EP0352160A1 - Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes - Google Patents

Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes Download PDF

Info

Publication number
EP0352160A1
EP0352160A1 EP89401887A EP89401887A EP0352160A1 EP 0352160 A1 EP0352160 A1 EP 0352160A1 EP 89401887 A EP89401887 A EP 89401887A EP 89401887 A EP89401887 A EP 89401887A EP 0352160 A1 EP0352160 A1 EP 0352160A1
Authority
EP
European Patent Office
Prior art keywords
antenna
radiating
central
dipoles
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89401887A
Other languages
German (de)
English (en)
Other versions
EP0352160B1 (fr
Inventor
Maurice Loiseau
Guy Bastard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomcast
Original Assignee
Thomcast
LGT Laboratoire General des Telecommunications
Thomson LGT Laboratoire General des Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomcast, LGT Laboratoire General des Telecommunications, Thomson LGT Laboratoire General des Telecommunications filed Critical Thomcast
Publication of EP0352160A1 publication Critical patent/EP0352160A1/fr
Application granted granted Critical
Publication of EP0352160B1 publication Critical patent/EP0352160B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the present invention relates to an omnidirectional antenna.
  • This antenna is particularly applicable to the transmission of radio or television signals in the UHF band (so-called UHF band), where it will be seen that it provides particularly advantageous advantages.
  • the invention is however not limited to this application or to this frequency band, and could just as well be suitable for a very wide variety of different situations.
  • a radiating system For broadcasting or television antennas, a radiating system must be available (with some exceptions) having the most omnidirectional diagram possible (by "omnidirectional diagram", we mean a diagram with no trough less than 3 dB over 360 °).
  • This system which must also have mechanical characteristics of compactness and lightness making it possible to place it at the top of a pylon while minimizing both the static load (self-weight of the radiating system) and dynamic (taken in the wind) supported by it- this.
  • panel antenna consisting of radiating elements each formed by a dipole placed in front of a reflector, the dipole being oriented vertically or horizontally depending on the polarization. desired.
  • Such a radiating element being a gain element, therefore directive, it is necessary to group four of them, arranged at 90 ° from one another, to obtain the desired omnidirectional diagram.
  • a plurality of these radiating elements are generally superimposed so as to form radiating panels, the reflector being most often common.
  • Each panel is supplied separately with the same phase and same power as all the others (unless you want to play on the shape of the diagram by introducing phase shifts or power variations) by means of a distributor assembly.
  • This pylonet must satisfy two conflicting conditions: - firstly, it must be dimensioned sufficiently to allow the installation of the power supplies for each panel and the passage of a man in the center of the configuration to be able to ensure maintenance: we have seen that each radiating element was supplied by a clean supply coaxial and, since this coaxial must necessarily be placed behind the reflective panel of the radiating element so as not to disturb its operation, the bundle of coaxial cables must pass to the inside of the pylonet, which should therefore be of sufficient size (for faces with eight superimposed radiating elements, there are thus 32 coaxials to pass through this pylonet). For this convenience of installation, and also for good mechanical rigidity, it is therefore desirable that the structure of the pylonet be as wide as possible.
  • the hollows in the diagram will increase as the phase centers of the radiating elements go away.
  • the principle of the rotating field is used, the radiating element then being made up of two plane “bat wings", vertical and perpendicular to each other, crossing their center and 90 ° out of phase with each other.
  • each radiating element being supplied separately by means of a common distributor system, and the two dipoles formed by the "bat wings" of each radiating element being supplied in quadrature aperiodically by a 3 dB coupler.
  • This type of antenna although it has a much smaller overall diameter than an antenna panel system due to the absence of a reflector, and thus makes it possible to significantly reduce the size of the pylonet, has a number of drawbacks, however: - first of all, the need to carry out the aperiodic quadrature supply between the dipoles leads to the use of 3 dB couplers placed in the radiation field, the balancing charge of the coupler having to be sized according to the power at issue, - then, the coaxial cables for supplying the dipoles are located in the radiation field of the antenna and therefore disturb the radiation of the latter by creating hollows in the diagram, - in addition, for equal gain, the total height of the antenna is greater than that of an antenna with radiating panels, also correspondingly causing problems of compensation of the diagram in elevation in the case of antennas with a large number of radiating elements , - finally, the cost price is high due to the mechanical complexity, the presence of 3 dB couplers and the multiplication coaxial power cables.
  • the two types of antennas used up to now for radio or television transmitters in the UHF range are not entirely satisfactory because they do not allow both mechanical performance to be achieved simultaneously ( compactness to limit wind resistance, reduced weight, structure simple to manufacture) than radio (omnidirectionality of the diagram, possibility of accepting a large power) desirable.
  • the present invention proposes to resolve these drawbacks by proposing a new type of antenna which, while having excellent radio-electric properties, is compact, light and achievable at low cost thanks to both its simple mechanical structure. (absence of pylonet, in particular) and the reduction to a minimum of coaxial cable connections.
  • the antenna comprises: - a central, vertical support tube, a plurality of identical radiating networks, regularly distributed around the central tube and each formed by a vertical two-wire line supporting, coupling and supplying symmetrically a plurality of horizontal dipoles, regularly distributed along this two-wire line, and - an equiphase and power distribution system supplying the radiating networks identically and simultaneously from a single coaxial supply line.
  • each radiating network comprises four horizontal dipoles; - the dipoles are of the shortened half-wave type, calculated on the central operating frequency of the antenna with a shortening coefficient of about 0.9, the distance between two consecutive superimposed dipoles is one shortened half-wave, calculated for the central operating frequency of the antenna with a shortening coefficient of approximately 0.85, and the distance from the dipoles to the central axis of the system is a quarter wave not shortened, calculated for the central frequency of antenna operation; - the power distribution system is fully housed inside the central support tube; - The two-wire line has a lower half and an upper half, each of these halves being excited at a point located halfway up by a coaxial line passing inside one of the conductors of the two-wire line, this line being itself connected to the power distribution system located in the central support tube approximately at the connection of the two halves of each two-wire line; - Each branch of the dipole has a substantially circular
  • the invention also relates to a radiating system formed by a plurality of antennas of this type, these antennas being superimposed and supplied distinctly by own coaxials connected to a common distributor.
  • each antenna is then enclosed in a sealed radome, substantially cylindrical, self-supporting and stackable.
  • FIG. 1 shows the general structure of a radiating assembly constituting the antenna according to the invention: this essentially comprises a central support tube 100, vertical, provided in the lower part and in the upper part with fixing plates, respectively 110 and 120, allowing to assemble end to end several superimposed support tubes - and therefore a plurality of identical radiating assemblies - in order to increase the total radiated power.
  • this support tube are arranged at 120 ° from each other three identical radiating networks 200, each comprising a vertical two-wire line with two parallel conductors 210,210 ′ supporting a plurality of horizontal dipoles 220,220 ′ (four in the example shown) regularly distributed along this two-wire line.
  • the radio supply which is brought into 310 by a coaxial cable arriving at the base of the antenna - therefore in an area which will not disturb the radiation pattern very much -, passes (while remaining in coaxial) inside the support tube 120, then is distributed (always coaxial) to each of the three radiating networks by passing inside a horizontal tube 340, mounted halfway up the central tube 100, which also ensures the mechanical maintenance of these radiating networks in combination with support arms 130,140 at the top and bottom.
  • the supply and distribution of radioelectric energy are entirely internal to the antenna structure, which eliminates any possibility of disturbance of the diagram due to the physical presence of supply lines in the field of radiation, as in the case of antennas of the prior art.
  • the antenna does not have a reflective panel.
  • FIG. 2 To increase the radiated power, it is possible to superimpose (FIG. 2) a plurality of modules 10 each formed by a radiating assembly 11 similar to that illustrated in FIG. 1 and supplied by a coaxial 12 connected to a distributor in the lower part of the antenna, and a cylindrical protective radome 13.
  • the assembly is placed at the top of a pylon 14, the upper module being closed by a cover 5 and possibly surmounted by a lightning rod (not shown), as is well known.
  • the radome 13 ( Figures 2 and 3) is a reinforced polyester cylinder provided at each of its ends with flanges 16,17 intended for the assembly of the various superimposed modules, thus making it possible to produce a self-supporting radome, which greatly simplifies the mechanical production.
  • the entire system is of course leak-proof.
  • FIGS 4 to 6 describe in more detail the structure of the radiating assembly according to the invention, in particular of the supply of the three dipole networks.
  • the radioelectric power supply connected at 310, is brought to mid-height of the central tube 100, inside of it, by a coaxial line 320 (the return conductor being formed by the very wall of the support tube ) comprising a plurality of sections 321 to 325 of increasing diameters forming a quarter-wave impedance transformer, and held centrally inside the support tube 100 by spacers 326,327.
  • a coaxial line 320 (the return conductor being formed by the very wall of the support tube ) comprising a plurality of sections 321 to 325 of increasing diameters forming a quarter-wave impedance transformer, and held centrally inside the support tube 100 by spacers 326,327.
  • the power is then distributed between the three radiating networks by equiphase and power distribution, always by a coaxial link.
  • the coaxial link 330,340 supplying each of the radiating networks consists ( Figure 6) of a conductor 332, held inside a tube 341 by spacers 333, and one of the ends 331 of which is connected to the common line central 320.
  • This tube 341 constitutes both the return conductor of the coaxial line and a mechanical support connecting the radiating network to the central support tube; for this purpose, this tube 341 is provided at one of its ends with a connection 342 to a part 150 integral with the central tube, and at its other end with a part 343 supporting the two conductors 210, 210 ′ of the two-wire line , which extend on either side of this part 343 ( Figure 7), and consist of hollow tubes of conductive material, for example fixed by brazing.
  • the core 332 of the coaxial line is then connected to a distributor element 334 which symmetrically supplies the upper branch and the lower branch of one of the conductors (in the drawings, the conductor 210 ′) of the two-wire line, l other conductor (conductor 210) being connected to the common ground.
  • the core of the coaxial extends inside the conductor 210 to a point 339 located approximately halfway up each of the two upper and lower branches (this point 339, which will be the point of excitation of the two-wire line, is marked at P in Figures 4 and 5).
  • a conductor produced in two sections 335,336 of increasing diameters so as to act as an impedance transformer, these two sections being held inside the conductor 210 by spacers 337.
  • the end of the supply line then crosses the conductor 210 at 211 to excite the conductor 210 ′ at 339 by means of a transverse connection piece 338.
  • the supply is entirely coaxial from the input connector 310 to the point of excitation P, this coaxial supply system being also entirely contained inside the support structure of the antenna (which therefore plays a dual mechanical and electrical role).
  • the two-wire line carries a plurality of dipoles 220, 220 ′ which will thus be supplied symmetrically and constitutes the radiating members proper of the antenna.
  • the 220,220 ′ dipoles used are of the shortened half-wave type, calculated on the central operating frequency of the antenna with a shortening coefficient of about 0.9.
  • the distance between two consecutive superimposed dipoles is one shortened half-wave, calculated for the central operating frequency of the antenna with a shortening coefficient of about 0.85.
  • the distance from the dipoles to the central axis of the system is a quarter wave, not shortened, calculated for the central operating frequency of the antenna.
  • the impedance reduced to the level of the excitation point P, that is to say of the connection of the two-wire lines supplying the dipoles is 50 ⁇ , the supply being effected by the coaxial lines for which a constant impedance is kept of 50 ⁇ thanks to the transformer system with quarter-wave lines exposed above.
  • the ends of the two-wire line correspond to intensity nodes, and can therefore be grounded directly by the spacers 130, 140, which also provide the mechanical maintenance of the assembly.
  • the assembly can be made of copper or copper alloy tube and assembled by brazing, which makes its mechanical construction particularly simple.
  • the antenna thus formed therefore consists of four superimposed rings (such as those visible in FIG. 3), each formed by three dipoles placed horizontally at 120 ° from one another on three sides of an equilateral triangle, and supplied in phase with equal power.
  • Such a configuration provides, without the aid of any reflector, a quasi-omnidirectional diagram, as can be seen in the figure 8, which represents an azimuth diagram recorded for an antenna comprising an element such as that illustrated in FIGS. 4 to 7 and which we have just described, calculated for a central operating frequency of 520 MHz: as can be seen , the diagram is omnidirectional to within 0.9 dB.
  • Figure 9 shows the diagram of site diagram, the shape of which is quite suitable for a radio or television antenna.
  • the antenna makes it possible to radiate without damage a power of the order of 5 to 7 kW, this power can of course be multiplied by superimposing several identical radiating assemblies.
  • the impedance as indicated above, is 50 ⁇ , the gain of 5 dB is the average standing wave ratio of 1.15.
  • the radiating assemblies are enclosed in radomes of 0.54 m in diameter and 1.16 m high with a windward surface of 0 , 63 m2 (to be compared to a wind catchment area of around 1.35 m2 for an antenna operating in the same range, but produced from antenna panels, as described in the introduction to this description), and a complete module (radome plus radiant assemblies) with a mass of around 40 kg (compared to 375 kg in the case of a panel antenna).
  • FIG. 10 illustrates this phenomenon: there is shown the diagram in azimuth D4 raised for a system with 4 networks, to compare with the diagram D3 for the system with three networks which is the subject of the present description: it can be seen that the maximum troughs are now at least 2 dB instead of 0.9 dB in the other case.
  • the dipoles can be optimized by modifying their shape: instead of providing them rectilinear and forming the three sides of an equilateral triangle exinscribed to the circle passing through the centers of the three two-wire lines (configuration of FIG. 3), we can deform or bend the dipoles so as to bring them closer to the outline of this circle, or even make them match this outline (shape illustrated in broken lines on the figure 3).
  • This improvement makes it possible to reduce the radiation phase shifts between the different points of the dipole and thus to make the azimuth diagram even more omnidirectional.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Transmitters (AREA)

Abstract

Cette antenne, notamment destinée à l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, comprend : - un tube support central (100), vertical, - une pluralité de réseaux rayonnants (200) identiques, de préférence au nombre de trois, régulièrement répartis autour du tube central et formés chacun d'une ligne bifilaire verticale (210,210') supportant, couplant et alimentant de manière symétrique une pluralité de dipôles horizontaux (220,220') régulièrement répartis le long de cette ligne bifilaire, et - un système de distribution de puissance équiphase équipuissance, de préférence entièrement logé à l'intérieur du tube support central, alimentant identiquement et simultanément les trois réseaux rayonnants à partir d'une ligne d'alimentation coaxiale unique. L'antenne est dépourvue de réflecteur, ce qui réduit de façon importante son poids et sa prise au vent par rapport aux antennes classiques à panneaux généralement utilisées dans cette bande. Avantageusement, ces antennes sont superposées et enfermées dans un radôme étanche, sensiblement cylindrique, autoporteur et superposable. Cette antenne procure un diagramme omnidirectionnel à 0,9 dB entre 460 et 860 MHz, et peut rayonner 5 à 7 kW par élément d'antenne.

Description

  • La présente invention concerne une antenne omnidirectionnelle.
  • Cette antenne s'applique particulièrement à l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques (bande dite UHF), où l'on verra qu'elle procure des avantages particulièrement intéressants.
  • L'invention n'est cependant limitée ni à cette application ni à cette bande de fréquences, et pourrait aussi bien convenir à une très grande diversité de situations différentes.
  • Pour les antennes de radiodiffusion ou de télévision, on doit disposer (sauf exception) d'un système rayonnant ayant un diagramme le plus omnidirectionnel possible (par "diagramme omnidirectionnel", on entendra un diagramme ne présentant pas de creux inférieur à 3 dB sur 360°).
  • Ce système qui doit en outre présenter des caractéristiques mécaniques de compacité et de légéreté permettant de le placer au sommet d'un pylône en minimisant aussi bien la charge statique (poids propre du système rayonnant) que dynamique (prise au vent) supportées par celui-ci.
  • On utilise le plus souvent, à cet effet, un système d'antenne dit "antenne à panneaux", constitué à partir d'éléments rayonnants formés chacun d'un dipôle placé devant un réflecteur, le dipôle étant orienté verticalement ou horizontalement selon la polarisation souhaitée.
  • Un tel élément rayonnant étant un élément à gain, donc directif, il est nécessaire d'en grouper quatre, disposés à 90° les uns des autres, pour obtenir le diagramme omnidirectionnel voulu.
  • Pour augmenter la puissance admissible, on superpose généralement une pluralité de ces éléments rayonnants (le plus souvent deux, quatre ou huit éléments rayonnants) de manière à former des panneaux rayonnants, le réflecteur étant le plus souvent commun.
  • Chaque panneau est alimenté séparément avec même phase et même puissance que tous les autres (à moins que l'on ne veuille jouer sur la forme du diagramme en introduisant des déphasages ou des variations de puissance) au moyen d'un ensemble répartiteur.
  • Cette configuration, bien que fonctionnant de manière satisfaisante sur un très grand nombre de stations émettrices actuelles, présente un certain nombre d'inconvénients.
  • Tout d'abord, il est nécessaire de prévoir, au sommet du pylône proprement dit, un pylonet permettant de disposer convenablement les éléments rayonnants superposés formant les quatre faces rayonnantes de la configuration.
  • Ce pylonet doit satisfaire deux conditions antinomiques :
    - en premier lieu, il doit être dimensionné de façon suffisante afin de permettre la mise en place des alimentations de chaque panneau et le passage d'un homme au centre de la configuration pour pouvoir en assurer la maintenance : on a vu en effet que chaque élément rayonnant était alimenté par un coaxial d'alimentation propre et, comme ce coaxial doit nécessairement être placé derrière le panneau réflecteur de l'élément rayonnant pour ne pas perturber le fonctionnement de celui-ci, le faisceau de câbles coaxiaux devra passer à l'intérieur du pylonet, qui devra donc avoir une taille suffisante (pour des faces à huit éléments rayonnants superposés, on a ainsi 32 coaxiaux à faire passer dans ce pylonet).
    Pour cette commodité d'installation, et également pour une bonne rigidité mécanique, il est donc souhaitable que la structure du pylonet soit la plus large possible.
    - en second lieu, du point de vue radio-électrique, les creux du diagramme iront en s'accentuant au fur et à mesure que les centres de phase des éléments rayonnants vont aller en s'éloignant.
    Pour obtenir le diagramme le plus régulier qui soit, il est donc souhaitable de rapprocher autant que possible les éléments rayonnants de chaque groupe, donc de prévoir une section de pylonet la plus faible possible (limitée cependant par la dimension minimale des réflecteurs).
    Pour réduire au minimum la charge statique et la charge dynamique mentionnées plus haut, il est également souhaitable de réduire au minimum la section du pylonet, d'autant plus que l'ensemble rayonnant doit être protégé par un radôme dont la taille, compte tenu de la dimension des éléments rayonnants, va présenter une surface de prise au vent très importante et va donc solliciter d'autant plus le pylône.
  • Un autre inconvénient de ce type d'antenne résulte de la complexité de son système d'alimentation (chacun des éléments rayonnants devant être alimenté par un coaxial propre, comme indiqué plus haut), ce qui oblige à prévoir un grand nombre de coaxiaux d'alimentation secondaires et de boîtes de raccordement ; le prix de revient d'un tel système d'antenne va ainsi croître très vite avec le nombre d'éléments rayonnants.
  • De plus, les pertes vont augmenter rapidement, tant en raison de la multiplication des boîtes de raccordement que de l'allongement des coaxiaux d'alimentation secondaire ; typiquement, pour un système rayonnant à panneaux de huit éléments rayonnants superposés dimensionnés pour la bande 470-860 MHz, la hauteur du pylonet, et donc des coaxiaux les plus longs, est de l'ordre de 12 mètres , ce qui crée des pertes non négligeables dans une telle gamme de fréquences.
  • On aboutit ainsi, typiquement, à des sections de pylonet de l'ordre de 0,8 x 0,8 m et des diamètres de radôme de l'ordre du mètre pour des émissions dans la bande des 470-860 MHz, un groupe de quatre panneaux avec son radôme ayant une masse propre de 350 à 400 kg et présentant une surface au vent de l'ordre de 1,3 m².
  • Un autre type d'antenne convenant à l'usage précité, bien que moins utilisé, est l'antenne dite "supertourniquet".
  • Dans ce type d'antenne, pour obtenir le diagramme omnidirectionnel souhaité, on utilise le principe du champ tournant, l'élément rayonnant étant alors constitué de deux "ailes de chauve-souris" planes, verticales et perpendiculaires entre elles, se croisant en leur centre et déphasée de 90° l'une par rapport à l'autre.
  • On superpose ainsi un nombre élevé d'éléments rayonnants, chaque élément rayonnant étant alimenté séparément grâce à un système répartiteur commun, et les deux dipôles formés par les "ailes de chauve-­souris" de chaque élément rayonnant étant alimentées en quadrature de manière apériodique par un coupleur 3 dB.
  • Ce type d'antenne, bien qu'il présente un diamètre hors-tout beaucoup plus réduit qu'un système à panneaux d'antenne du fait de l'absence de réflecteur, et permette ainsi de réduire de façon importante le dimensionnement du pylonet, présente cependant un certain nombre d'inconvénients :
    - tout d'abord, la nécessité de réaliser l'alimentation apériodique en quadrature entre les dipôles entraîne l'utilisation de coupleurs 3 dB placés dans le champ de rayonnement, la charge d'équilibrage du coupleur devant être dimensionnée en fonction de la puissance à émettre,
    - ensuite, les câbles coaxiaux d'alimentation des dipôles sont situés dans le champ de rayonnement de l'antenne et donc perturbent le rayonnement de celle-ci en créant des creux dans le diagramme,
    - de plus, à gain égal, la hauteur totale d'antenne est supérieure à celle d'une antenne à panneaux rayonnants, entraînant en outre corrélativement des problèmes de compensation du diagramme en site dans le cas des antennes à grand nombre d'éléments rayonnants,
    - enfin, le prix de revient en est élevé du fait de la complexité mécanique, de la présence des coupleurs 3 dB et de la multiplication des câbles d'alimentation coaxiaux.
  • Comme on le voit donc, les deux types d'antennes utilisés jusqu'à présent pour les émetteurs de radiodiffusion ou de télévision dans la gamme des ondes décimétriques ne donnent pas entière satisfaction car ils ne permettent pas d'atteindre simultanément les performances tant mécaniques (compacité pour limiter la prise au vent, poids réduit, structure simple à fabriquer) que radioélectriques (omnidirectionnalité du diagramme, possibilité d'accepter une puissance importante) souhaitables.
  • La présente invention se propose de résoudre ces inconvénients, en proposant un nouveau type d'antenne qui, tout en présentant d'excellentes propriétés radio-électriques, soit compacte, légère et réalisable à un coût modique grâce à la fois à sa structure mécanique simple (absence de pylonet, notamment) et à la réduction à un minimum des raccordements en câbles coaxiaux.
  • A cet effet, selon l'invention, l'antenne comporte :
    - un tube support central, vertical,
    - une pluralité de réseaux rayonnants identiques, régulièrement répartis autour du tube central et formés chacun d'une ligne bifilaire verticale supportant, couplant et alimentant de manière symétrique une pluralité de dipôles horizontaux, régulièrement répartis le long de cette ligne bifilaire, et
    - un système de distribution de puissance équiphase équipuissance alimentant identiquement et simultanément les réseaux rayonnants à partir d'une ligne d'alimentation coaxiale unique.
  • Selon un certain nombre de caractéristiques avantageuses :
    - les réseaux rayonnants sont au nombre de trois ;
    - chaque réseau rayonnant comporte quatre dipôles horizontaux ;
    - les dipôles sont du type demi-onde raccourcie, calculée sur la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,9 environ, la distance entre deux dipôles superposés consécutifs est d'une demi-onde raccourcie, calculée pour la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,85 environ, et la distance des dipôles à l'axe central du système est d'un quart d'onde non raccourci, calculé pour la fréquence centrale de fonctionnement de l'antenne ;
    - le système de distribution de puissance est entièrement logé à l'intérieur du tube support central ;
    - la ligne bifilaire comporte une moitié inférieure et une moitié supérieure, chacune des ces moitiés étant excitée en un point situé à mi-hauteur par une ligne coaxiale passant à l'intérieur de l'un des conducteurs de la ligne bifilaire, cette ligne étant elle-même reliée au système de distribution de puissance situé dans le tube support central approximativement au niveau du raccordement des deux moitiés de chaque ligne bifilaire ;
    - chaque branche du dipôle présente une courbure sensiblement circulaire dont le centre de courbure se situe approximativement sur l'axe central de l'antenne.
  • L'invention a également pour objet un système rayonnant formé d'une pluralité d'antennes de ce type, ces antennes étant superposées et alimentées distinctement par des coaxiaux propres reliés à un répartiteur commun.
  • De préférence, chaque antenne est alors enfermée dans un radôme étanche, sensiblement cylindrique, autoporteur et superposable.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux dessins annexés sur lesquels :
    • - la figure 1 est une vue perspective d'un ensemble rayonnant constituant l'antenne selon l'invention,
    • - la figure 2 montre une pluralité de ces ensembles rayonnants, superposés et couplés de manière à accroître la puissance rayonnée, l'ensemble étant protégé par un radôme extérieur,
    • - la figure 3 est une coupe selon la ligne III-III de la figure 2, montrant l'ensemble rayonnant de la présente invention vu de dessus,
    • - la figure 4 est une vue en élévation, partiellement en coupe, de l'ensemble rayonnant de la figure 1,
    • - la figure 5 est une vue de face, prise selon la direction V-V de la figure 4, de l'un des trois réseaux rayonnants que comporte cet ensemble rayonnant,
    • - la figure 6 est une vue de dessus, en coupe selon la ligne VI-VI de la figure 4, montrant le détail de la première section du coaxial d'alimentation du réseau rayonnant,
    • - la figure 7 est une vue de face, en coupe, correspondant à la région repérée VII sur la figure 5, montrant plus en détail l'une des deux branches constituant la seconde section de ce coaxial d'alimentation,
    • - la figure 8 est un diagramme en azimut relevé pour une antenne selon l'invention, montrant le caractère omnidirectionnel du diagramme de celle-ci,
    • - la figure 9 et le diagramme en site correspondant à cette même antenne, et
    • - la figure 10 est une comparaison des diagrammes en azimut que l'on aurait pour deux antennes similaires dont l'une comporterait trois réseaux rayonnants à 120° (comme sur les figures 1 à 7), et l'autre quatre réseaux rayonnants à 90°.
  • Les mêmes références numériques renvoient, sur toutes les figures, à des éléments semblables.
  • La figure 1 montre la structure générale d'un ensemble rayonnant constituant l'antenne selon l'invention : celui-ci comprend essentiellement un tube support central 100, vertical, pourvu en partie inférieure et en partie supérieure de plaques de fixation, respectivement 110 et 120, permettant d'assembler bout à bout plusieurs tubes supports superposés - et donc une pluralité d'ensembles rayonnants identiques- afin d'augmenter la puissance rayonnée totale.
  • Autour de ce tube support sont disposés à 120° les uns des autres trois réseaux rayonnants identiques 200, comportant chacun une ligne bifilaire verticale à deux conducteurs parallèles 210,210′ supportant une pluralité de dipôles horizontaux 220,220′ (quatre dans l'exemple représenté) régulièrement répartis le long de cette ligne bifilaire.
  • L'alimentation radioélectrique, qui est amenée en 310 par un câble coaxial arrivant à la base de l'antenne - donc dans une zone qui perturbera peu le diagramme de rayonnement -, passe (en restant en coaxial) à l'intérieur du tube support 120, puis est distribuée (toujours en coaxial) à chacun des trois réseaux rayonnants en passant à l'intérieur d'un tube horizontal 340, monté à mi-hauteur du tube central 100, qui assure également le maintien mécanique de ces réseaux rayonnants en combinaison avec les bras supports 130,140 en partie haute et en partie basse.
  • Comme on le voit, l'alimentation et la distribution d'énergie radioélectrique sont entièrement internes à la structure de l'antenne, ce qui élimine tout possibilité de perturbation du diagramme du fait de la présence physique de lignes d'alimentation dans le champ de rayonnement, comme dans le cas des antennes de l'art antérieur.
  • De façon caractéristique, l'antenne ne comporte pas de panneau réflecteur.
  • Pour augmenter la puissance rayonnée, on peut superposer (figure 2) une pluralité de modules 10 formés chacun d'un ensemble rayonnant 11 semblable à celui illustré sur la figure 1 et alimenté par un coaxial 12 relié à un distributeur en partie basse de l'antenne, et d'un radôme cylindrique de protection 13. L'ensemble est placé au sommet d'un pylône 14, le module supérieur étant fermé par un couvercle 5 et éventuellement surmonté d'un paratonnerre (non représenté), comme cela est bien connu.
  • Le radôme 13 (figures 2 et 3) est un cylindre en polyester armé pourvu à chacune de ses extrémités de collerettes 16,17 destinées à l'assemblage des différents modules superposés, permettant de réaliser ainsi un radôme autoporteur, ce qui en simplifie grandement la réalisation mécanique. L'ensemble du système est bien entendu étanche au ruissellement.
  • Les figures 4 à 6 décrivent plus en détail la structure de l'ensemble rayonnant selon l'invention, notamment de l'alimentation des trois réseaux de dipôles.
  • L'alimentation radioélectrique, raccordée en 310, est amenée jusqu'à mi-hauteur du tube central 100, à l'intérieur de celui-ci, par une ligne coaxiale 320 (le conducteur de retour étant formé par la paroi même du tube support) comportant une pluralité de sections 321 à 325 de diamètres croissants formant transformateur d'impédance quart d'onde, et maintenus centralement à l'intérieur du tube support 100 par des entretoises 326,327.
  • L'alimentation est ensuite distribuée entre les trois réseaux rayonnants par répartition équiphase équipuissance, toujours par une liaison coaxiale.
  • La liaison coaxiale 330,340 alimentant chacun des réseaux rayonnants est constituée (figure 6) d'un conducteur 332, maintenu à l'intérieur d'un tube 341 par des entretoises 333, et dont l'une des extrémités 331 est reliée à la ligne commune centrale 320.
  • Ce tube 341 constitue à la fois le conducteur de retour de la ligne coaxiale et un support mécanique reliant le réseau rayonnant au tube support central ; à cet effet, ce tube 341 est pourvu à l'une de ses extrémités d'une liaison 342 à une pièce 150 solidaire du tube central, et à son autre extrémité d'une pièce 343 supportant les deux conducteurs 210,210′ de la ligne bifilaire, qui s'étendent de part et d'autre de cette pièce 343 (figure 7), et sont constitués de tubes creux en matériau conducteur, par exemple fixés par brasure.
  • L'âme 332 de la ligne coaxiale est ensuite reliée à un élément répartiteur 334 qui alimente de manière symétrique la branche supérieure et la branche inférieure de l'un des conducteurs (sur les dessins, le conducteur 210′) de la ligne bifilaire, l'autre conducteur (le conducteur 210) étant relié à la masse commune.
  • Pour cela, l'âme du coaxial se prolonge à l'intérieur du conducteur 210 jusqu'à un point 339 situé environ à mi-hauteur de chacune des deux branches supérieure et inférieure (ce point 339, qui sera le point d'excitation de la ligne bifilaire, est repéré en P sur les figures 4 et 5).
  • A cet effet, on prévoit, entre ce point 339 et le répartiteur 334, un conducteur, réalisé en deux sections 335,336 de diamètres croissants de manière à faire office de transformateur d'impédance, ces deux sections étant maintenues à l'intérieur du conducteur 210 par des entretoises 337. L'extrémité de la ligne d'alimentation traverse alors le conducteur 210 en 211 pour venir exciter le conducteur 210′ en 339 par l'intermédiaire d'une pièce transversale de raccordement 338.
  • Ainsi, comme on peut le voir, l'alimentation est entièrement coaxiale depuis le connecteur d'entrée 310 jusqu'au point d'excitation P, ce système d'alimentation coaxial étant en outre entièrement contenu à l'intérieur de la structure porteuse de l'antenne (qui joue donc un double rôle mécanique et électrique).
  • La ligne bifilaire porte une pluralité de dipôles 220,220′ qui vont ainsi être alimentés symétriquement et constitue les organes rayonnants proprement dit de l'antenne.
  • Les dipôles 220,220′ utilisés sont du type demi-onde raccourcie, calculée sur la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,9 environ.
  • La distance entre deux dipôles superposés consécutifs est d'une demi-­onde raccourcie, calculée pour la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,85 environ.
  • La distance des dipôles à l'axe central du système est d'un quart d'onde, non raccourcie, calculée pour la fréquence centrale de fonctionnement de l'antenne.
  • L'impédance ramenée au niveau du point d'excitation P, c'est-à-dire du raccordement des lignes bifilaires alimentant les dipôles est de 50 Ω, l'alimentation s'effectuant par les lignes coaxiales pour lesquelles on conserve une impédance constante de 50 Ω grâce au système de transformateurs à lignes quart d'onde exposée plus haut.
  • On notera que les extrémités de la ligne bifilaire correspondent à des noeuds d'intensité, et peuvent donc être mis à la masse directement par les entretoises 130,140, qui assurent en outre le maintien mécanique de l'ensemble.
  • L'ensemble peut être réalisé en tube de cuivre ou d'alliage cuivreux et assemblé par brasure, ce qui en rend la réalisation mécanique particulièrement simple.
  • Du point de vue électrique, l'antenne ainsi constituée se compose donc de quatre couronnes superposées (telles que celles visibles sur la figure 3), formées chacune de trois dipôles placés horizontalement à 120° l'un de l'autre sur les trois côtés d'un triangle équilatéral, et alimentés en phase avec une puissance égale.
  • Une telle configuration procure, sans l'aide d'aucun réflecteur, un diagramme quasi-omnidirectionnel, comme on peut le voir sur la figure 8, qui représente un diagramme en azimut relevé pour une antenne comportant un élément tel que celui illustré sur les figures 4 à 7 et que l'on vient de décrire, calculé pour une fréquence centrale de fonctionnement de 520 MHz : comme on peut le constater, le diagramme est omnidirectionnel à 0,9 dB près.
  • La figure 9 montre le relevé du diagramme en site, dont la forme convient tout à fait à une antenne de radiodiffusion ou de télévision.
  • En ce qui concerne les performances électriques, on a pu constater que l'antenne permet de rayonner sans dommage une puissance de l'ordre de 5 à 7 kW, cette puissance pouvant bien entendu être multipliée en superposant plusieurs ensembles rayonnants identiques.
  • L'impédance, comme on l'a indiqué plus haut, est de 50 Ω, le gain de 5 dB est le rapport d'ondes stationnaires moyen de 1,15.
  • En ce qui concerne les performances mécaniques, pour des antennes fonctionnant dans la bande 460-860 MHz, les ensembles rayonnants sont enfermés dans des radômes de 0,54 m de diamètre et de 1,16 m de haut présentant une surface au vent de 0,63 m² (à comparer à une surface de prise au vent de l'ordre de 1,35 m² pour une antenne fonctionnant dans la même gamme, mais réalisée à partir de panneaux d'antenne, comme décrit dans l'introduction de la présente description), et un module complet (radôme plus ensembles rayonnants) à une masse d'environ 40 kg (contre 375 kg dans le cas d'une antenne à panneaux).
  • Le choix consistant à grouper des réseaux de dipôles au nombre de trois n'est pas limitatif, mais il est particulièrement avantageux.
  • En effet, si l'on augmente le nombre de réseaux, les extrémités adjacentes des dipôles d'une même couronne vont se trouver de plus en plus rapprochés, ce qui va augmenter leur couplage mutuel et accentuer les creux du diagramme.
  • La figure 10 illustre ce phénomène : on y a représenté le diagramme en azimut D₄ relévé pour un système à 4 réseaux, à comparer au diagramme D₃ pour le système à trois réseaux faisant l'objet de la présente description : on constate que les creux maximaux sont maintenant d'au moins 2 dB au lieu de 0,9 dB dans l'autre cas.
  • La solution à trois réseaux est donc celle qui donne le diagramme le plus homogène.
  • Enfin, en variante, on peut optimiser les dipôles en modifiant leur forme : au lieu de les prévoir rectilignes et formant les trois côtés d'un triangle équilatéral exinscrit au cercle passant par les centres des trois lignes bifilaires (configuration de la figure 3), on peut déformer ou courber les dipôles de manière à les rapprocher du contour de ce cercle, ou même leur faire épouser ce contour (forme illustrée en trait interrompu sur la figure 3).
  • Cette amélioration permet de réduire les déphasages de rayonnement entre les différents points du dipôle et ainsi de rendre encore plus omnidirectionnel le diagramme en azimut.

Claims (11)

1. Une antenne omnidirectionnelle, notamment pour l'émission de signaux de radio-diffusion ou de télévision dans la bande des ondes décimétriques, caractérisée par :
- un tube support central (100), vertical,
- une pluralité de réseaux rayonnants (200) identiques, régulièrement répartis autour du tube central et formés chacun d'une ligne bifilaire verticale (210,210′) supportant, couplant et alimentant de manière symétrique une pluralité de dipôles horizontaux (220,220′) régulièrement répartis le long de cette ligne bifilaire, et
- un système de distribution de puissance équiphase équipuissance (320) alimentant identiquement et simultanément les réseaux rayonnants à partir d'une ligne d'alimentation coaxiale unique.
2. L'antenne de la revendication 1, dans laquelle les réseaux rayonnants (200) sont au nombre de trois.
3. L'antenne de l'une des revendications 1 et 2, dans laquelle chaque réseau rayonnant (200) comporte quatre dipôles horizontaux (220,220′).
4. L'antenne de l'une des revendications 1 à 3, dans laquelle les dipôles (220,220′) sont du type demi-onde raccourcie, calculée sur la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,9 environ.
5. L'antenne de l'une des revendications 1 à 4, dans laquelle la distance entre deux dipôles (220,220′) superposés consécutifs est d'une demi-onde raccourcie, calculée pour la fréquence centrale de fonctionnement de l'antenne avec un coefficient de raccourcissement de 0,85 environ.
6. L'antenne de l'une des revendications 1 à 5, dans laquelle la distance des dipôles (220,220′) à l'axe central du système est d'un quart d'onde non raccourci, calculé pour la fréquence centrale de fonctionnement de l'antenne.
7. L'antenne de l'une des revendications 1 à 6, dans laquelle le système de distribution de puissance (320) est entièrement logé à l'intérieur du tube support central.
8. L'antenne de l'une des revendications 1 à 7, dans laquelle la ligne bifilaire (210,210′) comporte une moitié inférieure et une moitié supérieure, chacune des ces moitiés étant excitée en un point (P) situé à mi-hauteur par une ligne coaxiale (335,336) passant à l'intérieur de l'un (210) des conducteurs de la ligne bifilaire, cette ligne étant elle-même reliée au système de distribution de puissance situé dans le tube support central approximativement au niveau du raccordement des deux moitiés de chaque ligne bifilaire.
9. L'antenne de l'une des revendications 1 à 7, dans laquelle chaque branche du dipôle présente une courbure sensiblement circulaire dont le centre de courbure se situe approximativement sur l'axe central de l'antenne.
10. Un système rayonnant formé d'une pluralité d'antennes (11) selon l'une des revendications 1 à 9, ces antennes étant superposées et alimentées distinctement par des coaxiaux (12) propres reliés à un répartiteur commun.
11. Le système rayonnant de la revendication 10, dans laquelle chaque antenne (11) est enfermée dans un radôme (13) étanche, sensiblement cylindrique, autoporteur et superposable.
EP89401887A 1988-07-22 1989-06-30 Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes Expired - Lifetime EP0352160B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8809940 1988-07-22
FR8809940A FR2634598B1 (fr) 1988-07-22 1988-07-22 Antenne omnidirectionnelle, notamment pour l'emission de signaux de radiodiffusion ou de television dans la bande des ondes decimetriques, et systeme rayonnant forme d'un groupement de ces antennes

Publications (2)

Publication Number Publication Date
EP0352160A1 true EP0352160A1 (fr) 1990-01-24
EP0352160B1 EP0352160B1 (fr) 1994-06-15

Family

ID=9368690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401887A Expired - Lifetime EP0352160B1 (fr) 1988-07-22 1989-06-30 Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes

Country Status (8)

Country Link
EP (1) EP0352160B1 (fr)
JP (1) JPH0269004A (fr)
AT (1) ATE107436T1 (fr)
CA (1) CA1324657C (fr)
DE (1) DE68916121T2 (fr)
ES (1) ES2054055T3 (fr)
FR (1) FR2634598B1 (fr)
HK (1) HK83896A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721757A1 (fr) * 1994-06-28 1995-12-29 Jac International Antenne omnidirectionnelle en azimut et directive en site et répondeur maritime ainsi équipé.
EP0887881A2 (fr) * 1997-06-30 1998-12-30 Harris Corporation Système d' alimentation et de support pour une antenne
WO2004091042A1 (fr) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Reflecteur destine notamment a une antenne de telephonie mobile
US6930651B2 (en) 2003-04-11 2005-08-16 Kathrein-Werke Kg Reflector for a mobile radio antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20319983U1 (de) * 2003-12-23 2004-08-19 Kathrein-Werke Kg Blitzschutz für Antennenanlagen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB487708A (en) * 1936-04-28 1938-06-24 Marconi Wireless Telegraph Co Improvements in or relating to aerial and feeder systems
DE1183976B (de) * 1961-10-24 1964-12-23 Telefunken Patent Antennenanordnung, bestehend aus uebereinandergesetzten Rundstrahlgruppen
DE2026984A1 (de) * 1970-05-27 1971-12-09 Licentia Gmbh Antenne, vorzugsweise für Dezimeterwellen, mit in der Horizontalen in mehrere Richtungen gerichteter Abstrahlung
EP0082053A1 (fr) * 1981-12-15 1983-06-22 Thomson-Csf Ensemble rayonnant à deux antennes superposées travaillant dans une même gamme de fréquences

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB487708A (en) * 1936-04-28 1938-06-24 Marconi Wireless Telegraph Co Improvements in or relating to aerial and feeder systems
DE1183976B (de) * 1961-10-24 1964-12-23 Telefunken Patent Antennenanordnung, bestehend aus uebereinandergesetzten Rundstrahlgruppen
DE2026984A1 (de) * 1970-05-27 1971-12-09 Licentia Gmbh Antenne, vorzugsweise für Dezimeterwellen, mit in der Horizontalen in mehrere Richtungen gerichteter Abstrahlung
EP0082053A1 (fr) * 1981-12-15 1983-06-22 Thomson-Csf Ensemble rayonnant à deux antennes superposées travaillant dans une même gamme de fréquences

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES, vol. 30, no. 2, mars 1982, pages 272-278, Tokyo, JP; T. NAGATSU et al.: "Base station RF equipment for medium capacity cell site system" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721757A1 (fr) * 1994-06-28 1995-12-29 Jac International Antenne omnidirectionnelle en azimut et directive en site et répondeur maritime ainsi équipé.
EP0887881A2 (fr) * 1997-06-30 1998-12-30 Harris Corporation Système d' alimentation et de support pour une antenne
EP0887881A3 (fr) * 1997-06-30 2000-07-19 Harris Corporation Système d' alimentation et de support pour une antenne
WO2004091042A1 (fr) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Reflecteur destine notamment a une antenne de telephonie mobile
US6930651B2 (en) 2003-04-11 2005-08-16 Kathrein-Werke Kg Reflector for a mobile radio antenna
US7023398B2 (en) 2003-04-11 2006-04-04 Kathrein-Werke Kg Reflector for a mobile radio antenna

Also Published As

Publication number Publication date
DE68916121D1 (de) 1994-07-21
FR2634598B1 (fr) 1990-10-05
ATE107436T1 (de) 1994-07-15
DE68916121T2 (de) 1994-09-29
ES2054055T3 (es) 1994-08-01
EP0352160B1 (fr) 1994-06-15
FR2634598A1 (fr) 1990-01-26
HK83896A (en) 1996-05-17
JPH0269004A (ja) 1990-03-08
CA1324657C (fr) 1993-11-23

Similar Documents

Publication Publication Date Title
EP0886889B1 (fr) Antenne reseau imprimee large bande
EP3646409B1 (fr) Structure antennaire colinéaire à accès indépendants
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
EP0205393A1 (fr) Antenne omnidirectionnelle cylindrique
CA2148796C (fr) Antenne fil-plaque monopolaire
EP1979987B1 (fr) Antenne a polarisation circulaire ou lineaire
EP0546913B1 (fr) Antenne à réflecteur fixe pour plusieurs faisceaux de télécommunications
FR3090220A1 (fr) Antenne fil-plaque monopolaire
EP2543111B1 (fr) Structure antennaire à dipôles
EP0352160B1 (fr) Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes
EP1181744B1 (fr) Antenne a polarisation verticale
EP0377155B1 (fr) Dispositif rayonnant bifréquence
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP0463263B1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon
EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
EP0082053B1 (fr) Ensemble rayonnant à deux antennes superposées travaillant dans une même gamme de fréquences
EP2226896B1 (fr) Antenne omnidirectionnelle multibande
WO2005124927A1 (fr) Antenne a materiau bip (bande interdite photonique) a paroi laterale entourant un axe
WO2023117192A1 (fr) Dispositif antennaire à deux réseaux de dipôles et systeme de communication associe
EP0626736A1 (fr) Antenne radioélectrique omnidirectionnelle et son application à un répondeur radar
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions
WO1996016453A1 (fr) Antenne de type dipôle demi-onde
WO1998001920A1 (fr) Dispositif d'emission a antenne omnidirectionnelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB IT LI LU NL

17P Request for examination filed

Effective date: 19900424

17Q First examination report despatched

Effective date: 19920728

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMCAST

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940603

Year of fee payment: 6

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB IT LI LU NL

REF Corresponds to:

Ref document number: 107436

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940629

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 6

Ref country code: LU

Payment date: 19940630

Year of fee payment: 6

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68916121

Country of ref document: DE

Date of ref document: 19940721

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054055

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

Ref country code: BE

Effective date: 19950630

Ref country code: AT

Effective date: 19950630

BERE Be: lapsed

Owner name: THOMCAST

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960614

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19970701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630