EP0356066B1 - Matériaux pour joints de ponts, l'utilisation dans et procédé pour la préparation ou le revêtement des chaussées et similaires - Google Patents
Matériaux pour joints de ponts, l'utilisation dans et procédé pour la préparation ou le revêtement des chaussées et similaires Download PDFInfo
- Publication number
- EP0356066B1 EP0356066B1 EP19890308088 EP89308088A EP0356066B1 EP 0356066 B1 EP0356066 B1 EP 0356066B1 EP 19890308088 EP19890308088 EP 19890308088 EP 89308088 A EP89308088 A EP 89308088A EP 0356066 B1 EP0356066 B1 EP 0356066B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire
- chips
- rubber
- metal
- rubber chips
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title claims description 76
- 238000000034 method Methods 0.000 title claims description 22
- 239000002184 metal Substances 0.000 claims description 34
- 239000010426 asphalt Substances 0.000 claims description 26
- 239000010410 layer Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 19
- 239000000835 fiber Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 3
- 230000007480 spreading Effects 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 description 11
- 239000003365 glass fiber Substances 0.000 description 7
- 230000008439 repair process Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/35—Toppings or surface dressings; Methods of mixing, impregnating, or spreading them
- E01C7/353—Toppings or surface dressings; Methods of mixing, impregnating, or spreading them with exclusively bituminous binders; Aggregate, fillers or other additives for application on or in the surface of toppings with exclusively bituminous binders, e.g. for roughening or clearing
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/005—Methods or materials for repairing pavings
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/02—Arrangement or construction of joints; Methods of making joints; Packing for joints
- E01C11/04—Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
- E01C11/12—Packing of metal and plastic or elastic materials
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/16—Reinforcements
- E01C11/165—Reinforcements particularly for bituminous or rubber- or plastic-bound pavings
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/26—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
- E01C7/265—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre with rubber or synthetic resin, e.g. with rubber aggregate, with synthetic resin binder
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/35—Toppings or surface dressings; Methods of mixing, impregnating, or spreading them
- E01C7/358—Toppings or surface dressings; Methods of mixing, impregnating, or spreading them with a combination of two or more binders according to groups E01C7/351 - E01C7/356
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/06—Arrangement, construction or bridging of expansion joints
- E01D19/067—Flat continuous joints cast in situ
Definitions
- This invention relates to an improved material and process using this material to repair or surface roads, parking areas, aircraft pavements and other load bearing areas.
- the method may be applied to aircraft pavements, roads, paths, motorways and footpaths.
- the material may also be used to provide a flexible bridge joint filler or expansion joint in a multistorey car park or other structure.
- the present invention in one aspect, is particularly concerned with providing repairs using a material which has some degree of resilience and which has a tensile strength and is thus especially useful where the surface to be repaired is jointed or cracked or spalled.
- This is particularly useful where one is endeavouring to repair concrete surfaces or surfaces with a concrete underlay in that the concrete expands and contracts greatly with changes of temperature and if one uses a conventional road surfacing material this is brittle and the movement of the concrete tends to provide reflective cracks from the joints or cracks in the concrete to the surface of the black top, Macadam or other conventional surfacing material.
- the present invention is concerned with the provision of a material which uses rubber to give the necessary resilience, which may have aggregate included to provide improved load bearing resistance and which also includes material to provide a tensile strength.
- EP-A-0 202 966 discloses a material in accordance with the prior art portion of claim 1. While it is known to use rubber chips obtained from old rubber tyres for binding such bituminous material in the manufacture of road repairing material, in general it has been ensured that any wire reinforcing material is removed so that the material salvaged from the tyres is simply the rubber chips. Also, it has been proposed in GB-A-2 048 904 to provide wire reinforcements in a bituminous surfacing which is a substantially rigid mixture of aggregate and length wire bound with bituminous material.
- the present invention as specified in claim 1 has found it advantageous to use the wire reinforcement in a material which is inherently resilient without loss of resilience and with a considerable improvement in the strength and wear-resisting properties.
- the chips when referring herein to rubber chips, we are concerned with rubber in the form of pieces having a maximum dimension greater than 2 mm, preferably in the range of 3 to 7 mm, conveniently about 5 mm. However, where the material is used to a substantial depth, for example to fill a groove at a bridge or other joint, the chips may have a greater maximum dimension, for example 15 mm or even 20 mm. Generally, also, the metal fibre or wire is very fine and is chopped to have a length greater than the rubber chip dimensions.
- a further aspect of the invention provides a method of repairing or surfacing roads, parking areas and other load bearing areas in which the hot material of the invention is applied to the area.
- aggregate is mixed with the bituminous binder, which itself may be rubberised bitumen including 5 to 25% rubber, and chopped glass or other fibres may in some circumstances also be mixed therewith although not normally required.
- the aggregate may be included up to as much as 25 mm in maximum dimension although preferably it will be from 3 to 5 mm in maximum dimension to ease application, especially where the depth of application in some areas is quite small.
- a covering overlay may be applied to render the area fit for use.
- this overlay may be of glass fibre strengthened bitumen with a surface dressing as disclosed in GB-A-2 081 603.
- a conventional black top or Macadam surface may be applied to a thickness 30 mm, more usually in excess of 50 mm, frequently as much as 100 or 200 mm.
- Other alternative surface overlays or dressings which may be used include veneer surfacings of 3 mm upwards in thickness and a mixture of the bituminoos binder material, rubber chips and metal fibre or wire.
- the aggregate should have a maximum dimension of 5 mm, preferably approximately 3 mm, and generally no larger than the dimensions of the rubber chips in the material.
- Such a layer would be particularly suitable for spreading on more lightly loaded paths and the like, where the underlying surface may be crazed or lightly cracked or which has had more badly damaged areas already repaired and filled otherwise, for example with the material of the invention which contains a greater proportion of rubber in the bitumen and possibly larger sized aggregate.
- the material of the invention may be mixed on site or may be supplied ready mixed for subsequent melting down and laying.
- the material may typically comprise approximately 50% of rubberised bitumen binder material.
- the rubberised bitumen binder will have added to it 5 to 50% by weight rubber chips and metal fibre or wire which has been formed by the coarse chopping of vehicle tyres.
- metal reinforced tyres By chopping metal reinforced tyres an appropriate proportion of metal reinforcement wire or fibre is provided for the mix.
- the metal reinforcing strands in the tyre become untwisted and unravelled and are chopped but, because of their flexibility and fineness, the individual lengths of wire are left with a length several times the dimension of the rubber chips.
- the aggregate could have a maximum dimension of preferably 3 to 5 mm although, depending upon the circumstances, a greater maximum dimension could be used, for example even as much as 20 to 25 mm.
- additional fibre preferably glass
- additional fibre preferably glass
- this additional surface may, for example, be a glass fibre reinforced bitumen provided with a dressing or a conventional black top Macadam surface.
- the resilience of the rubber chips in the bitumen with the tensile strength provided by the chopped metal fibre or wire prevents reflective cracks passing from the underlaying repaired surface to the top surface of the overlay and the substantial aggregate content of the material enables it to be load bearing and resistant to subsidence when passed over by heavy vehicles.
- a relatively thin layer of this material may be applied over localised areas for patching purposes as a membrane subsequently to be covered by an overlay.
- no aggregate will be used in the mixture which will comprise a major proportion of the rubber chips bound, preferably, with a resilient bitumen material such as a polymer modified bitumen.
- a groove will be provided spanning the joint and this groove will be filled with the material of the invention level to the surface on either side of the groove and a further surface layer for supporting the traffic will then be provided over the joint and over the structure on either side of the joint.
- the rubber chips may well have a maximum dimension as big as 15 mm, perhaps as much as 20 mm.
- the material can either be applied hot and rolled in situ or where the groove can be cut accurately, the material may be provided as preformed strips, insertable in the cut grooves. While, preferably, no aggregate is included in the material as used for repairing bridge or expansion joints, in some cases where the reduced flexibility can be tolerated, a proportion of aggregate may be used in the filling mixture.
- the present invention can also be used to provide an overall layer or membrane over an entire base area with that membrane layer including the rubber chips and the fine metal fibre or wire reinforcement. This can be achieved simply by spreading a layer of rubberised bitumen or rubberised polymer modified bitumen over the area, the rubberised bitumen preferably, although not necessarily, including a fine aggregate or sand filler.
- the rubber chips and metal reinforcement can either be mixed in that rubberised bitumenous layer prior to application of the material or may be distributed over the material after it has been laid and then rolled and compressed so as to become embedded in that material in the same manner that in a more conventional road surfacing aggregate would be spread over and compressed into an underlying binding layer.
- a less viscous, more liquid, bitumen emulsion or polymer modified bitumen emulsion may be sprayed over the surface prior to having the rubber chips and metal reinforcement distributed thereover for rolling in position.
- Aggregate may also be applied or included in the distributed bitumenous binder as required but normally in this situation would not have a dimension greater than that of the rubber chips and preferably would have a very much smaller dimension, more commonly being in the form of a fine grained aggregate or sand filler to the binder.
- One particularly preferred method comprises distributing a layer of bitumenous binder with the addition of chopped glass fibre or other fibres and then distributing the rubber chips and metal reinforcement over that layer prior to rolling it in to cause it to be bound into a continuous rubberised layer.
- a further traffic bearing overlay can then be provided over the area to which the membrane has been applied.
- a membrane layer as referred to above is particularly useful for applying as a thin repair layer to such surfaces as lightly loaded paths or other walk-on areas which are infrequently used by vehicles although even so the resilience of the rubber of the layer will give a resistance to cracking in conjunction with the tensile strength added by the included fibres of metal and possibly also of glass or the like.
- the proportion of aggregate in the material may be from 40 to 60% although proportions outside this range may be used, depending upon the particular application and the amount of fine grained filler, if any, in the rubberised bitumen.
- the proportion of aggregate in the material is approximately 50% by weight.
- no aggregate at all may be used.
- the sandwich "filling" comprises a membrane or layer of bitumen containing the chopped rubber pieces and metal fibre or wire. This "filling" may, or may not, contain aggregate depending upon the degree of resilience required, and provides for good non-cracking load transfer from an overlying top layer to the underlying support or base surface.
- glass fibres are used when applied additionally to the metal fibres or wire.
- the glass fibres may be chopped to a length of approximately 30 mm. While we have referred herein generally to the use of glass fibres, it will be appreciated that other materials may be used, for example polyamide or other metal fibres, although presently glass fibres are the preferred additional tensile-strength-imparting material when such is required.
- a particular advantage of the present material is that it can very readily be made simply by chopping up old wire reinforced vehicle tyres.
- modern radial tyres contain a substantial amount of metal reinforcement which conventionally is very difficult to separate reliably from the rubber in order to use the rubber for other purposes, for example broken down to a small particle-sized crumb for use in conventional rubberised bitumen.
- the material of the present invention requires far less breaking down of the tyres in view of the relatively large rubber chip size.
- the inclusion of the metal of the tyre reinforcement randomly bound to or, more usually, separated from the rubber chips provides what appears to be an ideal road construction material where it is important to prevent the transmission of reflective cracks.
- the twisted tensile cables are chopped and rapidly unravelled to the very fine and flexible constituents of the cable. Due to this fineness and flexibility most of the metal is not chopped as short as the dimensions of the rubber chips such that when the rubber is formed in 2 mm dimension chips the pieces of wire will normally have a length of from 20 to 30 mm; however due to the random nature of the chopping some of the metal lengths will be shorter, similar in length to the rubber chip dimensions or even shorter.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Structures (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89308088T ATE74636T1 (de) | 1988-08-26 | 1989-08-09 | Materialien fuer brueckenfugen und zur verwendung beim reparieren oder verkleiden von strassen und dergleichen und verfahren. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8820329 | 1988-08-26 | ||
GB8820329A GB2223759A (en) | 1988-08-26 | 1988-08-26 | Bitumen-rubber-metal fibre or wire based compositions and their use in repairing or surfacing roads |
GB8830290A GB2222168B (en) | 1988-08-26 | 1988-12-28 | Improved material for use in,and method of,repairing or surfacing roads and the like |
GB8830290 | 1988-12-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0356066A2 EP0356066A2 (fr) | 1990-02-28 |
EP0356066A3 EP0356066A3 (en) | 1990-10-24 |
EP0356066B1 true EP0356066B1 (fr) | 1992-04-08 |
Family
ID=26294322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890308088 Expired EP0356066B1 (fr) | 1988-08-26 | 1989-08-09 | Matériaux pour joints de ponts, l'utilisation dans et procédé pour la préparation ou le revêtement des chaussées et similaires |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0356066B1 (fr) |
DE (1) | DE68901166D1 (fr) |
ES (1) | ES2032654T3 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2249103A (en) * | 1990-10-24 | 1992-04-29 | Fibrescreed Ltd | Waterproofing material |
US5221702A (en) * | 1991-12-09 | 1993-06-22 | Enviropaver Inc. | Composite block & process for manufacturing |
US5367007A (en) * | 1991-12-09 | 1994-11-22 | Enviropaver Inc. | Multi-layer composite block & process for manufacturing |
FR2705375B1 (fr) * | 1993-05-17 | 1995-08-11 | Sivia | Nouvel enduit superficiel de chaussée et procédé de fabrication d'un tel enduit. |
FR2716216B1 (fr) * | 1994-02-17 | 1996-05-03 | Colas Sa | Enrobé bitumineux contenant un matériau composite et procédé d'obtention d'un tel enrobé. |
AUPN235195A0 (en) * | 1995-04-11 | 1995-05-11 | Protrak Australia Pty Limited | Improvements in artificial surfaces |
AU712740B2 (en) * | 1995-04-11 | 1999-11-18 | Stratum Green Pty Ltd | Improvements in artificial surfaces |
NL1016907C2 (nl) * | 2000-12-18 | 2002-06-19 | Vermeer Infrastructuur B V | Wegconstructie en werkwijze voor het realiseren van een dergelijke wegconstructie. |
ES2215428B1 (es) * | 2001-07-20 | 2006-02-16 | Dieter Dannert | Un sistema para la modificacion de betunes. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH539003A (de) * | 1971-04-28 | 1973-07-15 | Schneider Hans | Baustoff, insbesondere für Strassenbelag, Bausteine, Unterlagsboden und Verputz |
US4265563A (en) * | 1977-03-17 | 1981-05-05 | Owens-Corning Fiberglas Corporation | Road pavement and repair |
CH638005A5 (de) * | 1978-12-06 | 1983-08-31 | Kibag Ag | Verfahren zum herstellen eines schwarzbelages und danach hergestellter schwarzbelag. |
US4440816A (en) * | 1980-07-14 | 1984-04-03 | Owens-Corning Fiberglas Corporation | Rubber-modified asphalt composition |
-
1989
- 1989-08-09 ES ES89308088T patent/ES2032654T3/es not_active Expired - Lifetime
- 1989-08-09 DE DE8989308088T patent/DE68901166D1/de not_active Expired - Fee Related
- 1989-08-09 EP EP19890308088 patent/EP0356066B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0356066A2 (fr) | 1990-02-28 |
DE68901166D1 (de) | 1992-05-14 |
EP0356066A3 (en) | 1990-10-24 |
ES2032654T3 (es) | 1993-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5024554A (en) | Bridge joint construction | |
EP0950761B1 (fr) | Procédé de réparation des fissures dans le revêtement des routes | |
US3932051A (en) | Highway construction | |
EP0356066B1 (fr) | Matériaux pour joints de ponts, l'utilisation dans et procédé pour la préparation ou le revêtement des chaussées et similaires | |
Wada | Bituminous pavement failures | |
Gnatenko et al. | Technological sides of crack sealing in asphalt pavements | |
US20060204332A1 (en) | Method for repairing holes in pavement | |
CA2174397A1 (fr) | Methode et produit pour l'impermeabilisation des chaussees | |
US4118137A (en) | Pavement and process of providing the same | |
Tamrakar | Overview on causes of flexible pavement distresses | |
US20060127572A1 (en) | Method for producing a bituminous mix, in particular by cold process, and bituminous mix obtained by said method | |
KR102199977B1 (ko) | 포장층과 방수층의 접착력을 향상시킨 교량 상판 방수구조 및 교량 상판 방수공법 | |
Smith et al. | Microsurfacing usage guidelines | |
GB2200645A (en) | Improved material for, and method of, repairing or surfacing roads and the like | |
GB2222168A (en) | Bitumen-rubber-metal fibre or wire based compositions and their use in bridge joints and repairing or surfacing roads | |
WO2002020661A1 (fr) | Composition de revetement et d'etancheite et son procede d'utilisation | |
Chang et al. | TXDOT guidelines to assign PMIS treatment levels. | |
Orr | Pavement Maintenance | |
KR100621355B1 (ko) | 폴리머 콘크리트를 이용한 기존 아스팔트 포장의 박층덧씌우기 공법 | |
EP1489057A1 (fr) | Béton pour pavés | |
EP0857824B1 (fr) | Procédé de recouvrement d'une jonction dans un revêtement routier et jonction ainsi obtenue | |
JP2945543B2 (ja) | 透水コンクリート及び透水コンクリートの舗装方法 | |
US5711631A (en) | Method of asphalt paving and pavement | |
KR100187557B1 (ko) | 교량 또는 구조물 조인트의 형성 방법 | |
EP0795059B1 (fr) | Technique de revetement d'une chaussee au moyen d'un tapis d'enrobes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR IT LI LU NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19910207 |
|
17Q | First examination report despatched |
Effective date: 19910502 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR IT LI LU NL |
|
REF | Corresponds to: |
Ref document number: 74636 Country of ref document: AT Date of ref document: 19920415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 68901166 Country of ref document: DE Date of ref document: 19920514 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: PRISMO LIMITED |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;PRISMO LIMITED |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: PRISMO LIMITED. |
|
NLS | Nl: assignments of ep-patents |
Owner name: PRISMO LIMITED TE CRAWLEY, GROOT-BRITTANNIE. |
|
EPTA | Lu: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040618 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20040811 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040813 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040823 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040826 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040831 Year of fee payment: 16 Ref country code: FR Payment date: 20040831 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040901 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050809 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060301 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060428 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060428 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050810 |
|
BERE | Be: lapsed |
Owner name: *PRISMO LTD Effective date: 20050831 |