988-10-28 1989-08-24 Method and device for the group control of double-compartment lifts

Country Status (8)

Country Link
US (1) US4993518A (en)
EP (1) EP0365782B1 (en)
JP (1) JP2736136B2 (en)
AT (1) ATE96124T1 (en)
CA (1) CA2001607C (en)
DE (1) DE58905966D1 (en)
ES (1) ES2047073T3 (en)
FI (1) FI97215C (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE109748T1 (en) * 1990-06-01 1994-08-15 Inventio Ag GROUP CONTROL FOR ELEVATORS WITH DOUBLE CARS WITH INSTANT ALLOCATION OF DESTINATION CALLS.
US5625176A (en) * 1995-06-26 1997-04-29 Otis Elevator Company Crowd service enhancements with multi-deck elevators
FI111929B (en) 1997-01-23 2003-10-15 Kone Corp Elevator control
JP3889108B2 (en) * 1997-02-28 2007-03-07 東芝エレベータ株式会社 Platform equipment parameter setting device
FI107379B (en) 1997-12-23 2001-07-31 Kone Corp A genetic method for allocating external calls to an elevator group
SG126669A1 (en) * 1998-02-02 2006-11-29 Inventio Ag Double-decker or multi-decker elevator
JP2001310876A (en) * 2000-04-19 2001-11-06 Otis Elevator Co Control device and controlling method for double deck elevator system
US6439349B1 (en) 2000-12-21 2002-08-27 Thyssen Elevator Capital Corp. Method and apparatus for assigning new hall calls to one of a plurality of elevator cars
FI112062B (en) * 2002-03-05 2003-10-31 Kone Corp A method of allocating passengers in an elevator group
US8386291B2 (en) * 2005-03-03 2013-02-26 Mitsubishi Denki Kabushiki Kaisha Equipment planning support system for triple-deck elevator
RU2438960C2 (en) * 2005-08-04 2012-01-10 Инвенцио Аг Method of directing user to elevator
JP2007084242A (en) * 2005-09-21 2007-04-05 Toshiba Elevator Co Ltd Elevator group management control device
FI118381B (en) * 2006-06-19 2007-10-31 Kone Corp Elevator system
JP2008024413A (en) * 2006-07-20 2008-02-07 Toshiba Elevator Co Ltd Elevator group supervisory controller
US8534426B2 (en) 2007-08-06 2013-09-17 Thyssenkrupp Elevator Corporation Control for limiting elevator passenger tympanic pressure and method for the same
WO2009024853A1 (en) * 2007-08-21 2009-02-26 De Groot Pieter J Intelligent destination elevator control system
FI119686B (en) * 2007-10-11 2009-02-13 Kone Corp Lift system
PL2307300T3 (en) 2008-07-31 2013-03-29 Inventio Ag Method for controlling an elevator system with consideration for disabled persons and privileged users
JP5347492B2 (en) * 2008-12-25 2013-11-20 フジテック株式会社 Elevator group management control method and apparatus
KR101631787B1 (en) * 2012-05-01 2016-06-17 미쓰비시덴키 가부시키가이샤 Elevator system
SG11201501037PA (en) * 2012-09-11 2015-04-29 Kone Corp Elevator system
JP6505887B1 (en) * 2018-02-16 2019-04-24 東芝エレベータ株式会社 Elevator group management device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH625767A5 (en) * 1978-01-17 1981-10-15 Inventio Ag
CH632723A5 (en) * 1978-08-22 1982-10-29 Inventio Ag DEVICE FOR SELECTING A LIFT CABIN FOR DIRECT DRIVING FROM A LIFT GROUP CONTROLLED BY means of GROUP CONTROL.
CH649517A5 (en) * 1979-09-27 1985-05-31 Inventio Ag DRIVE CONTROL DEVICE FOR AN ELEVATOR.
CH648001A5 (en) * 1979-12-21 1985-02-28 Inventio Ag GROUP CONTROL FOR ELEVATORS.
CH651951A5 (en) * 1980-10-20 1985-10-15 Inventio Ag DEVICE FOR CONTROLLING access from PROCESSORS ON A DATA LINE.
CH651950A5 (en) * 1980-10-20 1985-10-15 Inventio Ag MULTIPROCESSOR ARRANGEMENT.
CH653155A5 (en) * 1981-03-26 1985-12-13 Inventio Ag CIRCUIT ARRANGEMENT FOR ENTERING CONTROL COMMANDS IN A MICROCOMPUTER SYSTEM.
CH660585A5 (en) * 1983-08-12 1987-05-15 Inventio Ag GROUP CONTROL FOR ELEVATORS WITH DOUBLE CABINS.
ATE34154T1 (en) * 1984-10-09 1988-05-15 Inventio Ag DEVICE FOR CONTROL OF ELEVATORS WITH DOUBLE CARS.
US4632224A (en) * 1985-04-12 1986-12-30 Otis Elevator Company Multicompartment elevator call assigning
ATE51386T1 (en) * 1986-04-11 1990-04-15 Inventio Ag GROUP CONTROL FOR ELEVATORS.

Also Published As

Publication number Publication date
CA2001607A1 (en) 1990-04-28
DE58905966D1 (en) 1993-11-25
FI97215C (en) 1996-11-11
US4993518A (en) 1991-02-19
FI97215B (en) 1996-07-31
EP0365782A1 (en) 1990-05-02
JPH02169478A (en) 1990-06-29
ATE96124T1 (en) 1993-11-15
FI895103A0 (en) 1989-10-27
JP2736136B2 (en) 1998-04-02
CA2001607C (en) 1999-01-05
ES2047073T3 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
EP0365782B1 (en) Method and device for the group control of double-compartment lifts
EP0443188B1 (en) Method and arrangement to directly allocate destination call requests for elevator groups on the basis of service costs and variable bonus/penalty factors
DE3611173C2 (en) Elevator system with several double compartment cabins
EP1418147B1 (en) Controller for elevator with multi-deck car
EP0091554B1 (en) Lift groups control comprising a device for the down peak traffic control
DE69802876T2 (en) PASSENGER TRAVEL TIME OPTIMIZING CONTROL PROCEDURE FOR ELEVATOR GROUPS OF DOUBLE-DECK ELEVATORS
EP0032213B1 (en) Elevator group control
EP0246395B1 (en) Lift group control
EP2370334B1 (en) Elevator control of an elevator installation
DE69714347T2 (en) Elevator system with group control
DE60308837T2 (en) METHOD FOR ALLOCATING USERS IN A LIFT GROUP
EP3099616B1 (en) Method for operating a lift system
EP1276691B1 (en) Targeted call control for lifts
EP0312730B1 (en) Group control for lifts with load dependant control of the cabins
EP0134892B1 (en) Lift group control for double-compartment cars
EP0459169B1 (en) Group control for elevators with double cabins with direct allocation of calls
EP0440967A1 (en) Group control for elevators with direct allocation of calls from a call input register located on the floor
EP0356731A1 (en) Grouped control affording instantaneous attribution of destination calls
DE2459887A1 (en) CONTROL DEVICE FOR ELEVATORS
DE69208427T2 (en) Elevator system with dynamic sector allocation
DE69707979T2 (en) Elevator arrival time synchronization on a building floor
EP1193207A1 (en) Method for controlling an elevator with a multicompartment car
DE2411824C2 (en) Method for operating an elevator system
EP3774627A1 (en) Method for operating a lift system
EP0508094B1 (en) Method for preventing local bunching of cars in an elevator group under variable traffic flow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900927

17Q First examination report despatched

Effective date: 19911209

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 96124

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905966

Country of ref document: DE

Date of ref document: 19931125

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931118

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2047073

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89115629.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071116

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080828

Year of fee payment: 20

Ref country code: DE

Payment date: 20080822

Year of fee payment: 20

Ref country code: NL

Payment date: 20080813

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080814

Year of fee payment: 20

Ref country code: FR

Payment date: 20080813

Year of fee payment: 20

Ref country code: IT

Payment date: 20080826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080815

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090823

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090825

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090823

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090825