EP0356642A1 - Thermostatic expansion valve - Google Patents
Thermostatic expansion valve Download PDFInfo
- Publication number
- EP0356642A1 EP0356642A1 EP89111082A EP89111082A EP0356642A1 EP 0356642 A1 EP0356642 A1 EP 0356642A1 EP 89111082 A EP89111082 A EP 89111082A EP 89111082 A EP89111082 A EP 89111082A EP 0356642 A1 EP0356642 A1 EP 0356642A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- expansion valve
- evaporator
- thermostatic expansion
- valve according
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
- F25B41/335—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/063—Feed forward expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/068—Expansion valves combined with a sensor
- F25B2341/0683—Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/08—Exceeding a certain temperature value in a refrigeration component or cycle
Definitions
- the control head 7 is surrounded by an induction coil 80.
- an induction coil 80 In this way, more heat is supplied to the control head when the induction coil is excited than would be necessary to regulate the overheating ⁇ tü.
- ⁇ tü 8 K at an evaporation pressure of approx. 3 bar to reduce the overheating to 2 K and an output of approx. 3 W is required.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Temperature-Responsive Valves (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
Die Erfindung betrifft ein thermostatisches Expansionsventil für an Bord eines Kraftfahrzeugs betriebene Kälteanlagen mit einer Drosselstelle, durch die das im Kondensator verflüssigte Kältemittel hindurchtritt, und deren Öffnung durch die Stellung eines Drosselköpers bestimmt wird, die von einem Druck- und/oder Temperaturweggeber oder von einer Membran beeinflußt wird, deren eine Seite von dem Kältemitteldampf zwischen Verdampfer und verdichter und deren andere Seite durch ein Steuermedium beaufschlagt wird, wobei der Drosselkörper durch eine Feder vorgespannt wird.The invention relates to a thermostatic expansion valve for refrigeration systems operated on board a motor vehicle with a throttle point through which the refrigerant liquefied in the condenser passes, and the opening of which is determined by the position of a throttle body, which is generated by a pressure and / or temperature transducer or by a membrane is influenced, one side of which is acted upon by the refrigerant vapor between the evaporator and the compressor and the other side by a control medium, the throttle body being biased by a spring.
Ein derartiges Expansionsventil ist bekannt. Es ist in Figur 1 dargestellt. Dabei wird Kältemitteldampf (Sauggas) bei niedrigem Druck und tiefer Temperatur von einem Verdichter 1 angesaugt und auf einen höheren Druck gebracht. Dabei erfolgt eine Erwärmung des Kältemittels. Danach folgt im Kondensator 2 die Verflüssigung bei hohem Druck unter Wärmeabgabe an die Umgebung. Das verflüssigte Kältemittel wird dann durch die Drosselstelle 3 des Expansionsventils 4 geführt. Die Drosselung führt zu einer Druck- und Temperaturabnahme bei teilweiser Verdampfung der flüssigen Kältemittel. Das Kältemittel gelangt dann von der Drosselstelle 3 zum Verdampfer 5. Dort wird dem Kältemittel aus der zu kühlenden Umgebung, also z.B. dem Innenraum des Kraftfahrzeugs, Wärme zugeführt. Dabei wird der restliche Teil des Kältemittels verdampft. Darauf beginnt der Kreislauf aufs neue.Such an expansion valve is known. It is shown in Figure 1. Here, refrigerant vapor (suction gas) is drawn in by a
Bei der Rückführung des Sauggases vom Verdampfer 5 zum Verdichter 1 wird das Kältemittel durch den Sauggasraum 6 des Expansionsventils 4 geleitet. Über dem Sauggasraum 6 befindet sich der Steuerkopf 7, in dem eine Membran 8 angeordnet ist. Ihre untere Fläche hat Wärmekontakt mit dem Sauggasraum 6 und damit mit dem vom Verdampfer 5 zum Verdichter 1 strömenden Kältemitteldampf. Oberhalb der Membran 8 ist der Steuerkopf 7 mit Steuermedium 9 gefüllt. Dies ist in der Regel identisch mit dem Kältemittel im Kreislauf. Das Steuermedium ist so ausgelegt. daß es unter Betriebsbedingungen mit Verdampfungstemperaturen unter ca. + 10°C als Naßdampfgemisch, oberhalb ca. 15°C bei maximalem Betriebsdruck als überhitztes Gas vorliegt. Mit der Membran 8 ist eine Übertragungsstange 10 verbunden. An ihrem unteren Ende ist der Drosselkörper 11 befestigt. Seine relative Stellung gegenüber der Drosselstelle 3 bestimmt den durchströmten Querschnitt derselben und damit den Grad der Drosselung des Kältemittels. Das vom Kondensator 2 kommende verflüssigte Kältemittel gelangt zuerst in den Raum 26 (Hochdruckseite) und von dort über die Drosselstelle 3 in Raum 29 (Niderdruckseite). Auf den Drosselkörper 11 wirkt von unten eine Feder 12, deren Vorspannung mittels einer Spindel 13 einstellbar ist. Die Übertragungsstange 10 ist mittels einer Dichtung 14, die Spindel 13 mittels einer Dichtung 15 im Gehäuse abgedichtet. Stellt sich ein bestimmter Betriebszustand ein, so befinden sich die aus dem Druck des Steuermediums 9 im Steuerkopf 7 resultierende Kraft auf die Membran 8 die aus dem Druck des Sauggases im Sauggas 6 auf die Membran 8 ausgeübte Kraft, sowie durch die Feder 12 auf den Drosselkörper 11 ausgeübte Kraft im Gleichgewicht.When the suction gas is returned from the
Es ist Ziel der Einstellung der Arbeitsbedingungen des Expansionsventils 4, aus Gründen der Effektivität der Kälteleistung mit einer relativ großen ,"Überhitzung" des Saugdampfes hinter dem Verdampfer 5 und somit auch im Sauggasraum 6 zu arbeiten. Das ist u.a. erforderlich, weil ein Teil des flüssigen Kältemittels in dem zur Schmierung des Kompressors beigemischten Öl gelöst bleibt und somit zur Kühlung nichts beiträgt. Dieser im Öl gelöste Kältemittelanteil nimmt mit zunehmender Überhitzung ab. Andererseits soll das Kältemittel hinter dem Verdichter 1 eine maximale Temperatur tmax von z.B. 150°C nicht überschreiten. Im Mittel soll die Temperatur sogar nicht höher als z.B. 130°C sein. Als Überhitzung bezeichnet man dabei den Temperaturunterschied des Kältemitteldampfes gegenüber dem als Naßdampfgemisch vorliegenden Kältmittels bei gleichem Druck. Zur Verdeutlichung wird auf das Enthalpie(log p/h)-Diagramm nach Figur 2 Bezug genommen. Die Kurve K bezeichnet die Siede- bzw. Taulinie, d.h. sie schließt den Nassdampfbereich ein. Die Linien AB bzw. A′B′, BC bzw. B′C, CD und DA bzw. CA′ bezeichnen die Zustandsänderungen im Verdichter 1, im Kondensator 2, im Expansionsventil 4 und im Verdampfer 5. Zur Verdeutlichung sind einige Temperaturwerte eingetragen. Bei einer Auslegung, die durch die Punkte A und B gekennzeichnet ist, beträgt die Überhitzung tü nach dem Verdampfer 5 z.B. 5°C. Dies führt unter den angenommenen Betriebsbedingungen dazu, daß hinter dem Verdichter 1 der Kältemitteldampf die maximal zulässige Temperatur tmax von 150°C erreicht. Bei einer anderen Auslegung, die durch die Punkte A′ und B′ gekennzeichnet ist, beträgt die Überhitzung nach dem Verdampfer 5 z.B. 3°C mit der Folge, daß hinter dem Verdichter 1 lediglich die als Durchschnittswert tolerierbare Temperatur des Kältemitteldampfes von ca. 130°C erreicht wird. In Figur 2 ist zur Vervollständigung noch der bei Durchtritt durch das Expansionsventil 4 auftretende Druckverlust PEX, sowie ferner der im Verdampfer 5 auftretende Druckverlust PV eingetragen.The aim of the adjustment of the working conditions of the
Bei Kälte-Anlagen in Kraftfahrzeugen besteht das Problem darin, daß sich die Betriebsbedingungen dauernd ändern; die Leistung des Verdichters, der vom Motor des Kraftsfahrzeuges angetrieben wird, ändert sich laufend mit der Drehzahl: In Figur 3 sind in das Enthalpie-Diagramm typische Betriebszustände, nämlich die Betriebszustände 64/2, 32/2 und IT eingezeichnet. Es handelt sich dabei um in der Kfz-Technik übliche Abnahmefahrwerte, in denen maximale Kälteleistung = minimale Innenraumtemperatur gefordert wird. IT (Idle-Test) ist ein Betriebszustand einer Kfz-Klimaanalge, bei dem sich das Fahrzeug im Stillstand befindet und der Verdichter von dem mit Leerlaufdrehzahl laufenden Fahrzeugmotor angetrieben wird. Die Belüftung des Kondensators ist in diesem Fall am ungünstigtsten, so daß besonders hohe Drücke und Heißgastemperaturen auftreten können. Im Betriebszustand 32/2 beträgt die Fahrgeschwindigkeit 32 km/h, die Getriebeschaltstellung ist der zweite Gang. Dies ist ein im allgemeinen unkritischer Fahrzustand. 64/2 (64 km/h; 2. Gang) ist ein Fahrzustand, bei dem zur Zeit die kritischsten Heißgastemperaturen auftreten.The problem with refrigeration systems in motor vehicles is that the operating conditions change constantly; the output of the compressor, which is driven by the motor of the motor vehicle, changes continuously with the speed: In FIG. 3, typical operating states, namely
Aus Figur 2 ergibt sich die strichpunktierte Kurve als typischer Verlauf der Überhitzung Δ tü. In den Betriebszuständen IT und 64/2 wird die maximal zulässige Temperatur des Kältemitteldampfes tmax erreicht. Im Betriebszustand 32/2 ist dies nicht der Fall. Hier wird bei B′ lediglich eine geringere Temperatur hinter dem Verdichter erreicht. Es wäre aus Gründen der Erhöhung der Effektivität der Kälteanlage in diesemThe dash-dotted curve results from FIG. 2 as a typical course of the overheating Δtü. In the operating states IT and 64/2, the maximum permissible temperature of the refrigerant vapor tmax is reached. This is not the case in operating
Betriebszustand durchaus wünschenswert und auch möglich mit einer höheren Überhitzung zu arbeiten, und zwar maximal soweit, daß B′ ebenfalls auf der Kurve tmax liegen würden. Aus diesen Forderungen ergibt sich die strichpunktiert eingezeichnete Linie als gewünschte Kennlinie Δ tü/Soll. Vereinfacht kann man die Forderung dahingehend ausdrücken, daß die Überhitzung aus Gründen der Effektivität um 8 K betragen sollte, daß sie aber zur Vermeidung unzulässig hoher Kältemitteldampftemperaturen sowie zur Vermeidung zu früher Verdampfervereisung bei bestimmten Betriebsbedingungen bis auf 1 bis 2 K herab regelbar sein sollte.Operating condition quite desirable and also possible to work with a higher overheating, at most to the extent that B 'would also lie on the curve tmax. The dash-dotted line results from these requirements as the desired characteristic curve Δtü / Soll. To put it simply, the requirement can be expressed that the overheating should be around 8 K for reasons of effectiveness, but that it should be controllable down to 1 to 2 K in certain operating conditions in order to avoid inadmissibly high refrigerant vapor temperatures and to prevent evaporator icing too early.
Es ist demgemäß Aufgabe der vorliegenden Erfindung, ein Expansionsventil der eingangs genannten Art zu schaffen, das eine Regelung der Überhitzung Δ tü des Kältemitteldampfes nach dem Verdampfer in Abhängigkeit von den Betriebsbedingungen derart ermöglicht, daß die maximal zulässige Temperatur tmax nach dem Verdichter nicht überschritten wird.It is accordingly an object of the present invention to provide an expansion valve of the type mentioned at the outset which enables the superheat Δtü of the refrigerant vapor after the evaporator to be controlled as a function of the operating conditions in such a way that the maximum permissible temperature tmax after the compressor is not exceeded.
Diese Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen definiert.This object is achieved with the features of
Ausführungsbeispiele der Erfindung und ihrer vorteilhaften Weiterbildungen werden im folgenden beschrieben. Die Zeichnungen stellen dar:
Figur 1 den Kreislauf einer Kälteanlage nach dem vorbekannten Stand der Technik;Figur 2 das Enthalpie-Diagramm für den Kreislauf nachFigur 1;Figur 3 verschiedene Betriebszustände eines Kraftfahrzeugs im Enthalpie-Diagramm;Figuren 4 bis 8 5 Ausführungsbeispiele
- Figure 1 shows the circuit of a refrigeration system according to the prior art;
- Figure 2 shows the enthalpy diagram for the circuit of Figure 1;
- FIG. 3 different operating states of a motor vehicle in the enthalpy diagram;
- Figures 4 to 8 5 embodiments
Soweit die Teile in den Figuren 4 bis 8 nicht besonders gezeichnet sind, sind sie dieselben wie in Figur 1; außerdem sind in den Figuren 4 bis 8 Verdichter Kondensator und Verdampfer der Einfachheit halber weggelassen.As far as the parts in Figures 4 to 8 are not specially drawn, they are the same as in Figure 1; in addition, the condenser and evaporator are omitted in FIGS. 4 to 8 for the sake of simplicity.
Beim Ausführungsbeispiel nach Figur 4 ist die Feder 12, die den Drosselkörper 11 in Schließstellung drückt, auf einem Einstellteller 20 abgestützt, der höhenverschiebbar in einer Druckdose 21 angeordnet ist. Der Raum 22 unterhalb des Einstelltellers 20 steht druckmäßig mit dem Sauggasraum 6 über eine Leitung 23 in Verbindung. Der Raum 24 oberhalb des Einstelltellers 20 steht über eine Leitung 25 mit dem Raum 26 (Hochdruckseite) in Verbindung, in den das verflüssigte Kältemittel vom Kondensator her einströmt. Auf den Einstellteller 20 wirkt ferner eine weitere Feder 27, deren Druck auf den Einstellteller 20 mittels des Einstellrades 28 einstellbar ist. Der Einstellteller 20 unterliegt also zusätzlich zur Kraft der Federn 12, 27 noch dem Differenzdruck zwischen dem Druck im Raum 26 (Hochdruckseite) und dem Druck im Sauggasraum 6 (Niederdruckseite). Da an der Drosselstelle 3 des Expansionsventils 4 im gesamten Kältemittelkreislauf der entscheidende Druckabfall stattfindet, ist der Druck im Raum 26 größer als der Sauggasraum 6. Der Differenzdruck wird also in Gegenrichtung zu den Drücken der beiden Federn 12, 27 am Einstellteller 20 am Drosselkörper 11 in Öffnungsrichtung der Drosselstelle 3 wirksam. Das hat zur Folge:In the exemplary embodiment according to FIG. 4, the
Tritt hinter dem Verdichter 1 und damit auch hinter dem Kondensator 2 ein zu hoher Druck des in den Raum 26 des Expansionsventils 4 eintretenden verflüssigten Kältemittels auf, der mit einer zu hohen Temperatur hinter dem Vercichter 1 einhergeht, so führt das zu einer entsprechenden Druckerhöhung im Raum 24 und damit zu einer Entlastung der Federn 12, 27. Damit bewegt sich der Drosselkörper 11 abwärts. Der Querschnitt der Drosselstelle 3 wird vergrößert. Es fließt ein erhöhter Massestrom durch die Drosselstelle 3. Dies führt zu einer Verringerung der Überhitzung Δ tü im Sauggasraum 6. Derselbe Effekt tritt ein, wenn der Druck im Sauggasraum 6 absinkt. Das System wird so ausgelegt, daß bei Verdampfungstemperaturen von 0°C mit leistungsoptimaler Überhitzung Δ tü gefahren wird. Es ergibt sich dabei eine Überhitzung im Betriebszustand IT bei Fahrwerten von t(pRVa) größer oder gleich 0°C (R: Kältemittel; V: Verdampfer; a: Austritt). Es ist also möglich, unter Verwendung dieses Ausführungsbeispiels mit maximalem Betriebsdruck (Maximum Operating Pressure = MOP) zu fahren. Außerdem sind die bei heute in Serie befindlichen Expansionsventilen erforderlichen Änderungen gering.If a too high pressure of the liquefied refrigerant entering the
Beim Ausführungsbeispiel nach Figur 5 erfolgt eine Änderung der Federkraft durch ein elektrisch ansteuerbares Regelorgan. Die Feder 12, die den Drosselkörper 11 in Schließrichtung drückt, ist auf einer Plattform 30 gelagert, die auf der Oberseite eines Steuerkolbens 31 angeordnet ist, der in einer Druckdose 32 auf und ab verschiebbar ist. Der Steuerkolben 31 wird durch eine Feder 33 nach oben gedrückt. Die Druckdose 33 steht über den Anschlußstutzen 34 mit einem zylindrischen Raum 35 in Verbindung, in dem ein Servokolben 36 hin und her schwingt. Der Servokolben 36 ist mit zwei Bunden 37, 38 versehen. Auf den linken Bund 37 wirkt über Öffnung 43, Raum 44 und Öffnung 45 der Hochdruck vor der Drosselstelle 3. Auf den rechten Bund 38 des Servokolbens 36 wirkt eine weitere Feder 39, die am Gehäuse abgestützt ist. Das linke Ende des Servokolbens 36 ist mit dem Stößel 40 eines Magnetventils 41 verbunden. Der Raum rechts des Bundes 38, in dem die Feder angeordnet ist, steht über die Öffnung 46, den Raum 47 und die Leitung 48 mit dem Niederdruck in Raum 29 hinter der Drosselstelle 3 in Verbindung. Bei stromlosem Magnetventil 41 wirkt auf den Servokolben demgemäß links vom Bund 37 der Hochdruck des vom Kondensator 2 her kommenden verflüssigten Kältemittels und rechts des Bundes 38 die Feder 39. Der Servokolben 35 schwingt hin und her, wobei in der einen Endlage der Bund 37 die Öffnung 45 und in der anderen Endlage der Bund 38 die Öffnung 46 jeweils kurzfristig öffnet, wobei dann jeweils die andere Öffnung zum Raum 35 verschlossen ist. Demzufolge findet parallel zur (Haupt-)Drosselstelle 3 über die Öffnungen 45 und 46 und Raum 35 intermittierend ein weiterer, kleinerer Kältemittel-Teilstrom statt. Dieser Kältemittel-Teilstrom wird unterbrochen, wenn das Magnetventil 41 erregt und in seiner linken Endstellung fixiert wird, in der der linke Bund 37 die Öffnung 45 mit dem Raum 35 zwischen den beiden Bunden 37, 38 verbindet. Dann kann sich der Druck der Hochdruckseite des Expansionsventils 4 im Raum 26, bis in das Innere der Druckdose 32 fortpflanzen und drückt somit den Steuerkolben 31 zusätzlich zu den Federn 12, 33 nach oben. Der Querschnitt der Drosselstelle 3 wird also verkleinert. Entsprechend wird der Massestrom durch die Drosselstelle und damit die Kühlung verringert, so daß die Überhitzung tü vergrößert wird. Durch gezieltes Ablassen des Druckes in der Druckdose 32 (Steuerdruck) sind auch Zwischenstellungen möglich. Die Taktung des Magnetventils 41 kann in Abhängigkeit einer Messung der Temperatur hinter dem Verdichter erfolgen. Dieses Ausführungsbeispiel ermöglicht durch entsprechende Taktung auch eine gleitende Überhitzungseinstellung zwischen zwei Grenzwerten. Es zeichnet sich durch eine hohe Ansprechgeschwindigkeit aus. Das Magentventil 41 hat lediglich Servofunktion, kann also entsprechend klein ausgebildet sind. Durch eine Spülmöglichkeit und vergleichsweise große Querschnitte in den Verbindungskanälen ist praktisch keine Verstopfungsgefahr gegeben. Bei elektrischen Störungen arbeitet das Ventil mit kleiner Überhitzung. Das ergibt somit gute Notlaufeigenschaften.In the exemplary embodiment according to FIG. 5, the spring force is changed by an electrically controllable control element. The
Das Ausführungsbeispiel nach Figur 6 arbeitet mit einem Thermomotor 60 als Regelorgan, der durch ein Steuermedium 62 in einem Wellbalg 61 und eine Heizplatte 63, die über einen Anschluß 64 beheizbar ist, gebildet wird und von einer Isolierung 65 umgeben ist. Im Wellbalg 61 ist eine weitere Feder 66 zur Hochdruckkompensation vorgesehen. Der Thermomotor 60 befindet sich innerhalb der Isolierung 65 in einer Dose 67, die über Leitung 68 entlüftet wird.The exemplary embodiment according to FIG. 6 works with a
Der Thermomotor 60 wirkt auf einen Einstellteller 70, der zwischen den Dichtungen 71 höhenverschiebbar angeordnet ist und seinerseits die Feder 72 abstützt. Die Feder 72 drückt mit ihrem oberen Ende gegen den Drosselkörper 11, und zwar zusätzlich zu der Feder 12, die auf einer Plattform 30 abgestützt ist, die auf den Kragen 50 aufsitzt. Je nach Heizleistung, die der Heizplatte 63 zugeführt wird, dehnt sich das Steuermedium 62 im Wellbalg 61 aus und drückt damit den Einstellteller 70 nach oben und erhöht somit den Druck der Feder 72 auf den Drosselkörper 11. Wegfall der Heizleistung bedeutet also Verringerung von Δ tü. Bei dem in Figur 6 gezeigten Ausführungsbeispiel ist noch vorteilhaft, daß der Thermomotor 61 über Leitung 68 mit dem abgekühlten Kältemittel im Raum 29 hinter der Drosselstelle 3 in Verbindung steht, so daß auf diese Weise eine Kühlung des Thermomotors erfolgen kann. Die Heizplatte 63 kann vorzugsweise durch einen eigensicheren PTC-Widerstand realisiert werden. Die Wellbalg-Konstruktion eignet sich im Hinblick auf die erforderlichen Hubwege, die in der Praxis 1,5 bis 2 mm betragen. Es handelt sich bei dem Ausführungsbeispiel nach Figur 6 um ein besonders einfaches mechanisches System mit kleinen Zeitkonstanten. Bei Ausfall der Heizung ergeben sich gesicherte Notlaufeigenschaften, da das Expansionsventil 4 dann mit niedriger Überhitzung (Drosselstelle 3 weit auf) arbeitet. Eine weitere Variation (nicht gezeigt) des Ausführungsbeispiels nach Figur 6 könnte darin bestehen, daß man den Thermomotor auch - der Kühlung wegen - in den Sauggasraum 6 legt und die Kraftübertragung auf den Drosselkörper 11 durch ein Hebelgestänge realisiert.The
Im Ausführungsbeispiel nach Figur 7 ist der Steuerkopf 7 mit einer Induktionsspule 80 umgeben. Auf diese Weise wird dem Steuerkopf bei Erregung der Induktionsspule mehr Wärme zugeführt als an sich zur Ausregelung der Überhitzung Δ tü notwendig wäre. Dies hat einen Druckanstieg der Steuerfüllung 9 oberhalb der Membrane 8 zur Folge, der die durch Drosselkörper 11 und Übertragungsstange 10 gebildete Einheit stärker nach unten schiebt, so daß sich dadurch ein erhöhter Massestrom und demzufolge eine bessere Kühlung und damit eine geringere Überhitzung Δ tü ergibt. Bei einer praktischen Realisierung dieses Ausführungsbeispiels ergab sich, daß, ausgehend von einer Basiseinstellung von Δ tü = 8 K bei ca. 3 bar Verdampfungdruck zur Abregeglung der Überhitzung auf 2 K eine Leistung von ca. 3 W erforderlich ist. Sie setzt sich zusammen aus der für die Zustandsänderung der Steuerfüllung 9 notwendigen Leistung und dem Wärmeverlust über der Membranfläche 8. Einschließlich weiterer Verluste an die Umgebung kann mit einer Leistung unter 20 W gerechnet werden. Wichtig ist, daß das Ventilgehäuse in seiner Gesamtheit aus elektrisch schlecht leitendem Werkstoff ausgebildet sein sollte, um die Effektivität der Einwirkung der Induktionsspule 80 auf die Steuermembran 8 zu erhöhen.In the exemplary embodiment according to FIG. 7, the control head 7 is surrounded by an
Das Ausführungsbeispiel nach Figur 8 zeigt die direkte Beheizung des Steuermediums 9 durch ein oberhalb des Steuerkopfes 7 in einer tassenartigen Vertiefung desselben angeordnete elektrische Heizplatte 90 mit Anschluß 91, die durch einen PTC-Widerstand (Positive Temperature Coefficient) oder ein Peltier-Element gebildet werden kann und von einer Isolierkappe 92 umgeben ist. Bei dieser Anordnung ist eine elektrische Heizleistung der Heizplatte 90 von ca. 8 W erforderlich, um die Überhitzung Δ tü von 7 K auf ca. 1,5 K abzusenken. Da bei diesem Ausführungsbeispiel lediglich der Steuerkopf gegenüber herkömmlichen Expanisionsventilen (vgl. Figur 1) geändert werden muß, eignet sich das Ausführungsbeispiel ganz besonders für die Nachrüstung bestehender Kälteanlagen. Dieses Ausführungsbeispiel ist besonders kostengünstig und stellt wegen der niedrigen erforderlichen elektrischen Heizleitung nur eine sehr geringe Belastung des Bordnetzes eines Kraftfahrzeuges dar.The embodiment according to Figure 8 shows the direct heating of the
Als Kriterien für die Ansteuerung der Ventile (Figur 5) bzw. Heizelemente (Figuren 6 bis 8) kommen in Frage:
- (a) die Heißgastemperatur, ermittelt durch Temperatursensoren in oder an der Hochdruckleitung vom Verdichter zum Kondensator bzw. im oder am Verdichtergehäuse selbst;
- (b) die Drehzahl des Verdichters, ermittelt z.B. aus der Motordrehzahl oder mit Hilfe eines Drehzahlaufnehmers am Verdichter
- (c) die Oberflächentemperatur des Verdampfers ermittelt z.B. durch Temperatursensoren im Verdampfernetz bzw. in oder an der Leitung vom Verdampfer zum Verdichter;
- (d) die Lufttemperatur nach Verdampfer ermittelt durch einen Temperatursensor im Luftstrom nach Verdampfer.
- (a) the hot gas temperature, determined by temperature sensors in or on the high-pressure line from the compressor to the condenser or in or on the compressor housing itself;
- (b) the speed of the compressor, determined, for example, from the engine speed or with the aid of a speed sensor on the compressor
- (c) the surface temperature of the evaporator is determined, for example, by temperature sensors in the evaporator network or in or on the line from the evaporator to the compressor;
- (d) the air temperature after the evaporator is determined by a temperature sensor in the air flow after the evaporator.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3829101A DE3829101A1 (en) | 1988-08-27 | 1988-08-27 | THERMOSTATIC EXPANSION VALVE |
DE3829101 | 1988-08-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0356642A1 true EP0356642A1 (en) | 1990-03-07 |
EP0356642B1 EP0356642B1 (en) | 1994-03-02 |
Family
ID=6361704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89111082A Expired - Lifetime EP0356642B1 (en) | 1988-08-27 | 1989-06-19 | Thermostatic expansion valve |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0356642B1 (en) |
DE (2) | DE3829101A1 (en) |
ES (1) | ES2049278T3 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0871000A1 (en) * | 1997-04-11 | 1998-10-14 | Fujikoki Corporation | Thermal expansion valve |
EP1055888A2 (en) * | 1999-05-28 | 2000-11-29 | Fujikoki Corporation | Expansion valve |
EP1162417A1 (en) * | 1999-03-17 | 2001-12-12 | Zexel Valeo Climate Control Corporation | Expansion valve |
WO2003091816A2 (en) * | 2002-04-26 | 2003-11-06 | Otto Egelhof Gmbh & Co. Kg | Control valve for air conditioners |
FR2910601A1 (en) * | 2006-12-20 | 2008-06-27 | Valeo Systemes Thermiques | Triggering device i.e. thermostatic valve, for air-conditioning circuit of motor vehicle, has force regulator for regulating spring force based on operating parameters of refrigerant in inlet of main path |
EP2177847A1 (en) * | 2008-10-16 | 2010-04-21 | Valeo Systemes Thermiques | Thermostatic extension valve device for refrigerant fluid circuit |
WO2013041390A1 (en) * | 2011-09-19 | 2013-03-28 | Otto Egelhof Gmbh & Co. Kg | Expansion valve |
FR2999690A1 (en) * | 2012-12-19 | 2014-06-20 | Valeo Systemes Thermiques | SYSTEM FOR REGULATING A RELAXATION OF A REFRIGERANT FLUID |
CN108562078A (en) * | 2017-12-27 | 2018-09-21 | 苏州林信源自动化科技有限公司 | A kind of expansion valve |
CN114222893A (en) * | 2019-08-21 | 2022-03-22 | Lg电子株式会社 | Refrigeration equipment using non-azeotropic mixed refrigerant |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4005728A1 (en) * | 1990-02-23 | 1991-08-29 | Behr Gmbh & Co | Vehicle refrigeration circuit - has electrically-controlled thermostatic expansion valve controlled by line temp. between compressor and condenser |
DE19837556C1 (en) * | 1998-08-19 | 2000-03-09 | Danfoss As | Thermostatic expansion valve for refrigeration medium; has pressure surface devices co-operating with opposing connections in closed position of valve element |
DE10237532A1 (en) * | 2002-08-16 | 2004-02-26 | Otto Egelhof Gmbh & Co. | Control valve, for air-conditioning unit, has regulating element displaced into closed position independent of thermally-controlled actuator for blocking flow |
DE10219667A1 (en) * | 2002-05-02 | 2003-11-13 | Egelhof Fa Otto | Expansion valve with electronic controller, for motor vehicle air conditioning systems using carbon dioxide as coolant, has two throttle points in series, with the passage cross-section of second point adjustable to the first point |
DE10240711B4 (en) * | 2002-09-04 | 2007-09-13 | Robert Bosch Gmbh | Expansion organ of a motor vehicle air conditioner |
DE102005040630A1 (en) * | 2005-08-27 | 2007-03-01 | Daimlerchrysler Ag | Thermostatic expansion valve for use in refrigeration cycle of vehicle air conditioning system, has valve seat and valve unit, which are arranged to transfer refrigerant from high pressure side to low pressure side of valve |
DE102016200576A1 (en) * | 2016-01-18 | 2017-08-10 | Bayerische Motoren Werke Aktiengesellschaft | Expansion element and method for controlling or controlling a refrigerant mass flow, use for a refrigeration circuit of a motor vehicle, and motor vehicle |
DE102016114345A1 (en) * | 2016-08-03 | 2018-02-08 | Denso Automotive Deutschland Gmbh | Expansion element for a refrigerant circuit and method for operating a refrigerant circuit |
DE102018102378A1 (en) * | 2018-02-02 | 2019-08-08 | Otto Egelhof Gmbh & Co. Kg | Expansion valve for refrigeration systems, in particular vehicle air conditioning systems, and method for controlling an expansion valve |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2340836A1 (en) * | 1973-08-13 | 1975-03-06 | Danfoss As | THERMOSTATIC EXPANSION VALVE FOR REFRIGERATION SYSTEMS |
DE2603682A1 (en) * | 1976-01-31 | 1977-08-11 | Danfoss As | VALVE ARRANGEMENT FOR REFRIGERATION SYSTEMS |
DE2728935A1 (en) * | 1976-08-30 | 1978-03-02 | Mess & Regelungst Veb K | Thermostatic regulating valve for liquid refrigerants - has valve unit with seat readily replaced and adjusted by screw |
DE2749250B2 (en) * | 1977-11-03 | 1980-01-10 | Danfoss A/S, Nordborg (Daenemark) | Valve for liquid injection into a refrigerant evaporator |
DE3344816A1 (en) * | 1983-12-12 | 1985-06-20 | Ernst Flitsch Gmbh & Co, 7012 Fellbach | EXPANSION VALVE |
DE3507221A1 (en) * | 1984-03-05 | 1985-09-05 | The Singer Co., Stamford, Conn. | THERMAL EXPANSION VALVE WITH VIBRATION DAMPING DEVICE |
US4750334A (en) * | 1987-03-26 | 1988-06-14 | Sporlan Valve Company | Balanced thermostatic expansion valve for refrigeration systems |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3405535A (en) * | 1966-02-10 | 1968-10-15 | Controls Co Of America | Temperature controlled flow control device and refrigeration system including such device |
US3537645A (en) * | 1969-01-16 | 1970-11-03 | Controls Co Of America | Bulbless expansion valve |
US3659783A (en) * | 1969-10-24 | 1972-05-02 | Eaton Yale & Towne | Temperature regulated flow control element for automotive air-conditioners |
US3699778A (en) * | 1971-03-29 | 1972-10-24 | Controls Co Of America | Thermal expansion valve with rapid pressure equalizer |
GB1379549A (en) * | 1971-12-10 | 1975-01-02 | Burrington H W | Temperature responsive throttling valve |
GB1461545A (en) * | 1974-06-10 | 1977-01-13 | Ford Motor Co | Air conditioning system |
CA1087412A (en) * | 1976-03-04 | 1980-10-14 | Charles D. Orth | High side pressure limiting thermostatic expansion valve |
US4171087A (en) * | 1977-11-03 | 1979-10-16 | Emerson Electric Co. | Control valve |
-
1988
- 1988-08-27 DE DE3829101A patent/DE3829101A1/en not_active Withdrawn
-
1989
- 1989-06-19 ES ES89111082T patent/ES2049278T3/en not_active Expired - Lifetime
- 1989-06-19 EP EP89111082A patent/EP0356642B1/en not_active Expired - Lifetime
- 1989-06-19 DE DE89111082T patent/DE58907071D1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2340836A1 (en) * | 1973-08-13 | 1975-03-06 | Danfoss As | THERMOSTATIC EXPANSION VALVE FOR REFRIGERATION SYSTEMS |
DE2603682A1 (en) * | 1976-01-31 | 1977-08-11 | Danfoss As | VALVE ARRANGEMENT FOR REFRIGERATION SYSTEMS |
DE2728935A1 (en) * | 1976-08-30 | 1978-03-02 | Mess & Regelungst Veb K | Thermostatic regulating valve for liquid refrigerants - has valve unit with seat readily replaced and adjusted by screw |
DE2749250B2 (en) * | 1977-11-03 | 1980-01-10 | Danfoss A/S, Nordborg (Daenemark) | Valve for liquid injection into a refrigerant evaporator |
DE3344816A1 (en) * | 1983-12-12 | 1985-06-20 | Ernst Flitsch Gmbh & Co, 7012 Fellbach | EXPANSION VALVE |
DE3507221A1 (en) * | 1984-03-05 | 1985-09-05 | The Singer Co., Stamford, Conn. | THERMAL EXPANSION VALVE WITH VIBRATION DAMPING DEVICE |
US4750334A (en) * | 1987-03-26 | 1988-06-14 | Sporlan Valve Company | Balanced thermostatic expansion valve for refrigeration systems |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0871000A1 (en) * | 1997-04-11 | 1998-10-14 | Fujikoki Corporation | Thermal expansion valve |
US6012301A (en) * | 1997-04-11 | 2000-01-11 | Fujikoki Corporation | Thermal expansion valve |
EP1162417A1 (en) * | 1999-03-17 | 2001-12-12 | Zexel Valeo Climate Control Corporation | Expansion valve |
EP1162417A4 (en) * | 1999-03-17 | 2002-10-02 | Zexel Valeo Climate Contr Corp | Expansion valve |
EP1055888A2 (en) * | 1999-05-28 | 2000-11-29 | Fujikoki Corporation | Expansion valve |
EP1055888A3 (en) * | 1999-05-28 | 2001-09-12 | Fujikoki Corporation | Expansion valve |
WO2003091816A2 (en) * | 2002-04-26 | 2003-11-06 | Otto Egelhof Gmbh & Co. Kg | Control valve for air conditioners |
WO2003091816A3 (en) * | 2002-04-26 | 2004-03-25 | Otto Egelhof Gmbh & Co Kg | Control valve for air conditioners |
FR2910601A1 (en) * | 2006-12-20 | 2008-06-27 | Valeo Systemes Thermiques | Triggering device i.e. thermostatic valve, for air-conditioning circuit of motor vehicle, has force regulator for regulating spring force based on operating parameters of refrigerant in inlet of main path |
EP2177847A1 (en) * | 2008-10-16 | 2010-04-21 | Valeo Systemes Thermiques | Thermostatic extension valve device for refrigerant fluid circuit |
WO2013041390A1 (en) * | 2011-09-19 | 2013-03-28 | Otto Egelhof Gmbh & Co. Kg | Expansion valve |
FR2999690A1 (en) * | 2012-12-19 | 2014-06-20 | Valeo Systemes Thermiques | SYSTEM FOR REGULATING A RELAXATION OF A REFRIGERANT FLUID |
WO2014095592A1 (en) * | 2012-12-19 | 2014-06-26 | Valeo Systemes Thermiques | System for regulating the expansion of a coolant |
CN108562078A (en) * | 2017-12-27 | 2018-09-21 | 苏州林信源自动化科技有限公司 | A kind of expansion valve |
CN114222893A (en) * | 2019-08-21 | 2022-03-22 | Lg电子株式会社 | Refrigeration equipment using non-azeotropic mixed refrigerant |
CN114222893B (en) * | 2019-08-21 | 2024-04-26 | Lg电子株式会社 | Refrigeration apparatus using non-azeotropic refrigerant mixture |
Also Published As
Publication number | Publication date |
---|---|
DE58907071D1 (en) | 1994-04-07 |
DE3829101A1 (en) | 1990-03-01 |
ES2049278T3 (en) | 1994-04-16 |
EP0356642B1 (en) | 1994-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0356642B1 (en) | Thermostatic expansion valve | |
DE69000952T2 (en) | TRANSPORT COOLING SYSTEM WITH MEANS TO ENHANCE THE CAPACITY OF A HEATING CYCLE. | |
DE60018123T2 (en) | Refrigeration circuit with a bypass line | |
DE3002165C2 (en) | ||
DE102004010701B4 (en) | Vapor compression cooling machine | |
EP1001229A2 (en) | Expansion element and valve unit for use therewith | |
DE19647718C2 (en) | Process for regulating a refrigeration system as well as refrigeration system and expansion valve | |
DE3139044C1 (en) | Cold or heat pump cycle | |
EP0443099B1 (en) | Refrigeration system | |
DE1601016B2 (en) | REFRIGERATION SYSTEM WITH A REFRIGERANT COMPRESSOR | |
EP1599696A1 (en) | Expansion device for an air conditioning system | |
DE69310408T2 (en) | Pressure operated switching valve for a refrigeration system | |
DE102006057131B3 (en) | Thermo-static expansion valve for controlling high pressure of transcritically and/or subcritically operable cooling and heating pump circuit, has control member controllable independent of pressure whose movement is coupled with area | |
DE60212502T2 (en) | Refrigeration circuit | |
DE3426190A1 (en) | ARRANGEMENT FOR INFLUENCING THE SPEED OF A COMPRESSOR OF A REFRIGERATION SYSTEM | |
DE3822781C2 (en) | ||
WO2008064816A1 (en) | Thermostatic expansion valve for refrigeration cycles or heat pump cycles, featuring a mechanically controlled safety function | |
DE2637129A1 (en) | DEVICE FOR DEFROSTING EVAPORATORS IN REFRIGERANT CIRCUITS, IN PARTICULAR OF HEAT PUMPS | |
DE102006057584A1 (en) | Supercritical cooling circuit used in a vehicle comprises a compressor, a decompression unit with an electrical expansion valve, a bypass channel, a pressure valve, a temperature measuring unit and a control unit | |
DE102005034709B4 (en) | Thermostatic expansion valve | |
DE2709534A1 (en) | Flow control valve for vehicle air conditioning - with pressure sensitive restriction to maintain even pressure in expansion coil | |
DE3714120C1 (en) | Control arrangement for an expansion valve of a refrigeration system | |
DE112008001064T5 (en) | Control device for an adjustable compressor | |
EP0060545B1 (en) | Anti-skid braking system | |
DE10346960A1 (en) | Control of compressor regulating valve in road vehicle air conditioning system has connection of valve to high-pressure side of compressor and heat exchanger circuit includes three-way valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19900621 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BEHR GMBH & CO. |
|
17Q | First examination report despatched |
Effective date: 19921022 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940302 Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940302 |
|
REF | Corresponds to: |
Ref document number: 58907071 Country of ref document: DE Date of ref document: 19940407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2049278 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940329 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980526 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990619 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010611 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010621 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010710 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030711 |