EP0356642B1 - Thermostatic expansion valve - Google Patents

Thermostatic expansion valve Download PDF

Info

Publication number
EP0356642B1
EP0356642B1 EP89111082A EP89111082A EP0356642B1 EP 0356642 B1 EP0356642 B1 EP 0356642B1 EP 89111082 A EP89111082 A EP 89111082A EP 89111082 A EP89111082 A EP 89111082A EP 0356642 B1 EP0356642 B1 EP 0356642B1
Authority
EP
European Patent Office
Prior art keywords
expansion valve
evaporator
refrigerant
spring
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89111082A
Other languages
German (de)
French (fr)
Other versions
EP0356642A1 (en
Inventor
Roland Burk
Karl Dipl. Ing. Lochmahr (Fh)
Hans-Joachim Dipl. Ing. Ingelmann (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP0356642A1 publication Critical patent/EP0356642A1/en
Application granted granted Critical
Publication of EP0356642B1 publication Critical patent/EP0356642B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle

Definitions

  • the invention relates to a thermostatic expansion valve for a refrigeration system with a compressor, a condenser and an evaporator, wherein the refrigerant liquefied in the condenser flows through a throttle point of the expansion valve and the opening width of the throttle point is determined by the position of a throttle body, and the position of the throttle body can be influenced by a pressure and / or temperature sensor or a membrane, the Throttle body facing side is acted upon by a control medium, which acts in an opening sense on the throttle body, while a spring acts in a closing sense on the throttle body, furthermore the overheating value ( ⁇ tü) of the refrigerant after the evaporator can be detected and via one sensor the signal corresponding to the overheating setpoint ( ⁇ tü / Soll) can be acted on the throttle body in a regulating sense via a controllable device.
  • ⁇ tü overheating value
  • thermostatic expansion valve is known from DE-A-27 49 250. It is used in conjunction with a conventional refrigeration system, with the signals for regulating the superheating temperature being taken directly from the coolant circuit to a predetermined target value.
  • a control unit For this purpose, there are sensors in front of and behind the evaporator, which convert the determined temperature value into an electrical signal, which is transmitted to a control unit. The latter then in turn has a corresponding regulating action on the throttle body in the sense of transferring the instantaneous actual value to the target value.
  • a similar thermostatic expansion valve has become known from US Pat. No. 4,750,334, which is likewise inserted into a coolant circuit which is the same as that of the present expansion valve or that of DE-A-27 49 250 corresponds.
  • the temperature is only recorded at the outlet of the evaporator. This measured value is also used for control purposes, the throttle body being adjusted so that the actual value of the superheating temperature is brought up to the target value.
  • FIG. 1 A further thermostatic expansion valve of this type is shown in FIG. 1 of the drawing of the subject matter of the invention.
  • refrigerant vapor suction gas
  • a compressor 1 At low pressure and low temperature and brought to a higher pressure.
  • the refrigerant is heated.
  • condensation in condenser 2 at high pressure with heat being released to the environment.
  • the liquefied refrigerant is then passed through the throttle 3 of the expansion valve 4.
  • the throttling leads to a decrease in pressure and temperature with partial evaporation of the liquid refrigerants.
  • the refrigerant then passes from the throttling point 3 to the evaporator 5.
  • the refrigerant is removed from the environment to be cooled, e.g. the interior of the motor vehicle, heat is supplied.
  • the remaining part of the refrigerant is evaporated.
  • the cycle then begins anew.
  • the control head 7 is located above the suction gas chamber 6 the control head 7, in which a membrane 8 is arranged. Its lower surface has thermal contact with the suction gas space 6 and thus with the refrigerant vapor flowing from the evaporator 5 to the compressor 1.
  • the control head 7 is filled with control medium 9 above the membrane 8. This is usually identical to the refrigerant in the circuit.
  • the control medium is designed so that it is present as an overheated gas under operating conditions with evaporation temperatures below approx. + 10 ° C as a wet steam mixture, above approx. 15 ° C at maximum operating pressure.
  • a transmission rod 10 is connected to the membrane 8.
  • the throttle body 11 is fastened at its lower end. Its relative position in relation to the throttle point 3 determines the cross-section through which it flows and thus the degree of throttling of the refrigerant.
  • the liquefied refrigerant coming from the condenser 2 first enters the room 26 (high pressure side) and from there via the throttle 3 in the room 29 (low pressure side).
  • a spring 12 acts on the throttle body 11 from below, the preload of which can be adjusted by means of a spindle 13.
  • the transmission rod 10 is sealed by means of a seal 14, the spindle 13 by means of a seal 15 in the housing.
  • the force resulting from the pressure of the control medium 9 in the control head 7 is on the membrane 8, the force exerted on the membrane 8 by the pressure of the suction gas in the suction gas 6, and by the spring 12 on the Throttle body 11 exerted force in equilibrium.
  • the aim of setting the working conditions of the expansion valve 4 is to work with a relatively large "overheating" of the suction steam behind the evaporator 5 and thus also in the suction gas space 6 for reasons of the effectiveness of the cooling capacity. This is necessary, among other things, because part of the liquid refrigerant remains dissolved in the oil added to lubricate the compressor and thus does not contribute to cooling. This proportion of refrigerant dissolved in the oil decreases with increasing overheating.
  • the refrigerant behind the compressor 1 should not exceed a maximum temperature tmax of, for example, 150 ° C. On average, the temperature should not be higher than 130 ° C, for example.
  • Overheating is the temperature difference between the refrigerant vapor and the refrigerant present as a wet vapor mixture at the same pressure.
  • Curve K denotes the boiling or dew line, ie it includes the wet steam range.
  • the lines AB or A'B ', BC or B'C, CD and DA or CA' denote the changes in state in the compressor 1, in the condenser 2, in the expansion valve 4 and in the evaporator 5.
  • some temperature values have been entered.
  • the superheating ⁇ tü after the evaporator 5 is, for example, 5 ° C.
  • the driving speed is 32 km / h
  • the gear shift position is second gear. This is an im general uncritical driving condition.
  • 64/2 64 km / h; 2nd gear
  • 64/2 64 km / h; 2nd gear
  • the dash-dotted curve results from FIG. 2 as a typical course of the overheating ⁇ tü.
  • IT and 64/2 the maximum permissible temperature of the refrigerant vapor tmax is reached. This is not the case in operating state 32/2.
  • B ' only a lower temperature is reached behind the compressor.
  • B ' would also lie on the curve tmax.
  • the dash-dotted line results from these requirements as the desired characteristic curve ⁇ tü / Soll.
  • the overheating should be around 8 K for reasons of effectiveness, but that it should be controllable down to 1 to 2 K in certain operating conditions in order to avoid inadmissibly high refrigerant vapor temperatures and to avoid early evaporator icing.
  • the object is to develop a thermostatic expansion valve of the type described in the introduction in such a way that the superheating ⁇ tü of the refrigerant vapor is regulated according to the Evaporator depending on the operating conditions of a motor vehicle in which the expansion valve is installed or depending on new criteria of the known coolant circuit is possible such that the maximum permissible temperature tmax after the compressor is not exceeded.
  • the spring 12, which presses the throttle body 11 in the closed position is supported on an adjusting plate 20 which is arranged in a pressure cell 21 so as to be displaceable in height.
  • the space 22 below the adjusting plate 20 is connected in terms of pressure to the suction gas space 6 via a line 23.
  • the space 24 above the adjusting plate 20 is connected via a line 25 to the space 26 (high pressure side) into which the liquefied refrigerant flows from the condenser.
  • a further spring 27 acts on the adjusting plate 20 Pressure on the adjusting plate 20 is adjustable by means of the setting wheel 28.
  • the adjusting plate 20 is therefore also subject to the differential pressure between the pressure in the space 26 (high pressure side) and the pressure in the suction gas space 6 (low pressure side). Since the decisive pressure drop takes place in the entire refrigerant circuit at the throttle point 3 of the expansion valve 4, the pressure in the space 26 is greater than the suction gas space 6. The differential pressure is therefore in the opposite direction to the pressures of the two springs 12, 27 on the adjusting plate 20 on the throttle body 11 in Opening direction of throttle 3 effective. As a result:
  • the spring force is changed by an electrically controllable control element.
  • the spring 12, which presses the throttle body 11 in the closing direction, is mounted on a platform 30, which is arranged on the top of a control piston 31, which can be moved up and down in a pressure cell 32.
  • the control piston 31 is pressed upwards by a spring 33.
  • the pressure cell 33 is connected via the connecting piece 34 to a cylindrical space 35 in which a servo piston 36 swings back and forth.
  • the servo piston 36 is provided with two collars 37, 38.
  • the high pressure in front of the throttle point 3 acts on the left collar 37 via opening 43, space 44 and opening 45.
  • a further spring 39 acts on the right collar 38 of the servo piston 36 and is supported on the housing.
  • the left end of the servo piston 36 is connected to the tappet 40 of a solenoid valve 41.
  • the space to the right of the collar 38, in which the spring is arranged, is connected via the opening 46, the space 47 and the line 48 to the low pressure in space 29 behind the throttle 3.
  • the solenoid valve 41 When the solenoid valve 41 is de-energized, the high pressure of the liquefied refrigerant coming from the condenser 2 acts on the servo piston to the left of the collar 37 and to the right of the collar 38 the spring 39.
  • the servo piston 35 swings back and forth, whereby in one end position the collar 37 opens the opening 45 and in the other end position the collar 38 briefly opens, the other opening to the room 35 then being closed.
  • the solenoid valve 41 can be clocked as a function of a measurement of the temperature downstream of the compressor. With appropriate clocking, this exemplary embodiment also enables a sliding overheating setting between two limit values. It is characterized by a high response speed.
  • the magnetic valve 41 only has a servo function, and can therefore be made correspondingly small. With a flushing facility and a comparatively large size There is practically no risk of clogging in cross-sections in the connecting channels. In the event of electrical faults, the valve works with slight overheating. This results in good emergency running properties.
  • thermomotor 60 as a control element, which is formed by a control medium 62 in a corrugated bellows 61 and a heating plate 63, which can be heated via a connection 64, and is surrounded by an insulation 65.
  • a further spring 66 for high pressure compensation is provided in the corrugated bellows 61.
  • the thermal motor 60 is located inside the insulation 65 in a can 67, which is vented via line 68.
  • the thermal motor 60 acts on an adjusting plate 70 which is arranged such that it can be displaced in height between the seals 71 and which in turn supports the spring 72.
  • the spring 72 presses with its upper end against the throttle body 11, in addition to the spring 12, which is supported on a platform 30 which is seated on the collar 50.
  • the control medium 62 expands in the corrugated bellows 61 and thus presses the adjusting plate 70 upwards and thus increases the pressure of the spring 72 on the throttle body 11 .
  • the thermal motor 61 is connected via line 68 to the cooled refrigerant in the space 29 behind the throttle 3 stands, so that the thermal motor can be cooled in this way.
  • the heating plate 63 can preferably be implemented by an intrinsically safe PTC resistor.
  • the corrugated bellows construction is suitable with regard to the required travel, which in practice is 1.5 to 2 mm.
  • the exemplary embodiment according to FIG. 6 is a particularly simple mechanical system with small time constants. If the heating fails, reliable emergency running properties result, since the expansion valve 4 then works with low overheating (throttle 3 far open).
  • a further variation (not shown) of the exemplary embodiment according to FIG. 6 could consist in that the thermal motor is also placed in the suction gas space 6 because of the cooling and the power transmission to the throttle body 11 is realized by a lever linkage.
  • the control head 7 is surrounded by an induction coil 80.
  • an induction coil 80 In this way, more heat is supplied to the control head when the induction coil is excited than would be necessary per se to control the overheating ⁇ tü.
  • a power of approx. 3 W is required.
  • valve housing as a whole should be made of poorly electrically conductive material in order to increase the effectiveness of the action of the induction coil 80 on the control membrane 8.
  • the embodiment according to Figure 8 shows the direct heating of the control medium 9 by the same above the control head 7 in a cup-like recess disposed electric heating plate 90 with terminal 91, by a PTC resistor (ositive P T emperature C oefficient) or a Peltier element can be formed and is surrounded by an insulating cap 92.
  • a PTC resistor electric P T emperature C oefficient
  • a Peltier element can be formed and is surrounded by an insulating cap 92.
  • an electrical heating power of the heating plate 90 of approximately 8 W is required in order to reduce the overheating ⁇ tü from 7 K to approximately 1.5 K.
  • the exemplary embodiment is particularly suitable for retrofitting existing refrigeration systems.
  • This exemplary embodiment is particularly cost-effective and, because of the low electrical heating line required, represents only a very low load on the vehicle electrical system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Temperature-Responsive Valves (AREA)

Description

Die Erfindung betrifft ein thermostatisches Expansionsventil für eine Kälteanlage mit einem Verdichter, einem Kondensator sowie einem Verdampfer, wobei durch eine Drosselstelle des Expansionsventils das im Kondensator verflüssigte Kältemittel strömt und die Öffnungsweite der Drosselstelle durch die Stellung eines Drosselkörpers bestimmt ist, und wobei die Stellung des Drosselkörpers von einem Druck- und/oder Temperaturgeber oder einer Membrane beinflußbar ist, deren vom Drosselkörper wegweisende Seite durch ein Steuermedium beaufschlagt ist, welches in öffnendem Sinne auf den Drosselkörper einwirkt, während eine Feder in schließendem Sinne auf den Drosselkörper einwirkt, wobei desweiteren über wenigstens einen Sensor der Überhitzungswert (Δ tü) des Kältemittels nach dem Verdampfer erfaßbar und über ein dem Überhitzungs-Sollwert (Δ tü/soll) entsprechendes Signal in abregelndem Sinne über eine ansteuerbare Einrichtung auf den Drosselkörper einwirkbar ist.The invention relates to a thermostatic expansion valve for a refrigeration system with a compressor, a condenser and an evaporator, wherein the refrigerant liquefied in the condenser flows through a throttle point of the expansion valve and the opening width of the throttle point is determined by the position of a throttle body, and the position of the throttle body can be influenced by a pressure and / or temperature sensor or a membrane, the Throttle body facing side is acted upon by a control medium, which acts in an opening sense on the throttle body, while a spring acts in a closing sense on the throttle body, furthermore the overheating value (Δtü) of the refrigerant after the evaporator can be detected and via one sensor the signal corresponding to the overheating setpoint (Δtü / Soll) can be acted on the throttle body in a regulating sense via a controllable device.

Ein derartiges thermostatisches Expansionsventil ist durch die DE-A-27 49 250 bekannt geworden. Es wird in Verbindung mit einer herkömmlichen Kälteanlage verwendet, wobei die Signale zur Regelung der Überhitzungstemperatur auf einen vorgegebenen Soll-Wert unmittelbar am Kühlmittelkreislauf abgenommen werden. Zu diesem Zwecke befinden sich vor und hinter dem Verdampfer Fühler, welche den festgestellten Temperaturwert in ein elektrisches Signal umwandeln, welches an eine Steuereinheit übermittelt wird. Letztere wirkt dann ihrerseits ein entsprechendes regelndes Einwirken auf den Drosselkörper im Sinne einer Überführung des momentanen Ist-Werts auf den Soll-Wert.Such a thermostatic expansion valve is known from DE-A-27 49 250. It is used in conjunction with a conventional refrigeration system, with the signals for regulating the superheating temperature being taken directly from the coolant circuit to a predetermined target value. For this purpose, there are sensors in front of and behind the evaporator, which convert the determined temperature value into an electrical signal, which is transmitted to a control unit. The latter then in turn has a corresponding regulating action on the throttle body in the sense of transferring the instantaneous actual value to the target value.

Durch die US-A-4,750,334 ist ein ähnliches thermostatisches Expanisonsventil bekannt geworden, welches gleichfalls in einen Kühlmittelkreislauf eingesetzt ist, welcher demjenigen des vorliegenden Expansionsventils oder desjenigen der DE-A-27 49 250 entspricht. Dabei wird die Termperatur lediglich am Ausgang des Verdampfers erfaßt. Auch dieser Meßwert wird zu Regelungszwecken herangezogen, wobei der Drosselkörper so verstellt wird, daß der Ist-Wert der Überhitzungstemperatur an den Soll-Wert herangeführt wird.A similar thermostatic expansion valve has become known from US Pat. No. 4,750,334, which is likewise inserted into a coolant circuit which is the same as that of the present expansion valve or that of DE-A-27 49 250 corresponds. The temperature is only recorded at the outlet of the evaporator. This measured value is also used for control purposes, the throttle body being adjusted so that the actual value of the superheating temperature is brought up to the target value.

In Figur 1 der Zeichnung des Erfindungsgegenstands ist ein weiteres thermostatisches Expanisonsventil dieser Art dargestellt. Dabei wird Kältemitteldampf (Sauggas) bei niedrigem Druck und tiefer Temperatur von einem Verdichter 1 angesaugt und auf einen höheren Druck gebracht. Dabei erfolgt eine Erwärmung des Kältemittels. Danach folgt im Kondensator 2 die Verflüssigung bei hohem Druck unter Wärmeabgabe an die Umgebung. Das verflüssigte Kältemittel wird dann durch die Drosselstelle 3 des Expansionsventils 4 geführt. Die Drosselung führt zu einer Druck- und Temperaturabnahme bei teilweiser Verdampfung der flüssigen Kältemittel. Das Kältemittel gelangt dann von der Drosselstelle 3 zum Verdampfer 5. Dort wird dem Kältemittel aus der zu kühlenden Umgebung, also z.B. dem Innenraum des Kraftfahrzeugs, Wärme zugeführt. Dabei wird der restliche Teil des Kältemittels verdampft. Darauf beginnt der Kreislauf aufs neue.A further thermostatic expansion valve of this type is shown in FIG. 1 of the drawing of the subject matter of the invention. Here, refrigerant vapor (suction gas) is drawn in by a compressor 1 at low pressure and low temperature and brought to a higher pressure. The refrigerant is heated. This is followed by condensation in condenser 2 at high pressure with heat being released to the environment. The liquefied refrigerant is then passed through the throttle 3 of the expansion valve 4. The throttling leads to a decrease in pressure and temperature with partial evaporation of the liquid refrigerants. The refrigerant then passes from the throttling point 3 to the evaporator 5. There, the refrigerant is removed from the environment to be cooled, e.g. the interior of the motor vehicle, heat is supplied. The remaining part of the refrigerant is evaporated. The cycle then begins anew.

Bei der Rückführung des Sauggases vom Verdampfer 5 zum Verdichter 1 wird das Kältemittel durch den Sauggasraum 6 des Expansionsventils 4 geleitet. Über dem Sauggasraum 6 befindet sich der Steuerkopf 7, in dem eine Membran 8 angeordnet ist. Ihre untere Fläche hat Wärmekontakt mit dem Sauggasraum 6 und damit mit dem vom Verdampfer 5 zum Verdichter 1 strömenden Kältemitteldampf. Oberhalb der Membran 8 ist der Steuerkopf 7 mit Steuermedium 9 gefüllt. Dies ist in der Regel identisch mit dem Kältemittel im Kreislauf. Das Steuermedium ist so ausgelegt, daß es unter Betriebsbedingungen mit Verdampfungstemperaturen unter ca. + 10°C als Naßdampfgemisch, oberhalb ca. 15°C bei maximalem Betriebsdruck als überhitztes Gas vorliegt. Mit der Membran 8 ist eine Übertragungsstange 10 verbunden. An ihrem unteren Ende ist der Drosselkörper 11 befestigt. Seine relative Stellung gegenüber der Drosselstelle 3 bestimmt den durchströmten Querschnitt derselben und damit den Grad der Drosselung des Kältemittels. Das vom Kondensator 2 kommende verflüssigte Kältemittel gelangt zuerst in den Raum 26 (Hochdruckseite) und von dort über die Drosselstelle 3 in Raum 29 (Niederdruckseite). Auf den Drosselkörper 11 wirkt von unten eine Feder 12, deren Vorspannung mittels einer Spindel 13 einstellbar ist. Die Übertragungsstange 10 ist mittels einer Dichtung 14, die Spindel 13 mittels einer Dichtung 15 im Gehäuse abgedichtet. Stellt sich ein bestimmter Betriebszustand ein, so befinden sich die aus dem Druck des Steuermediums 9 im Steuerkopf 7 resultierende Kraft auf die Membran 8, die aus dem Druck des Sauggases im Sauggas 6 auf die Membran 8 ausgeübte Kraft, sowie durch die Feder 12 auf den Drosselkörper 11 ausgeübte Kraft im Gleichgewicht.When the suction gas is returned from the evaporator 5 to the compressor 1, the refrigerant is passed through the suction gas space 6 of the expansion valve 4. Is located above the suction gas chamber 6 the control head 7, in which a membrane 8 is arranged. Its lower surface has thermal contact with the suction gas space 6 and thus with the refrigerant vapor flowing from the evaporator 5 to the compressor 1. The control head 7 is filled with control medium 9 above the membrane 8. This is usually identical to the refrigerant in the circuit. The control medium is designed so that it is present as an overheated gas under operating conditions with evaporation temperatures below approx. + 10 ° C as a wet steam mixture, above approx. 15 ° C at maximum operating pressure. A transmission rod 10 is connected to the membrane 8. The throttle body 11 is fastened at its lower end. Its relative position in relation to the throttle point 3 determines the cross-section through which it flows and thus the degree of throttling of the refrigerant. The liquefied refrigerant coming from the condenser 2 first enters the room 26 (high pressure side) and from there via the throttle 3 in the room 29 (low pressure side). A spring 12 acts on the throttle body 11 from below, the preload of which can be adjusted by means of a spindle 13. The transmission rod 10 is sealed by means of a seal 14, the spindle 13 by means of a seal 15 in the housing. If a certain operating state is reached, the force resulting from the pressure of the control medium 9 in the control head 7 is on the membrane 8, the force exerted on the membrane 8 by the pressure of the suction gas in the suction gas 6, and by the spring 12 on the Throttle body 11 exerted force in equilibrium.

Es ist Ziel der Einstellung der Arbeitsbedingungen des Expansionsventils 4, aus Gründen der Effektivität der Kälteleistung mit einer relativ großen "Überhitzung" des Saugdampfes hinter dem Verdampfer 5 und somit auch im Sauggasraum 6 zu arbeiten. Das ist u.a. erforderlich, weil ein Teil des flüssigen Kältemittels in dem zur Schmierung des Kompressors beigemischten Öl gelöst bleibt und somit zur Kühlung nichts beiträgt. Dieser im Öl gelöste Kältemittelanteil nimmt mit zunehmender Überhitzung ab. Andererseits soll das Kältemittel hinter dem Verdichter 1 eine maximale Temperatur tmax von z.B. 150°C nicht überschreiten. Im Mittel soll die Temperatur sogar nicht höher als z.B. 130°C sein. Als Überhitzung bezeichnet man dabei den Temperaturunterschied des Kältemitteldampfes gegenüber dem als Naßdampfgemisch vorliegenden Kältmittels bei gleichem Druck. Zur Verdeutlichung wird auf das Enthalpie(log p/h)-Diagramm nach Figur 2 Bezug genommen. Die Kurve K bezeichnet die Siede- bzw. Taulinie, d.h. sie schließt den Nassdampfbereich ein. Die Linien AB bzw. A'B', BC bzw. B'C, CD und DA bzw. CA' bezeichnen die Zustandsänderungen im Verdichter 1, im Kondensator 2, im Expansionsventil 4 und im Verdampfer 5. Zur Verdeutlichung sind einige Temperaturwerte eingetragen. Bei einer Auslegung, die durch die Punkte A und B gekennzeichnet ist, beträgt die Überhitzung Δ tü nach dem Verdampfer 5 z.B. 5°C. Dies führt unter den angenommenen Betriebsbedingungen dazu, daß hinter dem Verdichter 1 der Kältemitteldampf die maximal zulässige Temperatur tmax von 150°C erreicht. Bei einer anderen Auslegung, die durch die Punkte A' und B' gekennzeichnet ist, beträgt die Überhitzung nach dem Verdampfer 5 z.B. 3°C mit der Folge, daß hinter dem Verdichter 1 lediglich die als Durchschnittswert tolerierbare Temperatur des Kältemitteldampfes von ca. 130°C erreicht wird. In Figur 2 ist zur Vervollständigung noch der bei Durchtritt durch das Expansionsventil 4 auftretende Druckverlust PEX, sowie ferner der im Verdampfer 5 auftretende Druckverlust PV eingetragen.The aim of setting the working conditions of the expansion valve 4 is to work with a relatively large "overheating" of the suction steam behind the evaporator 5 and thus also in the suction gas space 6 for reasons of the effectiveness of the cooling capacity. This is necessary, among other things, because part of the liquid refrigerant remains dissolved in the oil added to lubricate the compressor and thus does not contribute to cooling. This proportion of refrigerant dissolved in the oil decreases with increasing overheating. On the other hand, the refrigerant behind the compressor 1 should not exceed a maximum temperature tmax of, for example, 150 ° C. On average, the temperature should not be higher than 130 ° C, for example. Overheating is the temperature difference between the refrigerant vapor and the refrigerant present as a wet vapor mixture at the same pressure. For clarification, reference is made to the enthalpy (log p / h) diagram according to FIG. 2. Curve K denotes the boiling or dew line, ie it includes the wet steam range. The lines AB or A'B ', BC or B'C, CD and DA or CA' denote the changes in state in the compressor 1, in the condenser 2, in the expansion valve 4 and in the evaporator 5. For clarification, some temperature values have been entered. In the case of a design characterized by points A and B, the superheating Δtü after the evaporator 5 is, for example, 5 ° C. Under the assumed operating conditions, this leads to the refrigerant vapor behind the compressor 1 having the maximum permissible Temperature tmax of 150 ° C reached. In another design, which is characterized by points A 'and B', the overheating after the evaporator 5 is, for example, 3 ° C., with the result that behind the compressor 1 only the temperature of the refrigerant vapor which is tolerable as the average value of approximately 130 ° C is reached. To complete the figure, the pressure loss P EX which occurs when it passes through the expansion valve 4 and the pressure loss P V which occurs in the evaporator 5 are also entered.

Bei Kälte-Anlagen in Kraftfahrzeugen besteht das Problem darin, daß sich die Betriebsbedingungen dauernd ändern; die Leistung des Verdichters, der vom Motor des Kraftsfahrzeuges angetrieben wird, ändert sich laufend mit der Drehzahl: In Figur 3 sind in das Enthalpie-Diagramm typische Betriebszustände, nämlich die Betriebszustände 64/2, 32/2 und IT eingezeichnet. Es handelt sich dabei um in der Kfz-Technik übliche Abnahmefahrwerte, in denen maximale Kälteleistung = minimale Innenraumtemperatur gefordert wird. IT (Idle-Test) ist ein Betriebszustand einer Kfz-Klimaanalge, bei dem sich das Fahrzeug im Stillstand befindet und der Verdichter von dem mit Leerlaufdrehzahl laufenden Fahrzeugmotor angetrieben wird. Die Belüftung des Kondensators ist in diesem Fall am ungünstigtsten, so daß besonders hohe Drücke und Heißgastemperaturen auftreten können. Im Betriebszustand 32/2 beträgt die Fahrgeschwindigkeit 32 km/h, die Getriebeschaltstellung ist der zweite Gang. Dies ist ein im allgemeinen unkritischer Fahrzustand. 64/2 (64 km/h; 2. Gang) ist ein Fahrzustand, bei dem zur Zeit die kritischsten Heißgastemperaturen auftreten.The problem with refrigeration systems in motor vehicles is that the operating conditions change constantly; the output of the compressor, which is driven by the motor of the motor vehicle, changes continuously with the speed: In FIG. 3, typical operating states, namely operating states 64/2, 32/2 and IT, are shown in the enthalpy diagram. These are the acceptance values common in automotive engineering, in which maximum cooling capacity = minimum interior temperature is required. IT (idle test) is an operating state of a motor vehicle air conditioning system in which the vehicle is at a standstill and the compressor is driven by the vehicle engine running at idling speed. The ventilation of the condenser is the most unfavorable in this case, so that particularly high pressures and hot gas temperatures can occur. In operating mode 32/2, the driving speed is 32 km / h, the gear shift position is second gear. This is an im general uncritical driving condition. 64/2 (64 km / h; 2nd gear) is a driving condition in which the most critical hot gas temperatures currently occur.

Aus Figur 2 ergibt sich die strichpunktierte Kurve als typischer Verlauf der Überhitzung Δ tü. In den Betriebszuständen IT und 64/2 wird die maximal zulässige Temperatur des Kältemitteldampfes tmax erreicht. Im Betriebszustand 32/2 ist dies nicht der Fall. Hier wird bei B' lediglich eine geringere Temperatur hinter dem Verdichter erreicht. Es wäre aus Gründen der Erhöhung der Effektivität der Kälteanlage in diesem Betriebszustand durchaus wünschenswert und auch möglich mit einer höheren Überhitzung zu arbeiten, und zwar maximal soweit, daß B' ebenfalls auf der Kurve tmax liegen würde. Aus diesen Forderungen ergibt sich die strichpunktiert eingezeichnete Linie als gewünschte Kennlinie Δ tü/Soll. Vereinfacht kann man die Forderung dahingehend ausdrücken, daß die Überhitzung aus Gründen der Effektivität um 8 K betragen sollte, daß sie aber zur Vermeidung unzulässig hoher Kältemitteldampftemperaturen sowie zur Vermeidung zu früher Verdampfervereisung bei bestimmten Betriebsbedingungen bis auf 1 bis 2 K herab regelbar sein sollte.The dash-dotted curve results from FIG. 2 as a typical course of the overheating Δtü. In the operating states IT and 64/2, the maximum permissible temperature of the refrigerant vapor tmax is reached. This is not the case in operating state 32/2. Here at B 'only a lower temperature is reached behind the compressor. In order to increase the effectiveness of the refrigeration system in this operating state, it would be desirable and also possible to work with a higher superheat, to the extent that B 'would also lie on the curve tmax. The dash-dotted line results from these requirements as the desired characteristic curve Δtü / Soll. To put it simply, the requirement can be expressed that the overheating should be around 8 K for reasons of effectiveness, but that it should be controllable down to 1 to 2 K in certain operating conditions in order to avoid inadmissibly high refrigerant vapor temperatures and to avoid early evaporator icing.

Es liegt die Aufgabe vor, ein thermostatisches Expansionsventil der eingangs beschriebenen Art so weiterzubilden, daß eine Regelung der Überhitzung Δ tü des Kältemitteldampfes nach dem Verdampfer in Abhängigkeit von Betriebsbedingungen eines Kraftfahrzeugs, in welches das Expansionsventil eingebaut wird oder in Abhängkeit von neuen Kriterien des bekannten Kühlmittelkreislaufs derart möglich ist, daß die maximal zulässige Temperatur tmax nach dem Verdichter nicht überschritten wird.The object is to develop a thermostatic expansion valve of the type described in the introduction in such a way that the superheating Δtü of the refrigerant vapor is regulated according to the Evaporator depending on the operating conditions of a motor vehicle in which the expansion valve is installed or depending on new criteria of the known coolant circuit is possible such that the maximum permissible temperature tmax after the compressor is not exceeded.

Diese Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen definiert.This object is achieved with the features of claim 1. Advantageous further developments are defined in the subclaims.

Ausführungsbeispiele der Erfindung und ihrer vorteilhaften Weiterbildungen werden im folgenden beschrieben. Die Zeichnungen stellen dar:

Figur 1
den Kreislauf einer Kälteanlage nach dem vorbekannten Stand der Technik;
Figur 2
das Enthalpie-Diagramm für den Kreislauf nach Figur 1;
Figur 3
verschiedene Betriebszustände eines Kraftfahrzeugs im Enthalpie-Diagramm;
Figuren 4 bis 8
5 Ausführungsbeispiele
   Soweit die Teile in den Figuren 4 bis 8 nicht besonders gezeichnet sind, sind sie dieselben wie in Figur 1; außerdem sind in den Figuren 4 bis 8 Verdichter Kondensator und Verdampfer der Einfachheit halber weggelassen.Embodiments of the invention and its advantageous developments are described below. The drawings show:
Figure 1
the circuit of a refrigeration system according to the prior art;
Figure 2
the enthalpy diagram for the circuit of Figure 1;
Figure 3
different operating states of a motor vehicle in the enthalpy diagram;
Figures 4 to 8
5 working examples
As far as the parts in Figures 4 to 8 are not specially drawn, they are the same as in Figure 1; in addition, in FIGS. 4 to 8, the condenser and evaporator are omitted for the sake of simplicity.

Beim Ausführungsbeispiel nach Figur 4 ist die Feder 12, die den Drosselkörper 11 in Schließstellung drückt, auf einem Einstellteller 20 abgestützt, der höhenverschiebbar in einer Druckdose 21 angeordnet ist. Der Raum 22 unterhalb des Einstelltellers 20 steht druckmäßig mit dem Sauggasraum 6 über eine Leitung 23 in Verbindung. Der Raum 24 oberhalb des Einstelltellers 20 steht über eine Leitung 25 mit dem Raum 26 (Hochdruckseite) in Verbindung, in den das verflüssigte Kältemittel vom Kondensator her einströmt. Auf den Einstellteller 20 wirkt ferner eine weitere Feder 27, deren Druck auf den Einstellteller 20 mittels des Einstellrades 28 einstellbar ist. Der Einstellteller 20 unterliegt also zusätzlich zur Kraft der Federn 12, 27 noch dem Differenzdruck zwischen dem Druck im Raum 26 (Hochdruckseite) und dem Druck im Sauggasraum 6 (Niederdruckseite). Da an der Drosselstelle 3 des Expansionsventils 4 im gesamten Kältemittelkreislauf der entscheidende Druckabfall stattfindet, ist der Druck im Raum 26 größer als der Sauggasraum 6. Der Differenzdruck wird also in Gegenrichtung zu den Drücken der beiden Federn 12, 27 am Einstellteller 20 am Drosselkörper 11 in Öffnungsrichtung der Drosselstelle 3 wirksam. Das hat zur Folge:In the exemplary embodiment according to FIG. 4, the spring 12, which presses the throttle body 11 in the closed position, is supported on an adjusting plate 20 which is arranged in a pressure cell 21 so as to be displaceable in height. The space 22 below the adjusting plate 20 is connected in terms of pressure to the suction gas space 6 via a line 23. The space 24 above the adjusting plate 20 is connected via a line 25 to the space 26 (high pressure side) into which the liquefied refrigerant flows from the condenser. A further spring 27 acts on the adjusting plate 20 Pressure on the adjusting plate 20 is adjustable by means of the setting wheel 28. In addition to the force of the springs 12, 27, the adjusting plate 20 is therefore also subject to the differential pressure between the pressure in the space 26 (high pressure side) and the pressure in the suction gas space 6 (low pressure side). Since the decisive pressure drop takes place in the entire refrigerant circuit at the throttle point 3 of the expansion valve 4, the pressure in the space 26 is greater than the suction gas space 6. The differential pressure is therefore in the opposite direction to the pressures of the two springs 12, 27 on the adjusting plate 20 on the throttle body 11 in Opening direction of throttle 3 effective. As a result:

Tritt hinter dem Verdichter 1 und damit auch hinter dem Kondensator 2 ein zu hoher Druck des in den Raum 26 des Expansionsventils 4 eintretenden verflüssigten Kältemittels auf, der mit einer zu hohen Temperatur hinter dem Vercichter 1 einhergeht, so führt das zu einer entsprechenden Druckerhöhung im Raum 24 und damit zu einer Entlastung der Federn 12, 27. Damit bewegt sich der Drosselkörper 11 abwärts. Der Querschnitt der Drosselstelle 3 wird vergrößert. Es fließt ein erhöhter Massestrom durch die Drosselstelle 3. Dies führt zu einer Verringerung der Überhitzung Δ tü im Sauggasraum 6. Derselbe Effekt tritt ein, wenn der Druck im Sauggasraum 6 absinkt. Das System wird so ausgelegt, daß bei Verdampfungstemperaturen von 0°C mit leistungsoptimaler Überhitzung Δ tü gefahren wird. Es ergibt sich dabei eine Überhitzung im Betriebszustand IT bei Fahrwerten von t(pRVa) größer oder gleich 0°C (R: Kältemittel; V: Verdampfer; a: Austritt). Es ist also möglich, unter Verwendung dieses Ausführungsbeispiels mit maximalem Betriebsdruck (Maximum Operating Pressure = MOP) zu fahren. Außerdem sind die bei heute in Serie befindlichen Expansionsventilen erforderlichen Änderungen gering.If a too high pressure of the liquefied refrigerant entering the space 26 of the expansion valve 4 occurs behind the compressor 1 and thus also behind the condenser 2, which is associated with an excessively high temperature behind the compressor 1, this leads to a corresponding pressure increase in the room 24 and thus to relieve the springs 12, 27. The throttle body 11 thus moves downward. The cross section of the throttle point 3 is enlarged. An increased mass flow flows through the throttle point 3. This leads to a reduction in the overheating Δtü in the suction gas space 6. The same effect occurs when the pressure in the suction gas space 6 drops. The system is designed in such a way that at evaporation temperatures of 0 ° C with optimal performance overheating Δ tü. This results in overheating in the IT operating state with driving values of t (p RVa ) greater than or equal to 0 ° C (R: refrigerant; V: evaporator; a: exit). It is therefore possible to use this embodiment with maximum operating pressure ( M aximum O perating P ressure = MOP). In addition, the changes required for expansion valves currently in series production are minor.

Beim Ausführungsbeispiel nach Figur 5 erfolgt eine Änderung der Federkraft durch ein elektrisch ansteuerbares Regelorgan. Die Feder 12, die den Drosselkörper 11 in Schließrichtung drückt, ist auf einer Plattform 30 gelagert, die auf der Oberseite eines Steuerkolbens 31 angeordnet ist, der in einer Druckdose 32 auf und ab verschiebbar ist. Der Steuerkolben 31 wird durch eine Feder 33 nach oben gedrückt. Die Druckdose 33 steht über den Anschlußstutzen 34 mit einem zylindrischen Raum 35 in Verbindung, in dem ein Servokolben 36 hin und her schwingt. Der Servokolben 36 ist mit zwei Bunden 37, 38 versehen. Auf den linken Bund 37 wirkt über Öffnung 43, Raum 44 und Öffnung 45 der Hochdruck vor der Drosselstelle 3. Auf den rechten Bund 38 des Servokolbens 36 wirkt eine weitere Feder 39, die am Gehäuse abgestützt ist. Das linke Ende des Servokolbens 36 ist mit dem Stößel 40 eines Magnetventils 41 verbunden. Der Raum rechts des Bundes 38, in dem die Feder angeordnet ist, steht über die Öffnung 46, den Raum 47 und die Leitung 48 mit dem Niederdruck in Raum 29 hinter der Drosselstelle 3 in Verbindung. Bei stromlosem Magnetventil 41 wirkt auf den Servokolben demgemäß links vom Bund 37 der Hochdruck des vom Kondensator 2 her kommenden verflüssigten Kältemittels und rechts des Bundes 38 die Feder 39. Der Servokolben 35 schwingt hin und her, wobei in der einen Endlage der Bund 37 die Öffnung 45 und in der anderen Endlage der Bund 38 die Öffnung 46 jeweils kurzfristig öffnet, wobei dann jeweils die andere Öffnung zum Raum 35 verschlossen ist. Demzufolge findet parallel zur (Haupt-)Drosselstelle 3 über die Öffnungen 45 und 46 und Raum 35 intermittierend ein weiterer, kleinerer Kältemittel-Teilstrom statt. Dieser Kältemittel-Teilstrom wird unterbrochen, wenn das Magnetventil 41 erregt und in seiner linken Endstellung fixiert wird, in der der linke Bund 37 die Öffnung 45 mit dem Raum 35 zwischen den beiden Bunden 37, 38 verbindet. Dann kann sich der Druck der Hochdruckseite des Expansionsventils 4 im Raum 26, bis in das Innere der Druckdose 32 fortpflanzen und drückt somit den Steuerkolben 31 zusätzlich zu den Federn 12, 33 nach oben. Der Querschnitt der Drosselstelle 3 wird also verkleinert. Entsprechend wird der Massestrom durch die Drosselstelle und damit die Kühlung verringert, so daß die Überhitzung tü vergrößert wird. Durch gezieltes Ablassen des Druckes in der Druckdose 32 (Steuerdruck) sind auch Zwischenstellungen möglich. Die Taktung des Magnetventils 41 kann in Abhängigkeit einer Messung der Temperatur hinter dem Verdichter erfolgen. Dieses Ausführungsbeispiel ermöglicht durch entsprechende Taktung auch eine gleitende Überhitzungseinstellung zwischen zwei Grenzwerten. Es zeichnet sich durch eine hohe Ansprechgeschwindigkeit aus. Das Magentventil 41 hat lediglich Servofunktion, kann also entsprechend klein ausgebildet sind. Durch eine Spülmöglichkeit und vergleichsweise große Querschnitte in den Verbindungskanälen ist praktisch keine Verstopfungsgefahr gegeben. Bei elektrischen Störungen arbeitet das Ventil mit kleiner Überhitzung. Das ergibt somit gute Notlaufeigenschaften.In the exemplary embodiment according to FIG. 5, the spring force is changed by an electrically controllable control element. The spring 12, which presses the throttle body 11 in the closing direction, is mounted on a platform 30, which is arranged on the top of a control piston 31, which can be moved up and down in a pressure cell 32. The control piston 31 is pressed upwards by a spring 33. The pressure cell 33 is connected via the connecting piece 34 to a cylindrical space 35 in which a servo piston 36 swings back and forth. The servo piston 36 is provided with two collars 37, 38. The high pressure in front of the throttle point 3 acts on the left collar 37 via opening 43, space 44 and opening 45. A further spring 39 acts on the right collar 38 of the servo piston 36 and is supported on the housing. The left end of the servo piston 36 is connected to the tappet 40 of a solenoid valve 41. The space to the right of the collar 38, in which the spring is arranged, is connected via the opening 46, the space 47 and the line 48 to the low pressure in space 29 behind the throttle 3. When the solenoid valve 41 is de-energized, the high pressure of the liquefied refrigerant coming from the condenser 2 acts on the servo piston to the left of the collar 37 and to the right of the collar 38 the spring 39. The servo piston 35 swings back and forth, whereby in one end position the collar 37 opens the opening 45 and in the other end position the collar 38 briefly opens, the other opening to the room 35 then being closed. Accordingly, a further, smaller refrigerant partial flow takes place intermittently parallel to the (main) throttle point 3 via the openings 45 and 46 and space 35. This partial refrigerant flow is interrupted when the solenoid valve 41 is energized and fixed in its left end position, in which the left collar 37 connects the opening 45 to the space 35 between the two collars 37, 38. Then the pressure of the high-pressure side of the expansion valve 4 can propagate in the space 26 into the interior of the pressure cell 32 and thus presses the control piston 31 in addition to the springs 12, 33 upwards. The cross section of the throttle 3 is thus reduced. Accordingly, the mass flow through the throttle point and thus the cooling is reduced, so that the overheating door is increased. By releasing the pressure in the pressure can 32 (control pressure), intermediate positions are also possible. The solenoid valve 41 can be clocked as a function of a measurement of the temperature downstream of the compressor. With appropriate clocking, this exemplary embodiment also enables a sliding overheating setting between two limit values. It is characterized by a high response speed. The magnetic valve 41 only has a servo function, and can therefore be made correspondingly small. With a flushing facility and a comparatively large size There is practically no risk of clogging in cross-sections in the connecting channels. In the event of electrical faults, the valve works with slight overheating. This results in good emergency running properties.

Das Ausführungsbeispiel nach Figur 6 arbeitet mit einem Thermomotor 60 als Regelorgan, der durch ein Steuermedium 62 in einem Wellbalg 61 und eine Heizplatte 63, die über einen Anschluß 64 beheizbar ist, gebildet wird und von einer Isolierung 65 umgeben ist. Im Wellbalg 61 ist eine weitere Feder 66 zur Hochdruckkompensation vorgesehen. Der Thermomotor 60 befindet sich innerhalb der Isolierung 65 in einer Dose 67, die über Leitung 68 entlüftet wird.The exemplary embodiment according to FIG. 6 works with a thermomotor 60 as a control element, which is formed by a control medium 62 in a corrugated bellows 61 and a heating plate 63, which can be heated via a connection 64, and is surrounded by an insulation 65. A further spring 66 for high pressure compensation is provided in the corrugated bellows 61. The thermal motor 60 is located inside the insulation 65 in a can 67, which is vented via line 68.

Der Thermomotor 60 wirkt auf einen Einstellteller 70, der zwischen den Dichtungen 71 höhenverschiebbar angeordnet ist und seinerseits die Feder 72 abstützt. Die Feder 72 drückt mit ihrem oberen Ende gegen den Drosselkörper 11, und zwar zusätzlich zu der Feder 12, die auf einer Plattform 30 abgestützt ist, die auf den Kragen 50 aufsitzt. Je nach Heizleistung, die der Heizplatte 63 zugeführt wird, dehnt sich das Steuermedium 62 im Wellbalg 61 aus und drückt damit den Einstellteller 70 nach oben und erhöht somit den Druck der Feder 72 auf den Drosselkörper 11. Wegfall der Heizleistung bedeutet also Verringerung von Δ tü. Bei dem in Figur 6 gezeigten Ausführungsbeispiel ist noch vorteilhaft, daß der Thermomotor 61 über Leitung 68 mit dem abgekühlten Kältemittel im Raum 29 hinter der Drosselstelle 3 in Verbindung steht, so daß auf diese Weise eine Kühlung des Thermomotors erfolgen kann. Die Heizplatte 63 kann vorzugsweise durch einen eigensicheren PTC-Widerstand realisiert werden. Die Wellbalg-Konstruktion eignet sich im Hinblick auf die erforderlichen Hubwege, die in der Praxis 1,5 bis 2 mm betragen. Es handelt sich bei dem Ausführungsbeispiel nach Figur 6 um ein besonders einfaches mechanisches System mit kleinen Zeitkonstanten. Bei Ausfall der Heizung ergeben sich gesicherte Notlaufeigenschaften, da das Expansionsventil 4 dann mit niedriger Überhitzung (Drosselstelle 3 weit auf) arbeitet. Eine weitere Variation (nicht gezeigt) des Ausführungsbeispiels nach Figur 6 könnte darin bestehen, daß man den Thermomotor auch - der Kühlung wegen - in den Sauggasraum 6 legt und die Kraftübertragung auf den Drosselkörper 11 durch ein Hebelgestänge realisiert.The thermal motor 60 acts on an adjusting plate 70 which is arranged such that it can be displaced in height between the seals 71 and which in turn supports the spring 72. The spring 72 presses with its upper end against the throttle body 11, in addition to the spring 12, which is supported on a platform 30 which is seated on the collar 50. Depending on the heating power that is supplied to the heating plate 63, the control medium 62 expands in the corrugated bellows 61 and thus presses the adjusting plate 70 upwards and thus increases the pressure of the spring 72 on the throttle body 11 . In the exemplary embodiment shown in FIG. 6, it is also advantageous that the thermal motor 61 is connected via line 68 to the cooled refrigerant in the space 29 behind the throttle 3 stands, so that the thermal motor can be cooled in this way. The heating plate 63 can preferably be implemented by an intrinsically safe PTC resistor. The corrugated bellows construction is suitable with regard to the required travel, which in practice is 1.5 to 2 mm. The exemplary embodiment according to FIG. 6 is a particularly simple mechanical system with small time constants. If the heating fails, reliable emergency running properties result, since the expansion valve 4 then works with low overheating (throttle 3 far open). A further variation (not shown) of the exemplary embodiment according to FIG. 6 could consist in that the thermal motor is also placed in the suction gas space 6 because of the cooling and the power transmission to the throttle body 11 is realized by a lever linkage.

Im Ausführungsbeispiel nach Figur 7 ist der Steuerkopf 7 mit einer Induktionsspule 80 umgeben. Auf diese Weise wird dem Steuerkopf bei Erregung der Induktionsspule mehr Wärme zugeführt als an sich zur Ausregelung der Überhitzung Δ tü notwendig wäre. Dies hat einen Druckanstieg der Steuerfüllung 9 oberhalb der Membrane 8 zur Folge, der die durch Drosselkörper 11 und Übertragungsstange 10 gebildete Einheit stärker nach unten schiebt, so daß sich dadurch ein erhöhter Massestrom und demzufolge eine bessere Kühlung und damit eine geringere Überhitzung Δ tü ergibt. Bei einer praktischen Realisierung dieses Ausführungsbeispiels ergab sich, daß, ausgehend von einer Basiseinstellung von Δ tü = 8 K

Figure imgb0001
bei ca. 3 bar Verdampfungdruck zur Abregeglung der Überhitzung auf 2 K eine Leistung von ca. 3 W erforderlich ist. Sie setzt sich zusammen aus der für die Zustandsänderung der Steuerfüllung 9 notwendigen Leistung und dem Wärmeverlust über der Membranfläche 8. Einschließlich weiterer Verluste an die Umgebung kann mit einer Leistung unter 20 W gerechnet werden. Wichtig ist, daß das Ventilgehäuse in seiner Gesamtheit aus elektrisch schlecht leitendem Werkstoff ausgebildet sein sollte, um die Effektivität der Einwirkung der Induktionsspule 80 auf die Steuermembran 8 zu erhöhen.In the exemplary embodiment according to FIG. 7, the control head 7 is surrounded by an induction coil 80. In this way, more heat is supplied to the control head when the induction coil is excited than would be necessary per se to control the overheating Δtü. This results in an increase in pressure of the control filling 9 above the diaphragm 8, which pushes the unit formed by the throttle body 11 and the transmission rod 10 downward, so that this results in an increased mass flow and, consequently, better cooling and thus less overheating Δtü. In a practical implementation of this embodiment, it was found that, starting from one Basic setting of Δ tü = 8 K
Figure imgb0001
at an evaporation pressure of approx. 3 bar to reduce the overheating to 2 K, a power of approx. 3 W is required. It is composed of the power required for changing the state of the control filling 9 and the heat loss over the membrane surface 8. Including further losses to the environment, a power below 20 W can be expected. It is important that the valve housing as a whole should be made of poorly electrically conductive material in order to increase the effectiveness of the action of the induction coil 80 on the control membrane 8.

Das Ausführungsbeispiel nach Figur 8 zeigt die direkte Beheizung des Steuermediums 9 durch ein oberhalb des Steuerkopfes 7 in einer tassenartigen Vertiefung desselben angeordnete elektrische Heizplatte 90 mit Anschluß 91, die durch einen PTC-Widerstand (Positive Temperature Coefficient) oder ein Peltier-Element gebildet werden kann und von einer Isolierkappe 92 umgeben ist. Bei dieser Anordnung ist eine elektrische Heizleistung der Heizplatte 90 von ca. 8 W erforderlich, um die Überhitzung Δ tü von 7 K auf ca. 1,5 K abzusenken. Da bei diesem Ausführungsbeispiel lediglich der Steuerkopf gegenüber herkömmlichen Expanisionsventilen (vgl. Figur 1) geändert werden muß, eignet sich das Ausführungsbeispiel ganz besonders für die Nachrüstung bestehender Kälteanlagen. Dieses Ausführungsbeispiel ist besonders kostengünstig und stellt wegen der niedrigen erforderlichen elektrischen Heizleitung nur eine sehr geringe Belastung des Bordnetzes eines Kraftfahrzeuges dar.The embodiment according to Figure 8 shows the direct heating of the control medium 9 by the same above the control head 7 in a cup-like recess disposed electric heating plate 90 with terminal 91, by a PTC resistor (ositive P T emperature C oefficient) or a Peltier element can be formed and is surrounded by an insulating cap 92. In this arrangement, an electrical heating power of the heating plate 90 of approximately 8 W is required in order to reduce the overheating Δtü from 7 K to approximately 1.5 K. Since in this exemplary embodiment only the control head has to be changed compared to conventional expansion valves (cf. FIG. 1), the exemplary embodiment is particularly suitable for retrofitting existing refrigeration systems. This exemplary embodiment is particularly cost-effective and, because of the low electrical heating line required, represents only a very low load on the vehicle electrical system.

Als Kriterien für die Ansteuerung der Ventile (Figur 5) bzw. Heizelemente (Figuren 6 bis 8) kommen in Frage:

  • (a) die Heißgastemperatur, ermittelt durch Temperatursensoren in oder an der Hochdruckleitung vom Verdichter zum Kondensator bzw. im oder am Verdichtergehäuse selbst;
  • (b) die Drehzahl des Verdichters, ermittelt z.B. aus der Motordrehzahl oder mit Hilfe eines Drehzahlaufnehmers am Verdichter
  • (c) die Oberflächentemperatur des Verdampfers ermittelt z.B. durch Temperatursensoren im Verdampfernetz bzw. in oder an der Leitung vom Verdampfer zum Verdichter;
  • (d) die Lufttemperatur nach Verdampfer ermittelt durch einen Temperatursensor im Luftstrom nach Verdampfer.
The criteria for controlling the valves (FIG. 5) or heating elements (FIGS. 6 to 8) are:
  • (a) the hot gas temperature, determined by temperature sensors in or on the high-pressure line from the compressor to the condenser or in or on the compressor housing itself;
  • (b) the speed of the compressor, determined, for example, from the engine speed or with the aid of a speed sensor on the compressor
  • (c) the surface temperature of the evaporator is determined, for example, by temperature sensors in the evaporator network or in or on the line from the evaporator to the compressor;
  • (d) the air temperature after the evaporator is determined by a temperature sensor in the air flow after the evaporator.

Claims (6)

  1. A thermostatic expansion valve (4) for a refrigerating installation with a compressor (1), a condenser (2) and an evaporator (5), the refrigerant liquefied in the condenser (2) flowing through a throttling means (3) in the expansion valve (4), the size of the opening in the throttle means (3) being determined by the position of a throttle member (11), the position of the throttle member (11) being capable of being influenced by a pressure and/or temperature indicating means or a diaphragm (8), of which the side directed away from the throttle member (11) is subject to the action of a controlling medium (9) which acts on the throttle member (11) in opening direction while a spring (12) acts on the throttle member in closing direction, whereby furthermore the overheating value (Δtu) of the refrigerant downstream of the evaporator (5) being detectable by at least one sensor, a signal corresponding to the desired overheating value (Δtu desired) acting on the throttle member (11) in a stepping-down sense by means of an actuable device (36, 41; 60, 63; 80; 90), characterised in that the expansion valve (4) is installed in a motor vehicle and in that the signal for actuating the device (36, 41; 60, 63; 80; 90) is derived from the temperature of the heated gas downstream of the compressor (1), the rotary speed of the motor vehicle engine or of the compressor (1) or from the temperature of the stream of cold air downstream of the evaporator (5) and in that the side of the diaphragm (8) which is directed towards the throttle member (11) is exposed to the coolant vapour between evaporator (5) and compressor (1).
  2. A thermostatic expansion valve according to Claim 1, characterised in that the spring (12) is biased on a movably disposed adjusting plate (20) one side (22) of which is subject to the refrigerant vapour between evaporator (5) and compressor (1) while its other side is exposed to the liquefied refrigerant downstream of the condenser (2).
  3. A thermostatic expansion valve according to Claim 1, in which the means of stepping-down the overheating (Δtu) of the refrigerant vapour downstream of the evaporator is constituted by an electronically actuable regulating device (36, 41; 60, 63) for influencing the initial tension of the spring (12), characterised in that the spring (12) is seated on a control piston (31) which is subject to the pressure in a space (35) which can by means of a servo-piston (36) cause to communicate either through a first aperture (45) with the high pressure side (26) of the expansion valve (4) or via a second aperture (46) with the low pressure side (29) thereof.
  4. A thermostatic expansion valve according to Claim 3, characterised in that the servo-piston (36) is on its side (37) and via the said first aperture (45) exposed to the pressure of the liquefied refrigerant while on its other side (38) it is subject ot the action of a spring (39) so that with alternate opening up of one of the two apertures (45, 46), it (36) performs a continuous oscillation, and in that a partial flow of liquefied refrigerant flows through the space (35), the regulating member being a magnetic valve (41) by which the servo-piston (36) can be locked.
  5. A thermostatic expansion valve according to Claim 1, in which the device for stepping-down the overheating ( tu) of the refrigerant vapour downstream of the evaporator is constituted by an electronically actuable regulating means (36, 41; 60, 63) for influencing the initial tension (12) of the spring (12), characterised in that the means of stepping-down the desired value of overheating is constituted by a thermomotor (60) which supports an adjusting plate (70) for the spring (12) and is capable of being actuated via an electrically-operated heating element (63).
  6. A thermostatic expansion valve according to Claim 5, characterised in that the thermomotor consists of an undulating bellows (61) filled with a controlling medium (62).
EP89111082A 1988-08-27 1989-06-19 Thermostatic expansion valve Expired - Lifetime EP0356642B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3829101A DE3829101A1 (en) 1988-08-27 1988-08-27 THERMOSTATIC EXPANSION VALVE
DE3829101 1988-08-27

Publications (2)

Publication Number Publication Date
EP0356642A1 EP0356642A1 (en) 1990-03-07
EP0356642B1 true EP0356642B1 (en) 1994-03-02

Family

ID=6361704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89111082A Expired - Lifetime EP0356642B1 (en) 1988-08-27 1989-06-19 Thermostatic expansion valve

Country Status (3)

Country Link
EP (1) EP0356642B1 (en)
DE (2) DE3829101A1 (en)
ES (1) ES2049278T3 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005728A1 (en) * 1990-02-23 1991-08-29 Behr Gmbh & Co Vehicle refrigeration circuit - has electrically-controlled thermostatic expansion valve controlled by line temp. between compressor and condenser
JPH10288424A (en) * 1997-04-11 1998-10-27 Fuji Koki Corp Temperature type expansion valve
DE19837556C1 (en) * 1998-08-19 2000-03-09 Danfoss As Thermostatic expansion valve for refrigeration medium; has pressure surface devices co-operating with opposing connections in closed position of valve element
JP3152908B2 (en) * 1999-03-17 2001-04-03 株式会社ゼクセルヴァレオクライメートコントロール Expansion valve
JP2001050617A (en) * 1999-05-28 2001-02-23 Fuji Koki Corp Expansion valve
DE10237532A1 (en) * 2002-08-16 2004-02-26 Otto Egelhof Gmbh & Co. Control valve, for air-conditioning unit, has regulating element displaced into closed position independent of thermally-controlled actuator for blocking flow
WO2003091816A2 (en) * 2002-04-26 2003-11-06 Otto Egelhof Gmbh & Co. Kg Control valve for air conditioners
DE10219667A1 (en) * 2002-05-02 2003-11-13 Egelhof Fa Otto Expansion valve with electronic controller, for motor vehicle air conditioning systems using carbon dioxide as coolant, has two throttle points in series, with the passage cross-section of second point adjustable to the first point
DE10240711B4 (en) * 2002-09-04 2007-09-13 Robert Bosch Gmbh Expansion organ of a motor vehicle air conditioner
DE102005040630A1 (en) * 2005-08-27 2007-03-01 Daimlerchrysler Ag Thermostatic expansion valve for use in refrigeration cycle of vehicle air conditioning system, has valve seat and valve unit, which are arranged to transfer refrigerant from high pressure side to low pressure side of valve
FR2910601B1 (en) * 2006-12-20 2013-05-17 Valeo Systemes Thermiques RELAXATION DEVICE FOR AIR CONDITIONING CIRCUIT
EP2177847A1 (en) * 2008-10-16 2010-04-21 Valeo Systemes Thermiques Thermostatic extension valve device for refrigerant fluid circuit
DE202011051346U1 (en) * 2011-09-19 2011-12-01 Otto Egelhof Gmbh & Co. Kg expansion valve
FR2999690B1 (en) * 2012-12-19 2015-01-02 Valeo Systemes Thermiques SYSTEM FOR REGULATING A RELAXATION OF A REFRIGERANT FLUID
DE102016200576A1 (en) * 2016-01-18 2017-08-10 Bayerische Motoren Werke Aktiengesellschaft Expansion element and method for controlling or controlling a refrigerant mass flow, use for a refrigeration circuit of a motor vehicle, and motor vehicle
DE102016114345A1 (en) * 2016-08-03 2018-02-08 Denso Automotive Deutschland Gmbh Expansion element for a refrigerant circuit and method for operating a refrigerant circuit
CN108562078A (en) * 2017-12-27 2018-09-21 苏州林信源自动化科技有限公司 A kind of expansion valve
DE102018102378A1 (en) * 2018-02-02 2019-08-08 Otto Egelhof Gmbh & Co. Kg Expansion valve for refrigeration systems, in particular vehicle air conditioning systems, and method for controlling an expansion valve
KR20210022930A (en) * 2019-08-21 2021-03-04 엘지전자 주식회사 Non-azeotropic mixed refrigerant, and refrigerating apparatus using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405535A (en) * 1966-02-10 1968-10-15 Controls Co Of America Temperature controlled flow control device and refrigeration system including such device
US3537645A (en) * 1969-01-16 1970-11-03 Controls Co Of America Bulbless expansion valve
US3659783A (en) * 1969-10-24 1972-05-02 Eaton Yale & Towne Temperature regulated flow control element for automotive air-conditioners
US3699778A (en) * 1971-03-29 1972-10-24 Controls Co Of America Thermal expansion valve with rapid pressure equalizer
GB1379549A (en) * 1971-12-10 1975-01-02 Burrington H W Temperature responsive throttling valve
GB1461545A (en) * 1974-06-10 1977-01-13 Ford Motor Co Air conditioning system
DE2603682C3 (en) * 1976-01-31 1978-07-13 Danfoss A/S, Nordborg (Daenemark) Valve arrangement for refrigeration systems
CA1087412A (en) * 1976-03-04 1980-10-14 Charles D. Orth High side pressure limiting thermostatic expansion valve
DD128033A1 (en) * 1976-08-30 1977-10-26 Konrad Albrecht THERMOSTATIC CONTROL VALVE
DE2749250C3 (en) * 1977-11-03 1980-09-11 Danfoss A/S, Nordborg (Daenemark) Valve for liquid injection into a refrigerant evaporator
US4171087A (en) * 1977-11-03 1979-10-16 Emerson Electric Co. Control valve
DE3344816A1 (en) * 1983-12-12 1985-06-20 Ernst Flitsch Gmbh & Co, 7012 Fellbach EXPANSION VALVE
US4542852A (en) * 1984-03-05 1985-09-24 The Singer Company Vibration damping device for thermostatic expansion valves
US4750334A (en) * 1987-03-26 1988-06-14 Sporlan Valve Company Balanced thermostatic expansion valve for refrigeration systems

Also Published As

Publication number Publication date
ES2049278T3 (en) 1994-04-16
EP0356642A1 (en) 1990-03-07
DE3829101A1 (en) 1990-03-01
DE58907071D1 (en) 1994-04-07

Similar Documents

Publication Publication Date Title
EP0356642B1 (en) Thermostatic expansion valve
DE60018123T2 (en) Refrigeration circuit with a bypass line
DE3002165C2 (en)
DE3783129T2 (en) REFRIGERANT FLOW CONTROL.
DE4324510A1 (en) Method and device for operating a cooling system
DE2749250B2 (en) Valve for liquid injection into a refrigerant evaporator
DE1172696B (en) Control device for the refrigerant in a cooling system
DE2029289B2 (en) Thermostatically controlled valve for an air conditioning system in a motor vehicle
DE19647718C2 (en) Process for regulating a refrigeration system as well as refrigeration system and expansion valve
CH640620A5 (en) VALVE WITH ACTUATING DEVICE FOR THE ADJUSTMENT OF A MOVABLE VALVE CLOSING LINK.
DE4202508A1 (en) TRANSPORT COOLING SYSTEM
DE3320338A1 (en) DEVICE FOR COOLING AN INTERNAL COMBUSTION ENGINE
EP1599696A1 (en) Expansion device for an air conditioning system
EP0443099B1 (en) Refrigeration system
DE69310408T2 (en) Pressure operated switching valve for a refrigeration system
DE102019000836A1 (en) Thermostatic device for a cooling system
DE69411503T2 (en) Refrigeration system with additional equipment for cooling the compressor
DE19913143C2 (en) Flow regulator
DE951815C (en) Method and device for controlling a compression refrigeration system
DE3426190A1 (en) ARRANGEMENT FOR INFLUENCING THE SPEED OF A COMPRESSOR OF A REFRIGERATION SYSTEM
DE2652888C2 (en) Chiller
DE3822781C2 (en)
DE2637129A1 (en) DEVICE FOR DEFROSTING EVAPORATORS IN REFRIGERANT CIRCUITS, IN PARTICULAR OF HEAT PUMPS
DE69316386T2 (en) EXPANSION VALVE FOR AN AIR CONDITIONING WITH A PROPORTIONAL MAGNET
DE102006057584A1 (en) Supercritical cooling circuit used in a vehicle comprises a compressor, a decompression unit with an electrical expansion valve, a bypass channel, a pressure valve, a temperature measuring unit and a control unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19900621

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO.

17Q First examination report despatched

Effective date: 19921022

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940302

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940302

REF Corresponds to:

Ref document number: 58907071

Country of ref document: DE

Date of ref document: 19940407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049278

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940329

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980526

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010611

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010621

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010710

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030711