EP0357694B1 - Dispositif pour produire une enveloppe de gaz inerte de protection lors de pulverisation par plasma - Google Patents

Dispositif pour produire une enveloppe de gaz inerte de protection lors de pulverisation par plasma Download PDF

Info

Publication number
EP0357694B1
EP0357694B1 EP89901054A EP89901054A EP0357694B1 EP 0357694 B1 EP0357694 B1 EP 0357694B1 EP 89901054 A EP89901054 A EP 89901054A EP 89901054 A EP89901054 A EP 89901054A EP 0357694 B1 EP0357694 B1 EP 0357694B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
protective gas
plasma
jet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89901054A
Other languages
German (de)
English (en)
Other versions
EP0357694A1 (fr
Inventor
Christian Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nova Werke AG
Original Assignee
Nova Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Werke AG filed Critical Nova Werke AG
Priority to AT89901054T priority Critical patent/ATE69000T1/de
Publication of EP0357694A1 publication Critical patent/EP0357694A1/fr
Application granted granted Critical
Publication of EP0357694B1 publication Critical patent/EP0357694B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material

Definitions

  • the invention relates to a device for producing a protective gas jacket during the plasma spraying of coating materials with a device for generating the plasma jet, feeds for the coating material, a spray jet nozzle and a gas supply channel for protective gas arranged concentrically around the spray jet nozzle.
  • Devices of this type are used as nozzles or spray guns in plasma spraying devices.
  • the plasma is generated in a known manner, for example by an electric arc and a carrier gas.
  • Atomized or powdered coating materials are introduced into the thermal plasma, and the resulting plasma jet is directed through a spray jet nozzle onto the workpiece to be coated.
  • a nozzle is known from American Patent No. 3,470,347.
  • An annular protective gas supply channel is arranged around a spray jet nozzle. This shielding gas supply channel is open in the direction of the spray jet, and the shielding gas stream is intended to surround the spray jet lying in the center in a ring.
  • Another such device is known from German Offenlegungsschrift No. 2,818,303.
  • the protective gas supply channel is also arranged in a ring and concentrically around the spray jet nozzle.
  • the outflow direction of the protective gas is directed against the flow direction of the spray jet, which is too difficult to control Flow conditions between inert gas and spray jet leads.
  • the inadmissible cooling of the outer areas of the spray jet is to be prevented, and controlled flow conditions between the protective gas jacket and the spray jet are to be created.
  • a protective gas nozzle with a core cavity is connected to the gas supply channel and the diameter and length of the core cavity the shielding gas nozzle is at least twice as large as the outlet diameter of the spray nozzle, this core cavity at the front end in the flow direction of the plasma jet is open over the full cross-sectional area of the shielding gas and plasma jet, the core cavity and thus the shielding gas nozzle at the rear end in the flow direction of the plasma jet has an annular and at least partially curved or oblique end surface that is rotationally symmetrical with respect to the longitudinal axis, the gas supply channel is arranged in the flow direction of the plasma jet at the rear end of the protective gas nozzle, the annular end surface of the protective gas nozzle is connected on the one hand to the exit edge region of the spray nozzle and on the other hand the rear wall of the concentrically around the protective gas nozzle forms an annular gas supply channel and the end face with the opposite wall of the gas supply channel forms a nozzle channel, which in a section plane running through the central
  • a preferred embodiment of the invention is characterized in that the nozzle channel formed by the end face of the protective gas nozzle and the gas supply channel first runs radially and approximately at right angles to the longitudinal axis of the protective gas nozzle in the flow direction of the protective gas, and is then deflected continuously or in stages in the flow direction of the plasma jet.
  • a preferred embodiment consists in that the end face of the protective gas nozzle has an angle of 0 to 60 ° to the longitudinal axis of the nozzle in the region of the outlet edge of the spray nozzle, and this angle is inclined in this region against the direction of flow of the plasma jet.
  • a further improvement of the device can be achieved in that the cross sections at the nozzle channel are perpendicular to the flow direction of the protective gas are the same regardless of the radial distance to the nozzle axis.
  • an annular expansion channel is arranged in front of the gas supply channel.
  • the protective gas nozzle is arranged with a core cavity, this core cavity having certain minimum dimensions and a specially shaped rear end surface in relation to the outlet diameter of the spray jet nozzle.
  • the protective gas is initially introduced into an annular expansion channel and flows into the nozzle channel via a likewise annular gas supply channel. This nozzle channel is initially directed radially and approximately at right angles to the central longitudinal axis of the protective gas nozzle. In the direction of flow of the protective gas, i.e.
  • the nozzle channel is then deflected continuously or in stages in the direction of flow of the spray jet or plasma jet.
  • This deflection of the canal directs the protective gas in the same direction as the spray jet.
  • the protective gas layers of the protective gas jacket which are ultimately directed against the spray jet, are accelerated very strongly and are applied to the outer regions of the spray jet without swirling.
  • the protective gas is heated during the inflow of the protective gas from outside to the spray jet, the temperature of the protective gas being adjustable by known cooling devices. All known gases can be used as protective gases, the selection of which likewise depends in a known manner on the coating material used and the additional criteria known in plasma spraying.
  • the advantages of the device according to the invention are that the configuration of the device according to the invention
  • the protective gas jacket has no disruptive effects on the spray jet, in particular does not whirl up and cool down its outer areas. Due to the absence of turbulence, the shielding gas flow is also warmed up less and it can be used to cool the coating surface. This often enables a reduction in the amount of protective gas, which leads to savings.
  • the uniform and controlled flow of the protective gas jacket prevents the access of ambient air to the spray jet, which achieves very high coating quality.
  • the front part 1 of a plasma spray gun shown in FIG. 1 is attached to a plasma spray gun or plasma spray device of the known type.
  • the known devices for forming the plasma jet 2, which consists of a carrier gas and the molten coating material, and the feeds for the coating material are not shown.
  • a protective gas nozzle 6 is arranged concentrically around a spray jet nozzle 5, the protective gas nozzle 6 extending in the flow direction 25 of the plasma jet 2 beyond the exit edge region 11 of the spray jet nozzle 5.
  • the shielding gas nozzle 6 essentially consists of a core cavity 26 through which the plasma jet 2 and the shielding gas stream surrounding it flows, an annular expansion duct 19, a gas supply duct 10 for the shielding gas and an end surface 9 which forms a wall of the nozzle duct 14.
  • An example is the diameter of the core cavity 26, which determines the width of the flow channel in the nozzle 6, approximately 2.5 times larger than the outlet diameter of the spray jet nozzle 5 in the outlet edge region 11.
  • the length of the protective gas nozzle 6 becomes from the rearmost point of the end face 9 measured up to the exit edge of the core cavity 26 at the front end 7 and in the example shown is larger by a factor of 5 than the exit diameter of the spray jet nozzle 5.
  • the end face 9 is a rotationally symmetrical ring surface curved in the direction of the rear end 8 of the protective gas nozzle 6 .
  • the end face 9 connects on the one hand to the exit edge area 11 of the spray jet nozzle 5 and is on the other hand connected in its outer area to the rear wall 12 of the gas supply channel 10.
  • the wall 12 and the end surface 9 form the boundary surfaces for the nozzle channel 14. If a cutting surface is placed through the axis 15, the cross-sectional area of the nozzle channel 14, which lies in this cutting surface, has one from the starting area 16 cross section diverging towards the end region 17.
  • the protective gas argon used in the example shown is fed to the protective gas nozzle 6 via a feed line 20.
  • This feed line 20 opens into an annular expansion channel 19, which is arranged concentrically around the axis 15.
  • the protective gas is distributed uniformly over the entire circumference and then flows through the likewise annular gas supply channel 10 into the nozzle channel 14 and from here parallel to the plasma jet 2 through the core cavity 26 against the workpiece 3.
  • the arrangement of the gas supply channel 10 forces the protective gas flow , initially to flow radially against the axis 15 or the plasma jet 2.
  • the protective gas flow is deflected in the direction of the flow 25 of the plasma jet 2, in the entire area of the end face 9 a component acting radially against the axis 15 is retained.
  • the outer layers of the protective gas flow along the end face 9 experience considerable acceleration. Due to the simultaneous heating of the shielding gas stream, the shielding gas expands and the shielding gas stream is additionally accelerated.
  • the protective gas flow is applied to the outer areas of the plasma jet 2 practically without turbulence, and the swirling up of these outer areas is prevented.
  • Cooling channels 23, 24 are arranged in the spray jet nozzle 5 and protect the spray jet nozzle 5 against excessive heating.
  • the coolant is supplied to these cooling channels 23, 24 via the supply line 21 and the coolant channel 22.
  • the temperature of the protective gas in the nozzle channel 14 can be changed by means of a suitable coolant guide in the channel 23 and by changing the gas quantity.
  • the end face 9 is given a certain angle 18 in the region of the exit edge 11 on the spray jet nozzle 5. In the example shown, this angle 18 is approximately 20 °.
  • annular cross-sectional areas can be reproduced in the flow direction of the protective gas, which are each perpendicular to the flow direction. This large number of cross-sectional areas is independent of radial distance to the axis 15 on an equally large ring area.
  • the uniform funnel-shaped shape of the nozzle channel 14 also results from this specification.
  • FIG. 2 shows a simplified configuration of the end face 30 and the gas supply channel 31.
  • the supply line for the protective gas and the coolant channels are of the same design as shown and described for FIG. 1, but are not shown in FIG. 2 for simplification.
  • the protective gas supplied via the supply lines, not shown is in turn distributed in an expansion channel 32 around the entire circumference of the protective gas nozzle 6 and then flows via the annular gas supply channel 31 into the nozzle channel 14 in this area the lateral surface 33 of a truncated cone.
  • the end face 30 is again uniformly curved and connected to the rear wall 34 of the gas supply channel 31.
  • the end surface 30 and the opposite wall 35 form the boundary surfaces for the nozzle channel 14.
  • the protective gas is initially guided radially through the gas supply channel 31 in the direction of the central axis 15 and then continuously deflected in the flow direction of the plasma jet 2. This deflection also brings about the effect of the acceleration of the protective gas flow and the turbulence-free application of the protective gas jacket flow to the outer regions of the plasma jet 2 in the region of the core cavity 26, as already described for FIG Areas can be adapted to the parameters of the plasma jet 2, such as flow speed, temperature, composition, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Nozzles (AREA)

Abstract

Une buse à jet de pulvérisation (5) est munie d'une tuyère (6) à gaz de protection qui lui est extérieurement concentrique et un canal d'amenée de gaz (10). La tuyère (6) présente un évidement central 926) avec une surface délimitante courbe (9) à son extrémité arrière (8). Cette surface délimitante (9) de l'évidement central (26) et de ce fait la tuyère (6) forment ensemble avec le canal d'amenée de gaz et la paroi (13) située vis à vis, un canal à buse (14) qui s'étend d'abord radialement puis parallèlement entre le canal d'amenée de gaz (10) et l'évidement central (26).

Claims (5)

1. Dispositif pour créer une enveloppe de gaz protecteur dans la projection au plasma de matériaux de revêtement avec un système pour générer le jet plasma, des amenées pour le matériau de revêtement, une tuyère à jet de projection et un canal d'amenée de gaz, pour le gaz protecteur, disposé concentriquement autour de la tuyère à jet de projection, caractérisé en ce qu'une buse à gaz protecteur (6), présentant une cavité centrale (26), est raccordée au canal d'amenée de gaz (10, 31), le diamètre et la longueur de la cavité centrale (26) de la buse à gaz protecteur (6) sont chacun au moins deux fois supérieurs au diamètre de sortie de la tuyère à jet de projection (5), cette cavité centrale (26) est ouverte, à l'extrémité avant (7) dans le sens d'écoulement (25) du jet plasma (2), sur toute l'aire de section droite du jet de gaz protecteur/ plasma, la cavité centrale (26) et par suite la buse à gaz protecteur (6) présentent, à l'extrémité arrière (8) dans le sens d'écoulement du jet plasma (2), une surface terminale (9, 30) de forme annulaire, à symétrie de révolution par rapport à l'axe longitudinal (15) et au moins partiellement courbe ou oblique, le canal d'amenée de gaz (10, 31) est disposé à l'extrémité arrière (8) de la buse à gaz protecteur (6) dans le sens d'écoulement du jet plasma (2), la surface terminale annulaire (9, 30) de la buse à gaz protecteur (6) se raccorde d'une part à la région (11) de.l'arête de sortie de la tuyère à jet de projection (5) et forme d'autre part la paroi arrière (12, 34) du canal d'amenée de gaz (10, 31), de forme annulaire et s'étendant concentriquement autour de la buse à gaz protecteur (6), et la surface terminale (9, 30) constitue, avec ta paroi (13, 35) opposée du canal d'amenée de gaz (10, 31), un canal de buse (14) présentant une aire de section droite qui diverge vers l'axe médian (15) dans un plan de coupe passant par l'axe médian (15).
2. Dispositif pour la projection au plasma selon la revendication 1, caractérisé en ce que la canal de buse (14), constitué par la surface terminale (9, 30) de la buse à gaz protecteur (6) et le canal d'amenée de gaz (10, 31), s'étend d'abord radialement et à peu près à angle droit par rapport à l'axe longitudinal (15) de la buse à gaz protecteur (6), dans le sens d'écoulement du gaz protecteur, et est dévié ensuite de façon continue ou par paliers dans le sens d'écoulement (25) du jet plasma (2).
3. Dispositif pour la projection au plasma selon la revendication 1 ou 2, caractérisé en ce que la surface terminale (9, 30) de la buse à gaz protecteur (6) forme un angle (18) de 0 à 60° avec l'axe longitudinal (15) de la tuyère (5) dans la région de l'arête de sortie (11) de la tuyère à jet de projection (5) et que cet angle (18) s'ouvre, dans cette région, contrairement au sens d'écoulement (25) du jet plasma (2).
4. Dispositif pour la projection au plasma selon au moins une des revendications 1 à 3, caractérisé en ce que les sections droites du canal de buse (14), perpendiculaires au sens d'écoulement du gaz protecteur, sont d'égale grandeur, quelle que soit la distance radiale par rapport à l'axe (15) de la tuyère.
5. Dispositif pour la projection au plasma selon au moins une des revendications 1 à 4, caractérisé en ce qu'un canal d'expansion (19, 32) de forme annulaire est disposé en amont du canal d'amenée de gaz (10, 31).
EP89901054A 1988-02-01 1989-01-13 Dispositif pour produire une enveloppe de gaz inerte de protection lors de pulverisation par plasma Expired - Lifetime EP0357694B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89901054T ATE69000T1 (de) 1988-02-01 1989-01-13 Vorrichtung zum erzeugen eines schutzgasmantels beim plasmaspritzen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH340/88 1988-02-01
CH34088 1988-02-01

Publications (2)

Publication Number Publication Date
EP0357694A1 EP0357694A1 (fr) 1990-03-14
EP0357694B1 true EP0357694B1 (fr) 1991-10-30

Family

ID=4184789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89901054A Expired - Lifetime EP0357694B1 (fr) 1988-02-01 1989-01-13 Dispositif pour produire une enveloppe de gaz inerte de protection lors de pulverisation par plasma

Country Status (3)

Country Link
US (1) US5154354A (fr)
EP (1) EP0357694B1 (fr)
WO (1) WO1989007016A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202900A (zh) * 2012-08-19 2014-12-10 周开根 一种加热分解用途的内电弧等离子体喷枪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486383A (en) 1994-08-08 1996-01-23 Praxair Technology, Inc. Laminar flow shielding of fluid jet
US5662266A (en) * 1995-01-04 1997-09-02 Zurecki; Zbigniew Process and apparatus for shrouding a turbulent gas jet
US5932293A (en) * 1996-03-29 1999-08-03 Metalspray U.S.A., Inc. Thermal spray systems
JP2003129212A (ja) * 2001-10-15 2003-05-08 Fujimi Inc 溶射方法
CN113996166B (zh) * 2021-10-22 2023-10-24 浙江宜可欧环保科技有限公司 对热烟气进行脱酸的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526362A (en) * 1968-01-16 1970-09-01 Union Carbide Corp Method for shielding a gas effluent
US3470347A (en) * 1968-01-16 1969-09-30 Union Carbide Corp Method for shielding a gas effluent
US4097872A (en) * 1976-12-20 1978-06-27 International Business Machines Corporation Axial droplet aspirator
US4121082A (en) * 1977-04-27 1978-10-17 Metco, Inc. Method and apparatus for shielding the effluent from plasma spray gun assemblies
EP0163776A3 (fr) * 1984-01-18 1986-12-30 James A. Browning Procédé de pulvérisation à flamme supersonique de grande concentration et appareil à alimentation améliorée
US4634611A (en) * 1985-05-31 1987-01-06 Cabot Corporation Flame spray method and apparatus
US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
US4836447A (en) * 1988-01-15 1989-06-06 Browning James A Duct-stabilized flame-spray method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202900A (zh) * 2012-08-19 2014-12-10 周开根 一种加热分解用途的内电弧等离子体喷枪

Also Published As

Publication number Publication date
US5154354A (en) 1992-10-13
WO1989007016A1 (fr) 1989-08-10
EP0357694A1 (fr) 1990-03-14

Similar Documents

Publication Publication Date Title
EP0549747B1 (fr) Buse pour traitement de surface de pieces metalliques
DE4402000C2 (de) Düsenanordnung für das Laserstrahlschneiden
DE69308546T2 (de) Schweissanlage zum zuführen von schweisspulver an einem brenner
DE4336010C2 (de) Laserstrahlbearbeitungskopf für eine Schneidbearbeitung, insbesondere einen Bearbeitungskopf für eine Laserbearbeitungsvorrichtung gemäß dem Oberbegriff des Patentanspruchs 1 und eine Laserbearbeitungsvorrichtung
DE69923360T2 (de) Thermische Lichtbogenspritzpistole und ihre Gaskappe
DE69326624T2 (de) Plasmabrenner
EP1797747B1 (fr) Chalumeau a plasma
DE102007043146B4 (de) Bearbeitungskopf mit integrierter Pulverzuführung zum Auftragsschweißen mit Laserstrahlung
DE2541927C3 (de) Zerstäuberdüse
DE2144872B2 (de) Plasmaspritzvorrichtung
DE2615679A1 (de) Lichtbogen-metallspritzgeraet
WO2014044393A2 (fr) Tête d'usinage au laser et buse annulaire pour une tête d'usinage au laser
CH682060A5 (fr)
EP2974796B1 (fr) Dispositif de pulverisation de gaz froid
EP0357694B1 (fr) Dispositif pour produire une enveloppe de gaz inerte de protection lors de pulverisation par plasma
DE10035622C2 (de) Pulverbeschichtungskopf
DE2757522C2 (de) Rund- oder Ringstrahldüse zum Erzeugen und Abstrahlen eines Nebels oder Aerosols zur Beschichtung von Gegenständen
EP0432521A1 (fr) Méthode pour couper des matériaux
EP2465965A1 (fr) Dispositif et procédé de vaporisation d'une structure en matériau conducteur sur un substrat
DE102005028243A1 (de) Düsenanordnung für einen Laserbearbeitungskopf
DE3533966C1 (de) Verfahren und Lichtbogenspritzduese zum Beschichten von Werkstueckoberflaechen durch Schmelzen von Draehten in einem elektrischen Lichtbogen
DE2327395C3 (de) Plasmaspritzgerät
AT391436B (de) Laserschneidduese
DE102012025627A1 (de) Ringdüse für einen Laserbearbeitungskopf und Laserbearbeitungskopf damit
DE102004018280B4 (de) Verfahren sowie Düse zur Bearbeitung oder Analyse eines Werkstücks oder einer Probe mit einem energetischen Strahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: INTERPATENT ST.TECN. BREVETTUALE

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19910227

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 69000

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58900413

Country of ref document: DE

Date of ref document: 19911205

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940111

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940114

Year of fee payment: 6

Ref country code: FR

Payment date: 19940114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 6

Ref country code: LU

Payment date: 19940131

Year of fee payment: 6

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940330

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950113

Ref country code: GB

Effective date: 19950113

Ref country code: AT

Effective date: 19950113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950114

EAL Se: european patent in force in sweden

Ref document number: 89901054.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

Ref country code: BE

Effective date: 19950131

BERE Be: lapsed

Owner name: NOVA-WERKE A.G.

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

EUG Se: european patent has lapsed

Ref document number: 89901054.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050113