EP0351380A2 - Optical system for permanent luminous signals of different colours, especially for railway signalling - Google Patents

Optical system for permanent luminous signals of different colours, especially for railway signalling Download PDF

Info

Publication number
EP0351380A2
EP0351380A2 EP89830310A EP89830310A EP0351380A2 EP 0351380 A2 EP0351380 A2 EP 0351380A2 EP 89830310 A EP89830310 A EP 89830310A EP 89830310 A EP89830310 A EP 89830310A EP 0351380 A2 EP0351380 A2 EP 0351380A2
Authority
EP
European Patent Office
Prior art keywords
lens
optical system
face
concave
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89830310A
Other languages
German (de)
French (fr)
Other versions
EP0351380A3 (en
EP0351380B1 (en
Inventor
Luigi Vannini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LABORATORIO OTTICO FIORENTINO di VANNINI LUIGI
Original Assignee
LABORATORIO OTTICO FIORENTINO di VANNINI LUIGI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LABORATORIO OTTICO FIORENTINO di VANNINI LUIGI filed Critical LABORATORIO OTTICO FIORENTINO di VANNINI LUIGI
Publication of EP0351380A2 publication Critical patent/EP0351380A2/en
Publication of EP0351380A3 publication Critical patent/EP0351380A3/en
Application granted granted Critical
Publication of EP0351380B1 publication Critical patent/EP0351380B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders

Definitions

  • the present invention relates to an optical system for a signaling device with signals of variable color, permanently illuminated, in particular for railway signals.
  • the devices for permanently emitting light signals used an electro-optical-mechanical system constituted by a spherical mirror at the center of curvature of which the light source of a bulb and an aspherical lens having its focal point coincide with the center of the light source.
  • the different colorations of the signal were obtained using several flat filters, of colored glass, arranged in series, perpendicular to the axis of the conical beam of the light rays, at a point located between the light source and the aspherical lens.
  • the selection and control of the mechanism of the color filters was obtained by means of a relay, and therefore proved to be complex and expensive, of low efficiency and resulting in high energy consumption.
  • dichro ques filters arranged in an appropriate way, being able to operate in a static way the selection of the radiations coming from several light sources by switching on and off of the lamps, allow obvious energy savings and a constructive simplification.
  • the present invention aims to eliminate the aforementioned drawbacks in relation to the mechanical bulk, the brightness and the stigmatism of a signaling device with signals of variable color of the type with dichroic filters.
  • an optical system for a signaling device with permanently light signals, of the dichroic filter type, in particular for railway signals, comprising several light sources (filament lamp ) suitably arranged with respect to a dichroic filter system and an aspherical lens of emergence of the beam of rays which constitute the signal, having an appropriate focal distance and with its focal point placed in the center of said filter system dichro ques, a system in which each light source, if it is of the filament type, is placed on the focal point of a parabolic mirror.
  • An intermediate diverging lens, on the second degree surface, with its virtual focus superimposed on that of the output aspherical lens, is arranged at an appropriate distance, perpendicular to the axis of the system, between said center of the dichro filter system and said aspherical emergence lens.
  • said divergent lens with a second degree surface is characterized by a convex spherical face turned towards said aspherical lens, and the center of curvature of which coincides with the focal point of said lens. aspherical, and by a concave ellipso dal face which is determined from the distance between the aspherical lens and its focal point and by the section necessary for the beam of rays coming from the parabolic mirrors.
  • the concave face is the osculating surface of the abovementioned ellipsoidal surface.
  • the intermediate diverging lens is a concave plane-hyperbolic lens with the planar face facing the dichroic filter system, with the hyperbolic concave face facing the aspherical lens and with its virtual focus coincides with that of the aspherical lens.
  • a colored paste filter is interposed between each light source and the corresponding dichro filter to increase the chromatic security of the optical system and / or a spherical recovery mirror having its center of curvature. coincide with the focus of the parabolic mirror in order to prevent the divergent lens from also seeing the real focus of the parabola, in addition to the virtual focus of the aspherical lens
  • the light sources consist of beams of laser rays.
  • the solution proposed by the present invention allows the production of an illumination or signaling device of variable color, in particular, but not exclusively, for railway signaling, which makes it possible to reduce the axial bulk, to increase the brightness , use lamps with more concentrated filaments or xenon lamps of lower power, to reduce energy consumption, to obtain a better stigmatism, to correct possible aberrations even chromatic, especially if the diverging lens is transformed into an aspherical achromatic doublet able to correct chromatically the whole system.
  • an optical system for a signaling device with signals of three different colors, permanently lit, in accordance with the present invention comprises: - three parabolic mirrors 3, with the relative axes respectively, coaxial, at 45 ° and perpendicular to the longitudinal axis XX of the device and with a lamp 5, with very concentrated filament, for example of the xenon type, placed in the focal point F each of said mirrors; - three dichroic filters 6,7 and 8 respectively opposite said mirrors 3 and arranged at appropriate angles according to the principle of the pentagonal prism of Goulier-Prande and produced so that the filter 7 is transparent to a first color (for example yellow) and reflecting a second color (for example green), filter 8 is transparent to said second color (green) and filter 6 is transparent to a third color (for example red) and reflecting for the two aforementioned colors (yellow and green).
  • Said lens 11 is a lens of the type called negative meniscus-elliptical with the concave face 12 facing the filter system and the spherical face 13 facing the aspherical lens 9 and whose center of curvature coincides with the focus F1 of the aspherical lens 9.
  • the concave face of said lens 11 is preferably ellipsoidal and defined by the equation of the Descartes oval, or else spherical following the corresponding osculating sphere.
  • the lenses can be made of optical or semi-optical glass, worked optically or semi-optically, or possibly of plastic material CR39 or any other having an index of between 1.33 and 1.95.
  • the parabolic mirrors can be produced by electroforming of nickel or the like and treated with Rhodium or the like. After determining the focal distance of the aspherical lens 9, the distance between the face 12 of the intermediate lens 11 and the flat face of the lens can be determined. aspherical lens 9 which is turned towards the dichroic filter system and this on the basis of the dimension of axial dimension desired.
  • This diameter in combination with angular connotations concerning the emission of the light source relative to its photometric solid, allows, according to a calculation scheme starting from the Descartes oval and well known to those skilled in the art, to determine the maximum relative efficiency mirror and the useful diameter of the intermediate diverging lens.
  • This diameter with the distance from the focal point of the aspherical lens, provides the basic elements for determining the curvature of the concave face 12 of the intermediate lens 11.
  • the essential characteristics which the diverging lens 11 must have - be located in the conical beam of rays with the virtual focal point placed on the focal point of the aspherical lens so as to obtain the smallest axial bulk; - be correlated, with regard to the aperture and the inter-distance, with the other elements of the system, in relation either to the maximum optical exploitation of the aspherical lens, or to the maximum energy yield of a parabolic mirror of maximum efficiency to obtain the maximum brightness; - have a second degree surface to solve the problem of spherical aberration and achieve the stigmatism of the desired optical path.
  • the divergent lens there are many solutions.
  • a concave plane-hyperbolic lens 14 indicated as a second embodiment, (see FIGS. 3 and 3A of the appended drawings) with the plane face 15 facing the dichro filter system and the concave face 16 towards the aspherical lens 9.
  • the various calculations are carried out in an analogous manner taking into account the fact that the Descartes oval is transformed into a hyperbola whose focal point is coincident with the focal point F1 of the aspherical lens 9
  • "a" can be fixed between 0.5 and 200 mm and the thickness "s" between 0.2 and 15 mm.
  • the face of said plane-hyperbolic lens (14) which faces the aspherical lens (9) can advantageously be of the "Fresnell" type with the prismatic elements positioned so as to obtain the desired diverging effect (FIGS. 8 and 8A).
  • the convex face of the diverging lens 11 is treated at least with a monomolecular layer of magnesium fluoride (Mg F2), in particular in the case of non-exuberance of energy and to significantly reduce the so-called "fantasy effect".
  • Mg F2 magnesium fluoride
  • Anti-reflective treatment can be more effectively multi-layered.
  • each dichro filter that 6,7,8 a spherical mirror 18 for recovering radiation, preferably obtained by an aluminizing treatment and protection with silicon monoxide , which is oriented so that the center of curvature coincides with the focal point F of the corresponding parabolic mirror, in order to prevent the divergent lens 11 from also directly seeing the real focal point of the parabola, in addition to the beam of rays coming, by reflection, from parabolic mirrors.
  • an anti-Newton glass plate to allow a slight diffusion of the beam. issued; this plate can be placed in front of each light source or at any useful point on the axis XX and perpendicular thereto.
  • an anti-Newton effect the flat face of the aspherical lens 9 or one face of the divergent lens 11 and / or that of the parabolic mirrors 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optical Communication System (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

In order to form an optical system for permanent luminous signals of three different colours, in particular for railway signalling, which has a smaller size, a greater luminosity and a higher stigmatism as compared with the systems known hitherto, and comprising three light sources 5 of different colour, with three corresponding mirrors 3 and three corresponding dichroic filters 6,7,8 arranged according to the Gouiler-Prande pentagonal prism, and with an aspheric emergence lens 9, it is provided for the aspheric lens 9 to be arranged with its focal point F coinciding with the centre 10 of the pentagonal prism, and for a divergent lens 11 of quadric surface and with virtual focus to be placed between the said centre 10 and the said aspheric lens 9, and with the axes of the divergent lens 11 and of the aspheric lens 9 coinciding. The said divergent lens 11 is of the negative-elliptical meniscus type, the spherical convex face of which, turned towards the aspheric lens 9, has its centre of curvature coinciding with the focal point of the said aspheric lens, and the concave face of which, ellipsoidal or spherical, can be obtained from Descartes' general equation. As an alternative, the divergent lens 11 is of the concave plano-hyperbolic type, or spherical plano-concave type, with the concave face turned towards the aspheric lens 9 and with the focal point coinciding with that of the said aspheric lens 9. The said mirrors 3 are of the parabolic type with maximum relative output. <IMAGE>

Description

La présente invention concerne un système optique pour dispositif de signalisation avec signaux de couleur variable, lumineux en permanence, en particulier pour des signaux ferroviaires.The present invention relates to an optical system for a signaling device with signals of variable color, permanently illuminated, in particular for railway signals.

Il est connu qu'avant l'avènement des filtre dichro ques, les dispositifs d'émission de signaux lumineux en permanence utilisaient un système électro-optique-mécanique constitué par un miroir sphérique au centre de courbure duquel était disposée la source lumineuse d'une ampoule et une lentille asphérique ayant son foyer co ncident avec le centre de la source lumineuse. Les différentes colorations du signal étaient obtenues à l'aide de plusieurs filtres plans, de verre coloré, disposés en série, perpendiculairement à l'axe du faisceau conique des rayons lumineux, en un point situé entre la source lumineuse et la lentille asphérique. La sélection et la commande du mécanisme des filtres colorés étaient obtenues au moyen d'un relais, et de ce fait s'avéraient de réalisation complexe et coûteuse, de faible efficacité et entra ne une consommation d'énergie élevée.It is known that before the advent of dichroic filters, the devices for permanently emitting light signals used an electro-optical-mechanical system constituted by a spherical mirror at the center of curvature of which the light source of a bulb and an aspherical lens having its focal point coincide with the center of the light source. The different colorations of the signal were obtained using several flat filters, of colored glass, arranged in series, perpendicular to the axis of the conical beam of the light rays, at a point located between the light source and the aspherical lens. The selection and control of the mechanism of the color filters was obtained by means of a relay, and therefore proved to be complex and expensive, of low efficiency and resulting in high energy consumption.

Avec l'avènement des filtres dichro ques, leur application à la signalisation ferroviaire avec des signaux lumineux permanents a permis d'éliminer les éléments mobiles du système; les filtres dichro ques disposés de manière appropriée, pouvant opérer de manière statique la sélection des radiations provenant de plusieurs sources lumineuses par allumage et extinction des lampes, permettent d'évidentes économies d'énergie et une simplification constructive.With the advent of dichro c filters, their application to railway signaling with permanent light signals helped to eliminate the moving parts of the system; dichro ques filters arranged in an appropriate way, being able to operate in a static way the selection of the radiations coming from several light sources by switching on and off of the lamps, allow obvious energy savings and a constructive simplification.

Toutefois, dans le cadre de telles solutions, des problèmes considérables restaient quand même non résolus, lesquels nuisaient à la luminosité, à l'encombrement et à la perfection optique des systèmes optiques utilisés. En effet pour résoudre, dans les systèmes optiques aussi bien mobiles que statiques, le problème de la convergence du filament réèl de la lampe dans le foyer de la lentille asphérique principale, étaient utilisés soit des condensateurs optiques soit des miroirs elliptiques. D'autre part, les condensateurs optiques présentaient l'inconvénient d'augmenter le parcours axial en raison de la nécessité de refaire converger l'image du filament dans le foyer de la lentille asphérique, entra nant une augmentation inacceptable de l'encombrement du dispositif de signalisation; en outre, l'emploi d'éléments optiques non parfaitement corrigés des aberrations sphériques, provoque un manque non négligeable de stigmatisme auquel s'ajoute par ailleurs la possibilité de n'obtenir que de faibles ouvertures. De leur côté, les miroirs elliptiques comportent l'inconvénient de l'agrandissement. L'exigence d'une plus grande luminosité nécessite en effet l'augmentation de l'ouverture relative, mais, à égalité d'ouvertures, il est nécessaire de réduire le premier foyer du miroir elliptique et ceci provoque un agrandissement plus important de la source lumineuse dans la superposition au foyer de la lentille principale, entra nant une aberration majeure des radiations émises et un plus faible efficacité lumineuse. Par ailleurs, le fait de ne pas avoir à utiliser des miroirs très enveloppants compromet en outre la luminosité qui découle de l'angle solide capté maximum.However, in the context of such solutions, considerable problems still remained unsolved, which adversely affected the brightness, the bulk and the optical perfection of the optical systems used. Indeed to solve, in both mobile and static optical systems, the problem of the convergence of the real filament of the lamp in the focal point of the main aspherical lens, were used either optical capacitors or elliptical mirrors. On the other hand, optical capacitors had the disadvantage of increasing the axial path due to the need to redo converge the image of the filament in the focal point of the aspherical lens, resulting in an unacceptable increase in the size of the device. signaling; in addition, the use of optical elements which are not perfectly corrected for spherical aberrations causes a considerable lack of stigmatism, to which is added the possibility of obtaining only small apertures. For their part, elliptical mirrors have the drawback of enlargement. The requirement a greater luminosity indeed requires the increase of the relative opening, but, with equal openings, it is necessary to reduce the first focus of the elliptical mirror and this causes a greater enlargement of the light source in the superposition on the focal point of the main lens, leading to a major aberration of the emitted radiation and lower luminous efficacy. In addition, the fact of not having to use very enveloping mirrors further compromises the brightness which results from the maximum solid angle received.

La présente invention a pour but d'éliminer les inconvénients précités en relation avec l'encombrement mécanique, la luminosité et le stigmatisme d'un dispositif de signalisation avec des signaux de couleur variable du type à filtres dichro ques.The present invention aims to eliminate the aforementioned drawbacks in relation to the mechanical bulk, the brightness and the stigmatism of a signaling device with signals of variable color of the type with dichroic filters.

Ce résultat a été atteint conformément à l'invention en réalisant un système optique pour dispositif de signalisation, avec des signaux lumineux de façon permanente, du type à filtres dichro ques, en particulier pour des signaux ferroviaires, comprenant plusieurs sources lumineuses (lampe à filament) opportunément disposées par rapport à un système de filtres dichro ques et une lentille asphérique d'émergence du faisceau de rayons qui constituent le signal, ayant une distance focale appropriée et avec son foyer placé au centre dudit système de filtres dichro ques, système dans lequel chaque source lumineuse, si elle est du type à filament, est placée sur le foyer d'un miroir parabolique. Une lentille divergente intermédiaire, à surface du second degré, avec son foyer virtuel superposé à celui de la lentille asphérique de sortie, est disposée à une distance appropriée, perpendiculairement à l'axe du système, entre ledit centre du système de filtres dichro ques et ladite lentille asphérique d'émergence.This result was achieved in accordance with the invention by providing an optical system for a signaling device, with permanently light signals, of the dichroic filter type, in particular for railway signals, comprising several light sources (filament lamp ) suitably arranged with respect to a dichroic filter system and an aspherical lens of emergence of the beam of rays which constitute the signal, having an appropriate focal distance and with its focal point placed in the center of said filter system dichro ques, a system in which each light source, if it is of the filament type, is placed on the focal point of a parabolic mirror. An intermediate diverging lens, on the second degree surface, with its virtual focus superimposed on that of the output aspherical lens, is arranged at an appropriate distance, perpendicular to the axis of the system, between said center of the dichro filter system and said aspherical emergence lens.

Selon une première forme préférée de mise en oeuvre de l'invention, ladite lentille divergente à surface du second degré est caractérisée par une face convexe sphérique tournée vers ladite lentille asphérique, et dont le centre de courbure est co ncident avec le foyer de ladite lentille asphérique, et par une face concave ellipso dale qui est déterminée à partir de la distance entre la lentille asphérique et son foyer et par la section nécessaire pour le faisceau de rayons provenant des miroirs paraboliques. En variante la face concave est la surface osculatrice de la surface ellipso dale précitée.According to a first preferred embodiment of the invention, said divergent lens with a second degree surface is characterized by a convex spherical face turned towards said aspherical lens, and the center of curvature of which coincides with the focal point of said lens. aspherical, and by a concave ellipso dal face which is determined from the distance between the aspherical lens and its focal point and by the section necessary for the beam of rays coming from the parabolic mirrors. As a variant, the concave face is the osculating surface of the abovementioned ellipsoidal surface.

Selon une autre forme préférée de mise en oeuvre de l'invention, la lentille divergente intermédiaire est une lentille plan-hyperbolique concave avec la face plane tournée vers le système à filtres dichro ques, avec la face concave hyperbolique tournée vers la lentille asphérique et avec son foyer virtuel co ncident avec avec celui de la lentille asphérique.According to another preferred embodiment of the invention, the intermediate diverging lens is a concave plane-hyperbolic lens with the planar face facing the dichroic filter system, with the hyperbolic concave face facing the aspherical lens and with its virtual focus coincides with that of the aspherical lens.

Avantageusement, il est possible d'obtenir des miroirs paraboliques de rendement relatif maximal en effectuant les calculs des distances et des courbures des surfaces du second degré en partant de l'ovale de Descartes et en tenant compte du solide photométrique de la source lumineuse.Advantageously, it is possible to obtain parabolic mirrors of maximum relative efficiency by performing the calculations of the distances and curvatures of the surfaces of the second degree starting from the oval of Descartes and taking into account the photometric solid of the light source.

Suivant d'autres caractéristiques, conformément à l'invention, entre chaque source lumineuse et le filtre dichro que correspondant est interposé un filtre coloré en pâte pour augmenter la sécurité chromatique du système optique et/ou un miroir sphérique de récupération ayant son centre de courbure co ncident avec le foyer du miroir parabolique dans le but d'empêcher que la lentille divergente ne voit également le foyer réèl de la parabole, en plus du foyer virtuel de la lentille asphériqueAccording to other characteristics, in accordance with the invention, between each light source and the corresponding dichro filter, a colored paste filter is interposed to increase the chromatic security of the optical system and / or a spherical recovery mirror having its center of curvature. coincide with the focus of the parabolic mirror in order to prevent the divergent lens from also seeing the real focus of the parabola, in addition to the virtual focus of the aspherical lens

Selon d'autres caractéristiques, conformément à l'invention, et à la place des faisceaux émis par les miroirs paraboliques, les sources lumineuses sont constitués par des faisceaux de rayons laser.According to other characteristics, in accordance with the invention, and in place of the beams emitted by the parabolic mirrors, the light sources consist of beams of laser rays.

La solution proposée par la présente invention permet la réalisation d'un dispositif d'illumination ou de signalisation de couleur variable, en particulier, mais non exclusivement, pour la signalisation ferroviaire, qui permet de réduire l'encombrement axial, d'augmenter la luminosité, d'utiliser des lampes pourvues de filaments plus concentrés ou des lampes xénon de plus petite puissance, de réduire la consommation d'énergie, d'obtenir un meilleur stigmatisme, de corriger d'événtuelles aberrations même chromatiques, spécialement si la lentille divergente se transforme en un doublet asphérique achromatique apte à corriger chromatiquement tout le système.The solution proposed by the present invention allows the production of an illumination or signaling device of variable color, in particular, but not exclusively, for railway signaling, which makes it possible to reduce the axial bulk, to increase the brightness , use lamps with more concentrated filaments or xenon lamps of lower power, to reduce energy consumption, to obtain a better stigmatism, to correct possible aberrations even chromatic, especially if the diverging lens is transformed into an aspherical achromatic doublet able to correct chromatically the whole system.

Ces avantages et caractéristiques ainsi que d'autres seront plus et mieux compris de chaque homme du métier à la lumière de la description qui va suivre et à l'aide des dessins annexés donnés à titre d'exemplification pratique de l'invention, mais à ne pas considérer dans le sens limitatif; dessins sur lesquels:

  • la FIG. 1 représente une vue de dessus en coupe suivant un plan horizontal axial, d'un dispositif de signalisation, conformément à l'invention, selon une première forme de réalisation;
  • la FIG 2 représente la vue de dessus d'une première lentille divergente intermédiaire (ménisque elliptique-négative) pour le dispositif de la Fig 1;
  • la FIG 2A représente la vue en coupe partielle suivant la ligne A-A de la Fig. 2;
  • la FIG. 3 représente la vue de dessus du détail d'une deuxième lentille divergente intermédiaire (plan-hyperbolique concave) pour le dispositif de la Fig.1;
  • la FIG. 3A représente la vue en coupe partielle suivant la ligne A-A de la Fig. 3;
  • la FIG. 4 représente le schéma géométrique pour le calcul d'une lentille ménisque elliptique-­négative conformément à l'invention;
  • la FIG. 5 représente la vue de face du détail d'un miroir de récupération pour le dispositif de la Fig.1;
  • la FIG. 5A représente la vue en coupe suivant la ligne A-A de la Fig. 5;
  • la FIG. 6 représente la vue en plan du détail d'un miroir parabolique de rendement maximum pour le dispositif de la Fig.1;
  • la FIG. 6A représente la vue en coupe suivant la ligne A-A de la Fig. 6;
  • la FIG. 7 représente la vue en plan d'un miroir parabolique simplifié (F=8) pour le dispositif de la Fig.1;
  • la FIG. 7A représente la vue en coupe suivant la ligne A-A de la Fig. 7;
  • la FIG. 8 représente la vue en plan du détail d'une lentille plane négative de "Fresnell";
  • la FIG. 8A représente la vue en coupe partielle suivant la ligne A-A de la Fig. 8.
These advantages and characteristics as well as others will be more and better understood by each person skilled in the art in the light of the description which follows and with the aid of the appended drawings given by way of practical example of the invention, but to do not consider in the limiting sense; drawings in which:
  • FIG. 1 shows a top view in section along an axial horizontal plane, of a signaling device, according to the invention, according to a first embodiment;
  • FIG 2 shows the top view of a first intermediate diverging lens (elliptical-negative meniscus) for the device of Fig 1;
  • FIG 2A shows the partial sectional view along line AA of FIG. 2;
  • FIG. 3 shows the top view of the detail of a second intermediate diverging lens (concave hyperbolic plane) for the device of FIG. 1;
  • FIG. 3A represents the view in partial section along the line AA of FIG. 3;
  • FIG. 4 represents the geometrical diagram for the calculation of an elliptical-negative meniscus lens according to the invention;
  • FIG. 5 shows the front view of the detail of a mirror recovery for the device of Fig.1;
  • FIG. 5A shows the sectional view along line AA of FIG. 5;
  • FIG. 6 shows the plan view of the detail of a parabolic mirror of maximum efficiency for the device of FIG. 1;
  • FIG. 6A shows the sectional view along line AA of FIG. 6;
  • FIG. 7 shows the plan view of a simplified parabolic mirror (F = 8) for the device of FIG. 1;
  • FIG. 7A shows the sectional view along line AA of FIG. 7;
  • FIG. 8 shows the plan view of the detail of a negative planar "Fresnell"lens;
  • FIG. 8A shows the partial sectional view along line AA of FIG. 8.

Réduit à sa structure essentielle et en référence à la Fig. 1 des dessins annexés, un système optique pour dispositif de signalisation avec des signaux de trois couleurs différentes, lumineux en permanence, conformément à la présente invention, comprend:
- trois miroirs paraboliques 3, avec les axes relatifs respectivement, coaxial, à 45° et perpendiculaire par rapport à l'axe longitudinal X-­X du dispositif et avec une lampe 5, avec filament très concentré par exemple du type xénon, placé dans le foyer F de chacun desdits miroirs;
- trois filtres dichro ques 6,7 et 8 respectivement en face desdits miroirs 3 et disposés suivant des angles appropriés suivant le principe du prisme pentagonal de Goulier-Prande et réalisés de manière à ce que le filtre 7 soit transparent à une première couleur (par exemple le jaune) et réfléchissante à une deuxième couleur (par exemple le vert), le filtre 8 est transparent à ladite deuxième couleur (vert) et le filtre 6 est transparent à une troisième couleur (par exemple le rouge) et réfléchissant pour les deux couleurs précitées (jaune et vert). De cette manière, selon la source lumineuse 5 activée, on obtient, le long de l'axe longitudinal X-X du dispositif, un faisceau de rayons parallèles, de la couleur que le filtre dichro que correspondant a laissé passé et qui est réfléchie par les autres filtres rencontrés sur son parcours;
- une lentille asphérique principale 9 de sortie, disposée avec son axe co ncident avec l'axe X-X du faisceau de rayons provenant du système et avec son foyer F1 co ncident avec le point 10 que nous appellerons par la suite centre de symétrie du système;
- une lentille divergente intermédiaire 11 à surface du second degré, et foyer virtuel, disposée entre le centre 10 du système et ladite lentille asphérique 9 et avec son axe sur celui X-X du système. Ladite lentille 11 est une lentille du type appelé ménisque-élliptique négative avec la face concave 12 tournée vers le système de filtres et la face sphérique 13 tournée vers la lentille asphérique 9 et dont le centre de courbure est co ncident avec le foyer F1 de la lentille asphérique 9. La face concave de ladite lentille 11 est de préférence ellipso dale et définie par l'équation de l'ovale de Descartes, ou bien sphérique suivant la sphère osculatrice correspondante.
Reduced to its essential structure and with reference to FIG. 1 of the accompanying drawings, an optical system for a signaling device with signals of three different colors, permanently lit, in accordance with the present invention, comprises:
- three parabolic mirrors 3, with the relative axes respectively, coaxial, at 45 ° and perpendicular to the longitudinal axis XX of the device and with a lamp 5, with very concentrated filament, for example of the xenon type, placed in the focal point F each of said mirrors;
- three dichroic filters 6,7 and 8 respectively opposite said mirrors 3 and arranged at appropriate angles according to the principle of the pentagonal prism of Goulier-Prande and produced so that the filter 7 is transparent to a first color (for example yellow) and reflecting a second color (for example green), filter 8 is transparent to said second color (green) and filter 6 is transparent to a third color (for example red) and reflecting for the two aforementioned colors (yellow and green). In this way, depending on the activated light source 5, one obtains, along the longitudinal axis XX of the device, a beam of parallel rays, of the color which the dichro filter which corresponding has left behind and which is reflected by the others. filters encountered on its route;
- a main aspherical exit lens 9, arranged with its axis coinciding with the axis XX of the beam of rays coming from the system and with its focal point F1 coinciding with point 10 which we will call hereinafter the center of symmetry of the system;
- An intermediate diverging lens 11 with a second degree surface, and virtual focus, disposed between the center 10 of the system and said aspherical lens 9 and with its axis on that XX of the system. Said lens 11 is a lens of the type called negative meniscus-elliptical with the concave face 12 facing the filter system and the spherical face 13 facing the aspherical lens 9 and whose center of curvature coincides with the focus F1 of the aspherical lens 9. The concave face of said lens 11 is preferably ellipsoidal and defined by the equation of the Descartes oval, or else spherical following the corresponding osculating sphere.

Dans le premier cas, en fixant a = 0,5 - 200 mm et la nature du matériau (N) constituant la lentille, il est possible d'obtenir "b" et donc les coordonnées x,y de chaque point de la face concave, par la formule:

Figure imgb0001
L'épaisseur de la lentille "s" le long de l'axe x-x sera comprise entre 0,2 et 15 mm.In the first case, by setting a = 0.5 - 200 mm and the nature of the material (N) constituting the lens, it is possible to obtain "b" and therefore the x, y coordinates of each point of the concave face , by the formula:
Figure imgb0001
The thickness of the lens "s" along the axis xx will be between 0.2 and 15 mm.

Dans le second cas, le rayon de la sphère osculatrice est fourni par r = 2 l . d/l+d (où l = V1F1 = V2F2 et d = a + c = F2V1 = F1V2 voir fig. 4) et pourra avoir une valeur comprise entre 5 et 200 mm; l'épaisseur pourra être s = 0,2 - 15 mm.In the second case, the radius of the osculating sphere is provided by r = 2 l. d / l + d (where l = V1F1 = V2F2 and d = a + c = F2V1 = F1V2 see fig. 4) and may have a value between 5 and 200 mm; the thickness could be s = 0.2 - 15 mm.

La définition et le positionnement des différents éléments du système sont effectués de la manière suivante. A titre d'exemple, les lentilles peuvent être réalisées en verre optique ou semi-optique, travaillé optiquement ou semi-optiquement, ou éventuellement en matière plastique C.R.39 ou tout autre ayant un indice compris entre 1,33 et 1,95. Les miroirs paraboliques peuvent être réalisés par électroformage de nickel ou similaire et traités au Rhodium ou similaires. Après avoir déterminé la distance focale dela lentille asphérique 9, on peut déterminer la distance entre la face 12 de la lentille intermédiaire 11 et la face plane de la lentille asphérique 9 qui est tournée vers le système de filtres dichro ques et cela sur la base de la dimension d'encombrement axial désiré. L'intersection de ladite face 12 avec le cone ayant son sommet au point 10 du système et sa base sur la face plane de la lentille asphérique 9, détermine le diamètre utile du faisceau de rayons parallèles qui doit provenir de chaque miroir parabolique. Ce diamètre, en combinaison avec des connotations angulaires concernant l'émission de la source lumineuse relative à son solide photométrique, permet, selon un schéma de calcul partant de l'ovale de Descartes et bien connu de l'homme du métier, de déterminer le miroir de rendement relatif maximum et le diamètre utile de la lentille divergente intermédiaire.
Ce diamètre, avec la distance par rapport au foyer de la lentille asphérique, fournit les éléments de base pour la détermination de la courbure de la face concave 12 de la lentille intermédiaire 11.
The definition and positioning of the various elements of the system are carried out as follows. By way of example, the lenses can be made of optical or semi-optical glass, worked optically or semi-optically, or possibly of plastic material CR39 or any other having an index of between 1.33 and 1.95. The parabolic mirrors can be produced by electroforming of nickel or the like and treated with Rhodium or the like. After determining the focal distance of the aspherical lens 9, the distance between the face 12 of the intermediate lens 11 and the flat face of the lens can be determined. aspherical lens 9 which is turned towards the dichroic filter system and this on the basis of the dimension of axial dimension desired. The intersection of said face 12 with the cone having its apex at point 10 of the system and its base on the flat face of the aspherical lens 9, determines the useful diameter of the beam of parallel rays which must come from each parabolic mirror. This diameter, in combination with angular connotations concerning the emission of the light source relative to its photometric solid, allows, according to a calculation scheme starting from the Descartes oval and well known to those skilled in the art, to determine the maximum relative efficiency mirror and the useful diameter of the intermediate diverging lens.
This diameter, with the distance from the focal point of the aspherical lens, provides the basic elements for determining the curvature of the concave face 12 of the intermediate lens 11.

Les caractéristiques essentielles que doit présenter la lentille divergente 11 sont:
- être située dans le faisceau conique de rayons avec le foyer virtuel placé sur le foyer de la lentille asphérique de manière à obtenir le plus petit encombrement axial;
- être corrélée, pour ce qui est de l'ouverture et de l'inter-distance, avec les autres éléments du système, en relation soit avec l'exploitation optique maximale de la lentille asphérique, soit avec le rendement énergétique maximum d'un miroir parabolique de rendement maximum pour obtenir la luminosité maximale;
- posséder une surface du second degré pour résoudre le problème de l'aberration sphérique et atteindre le stigmatisme du trajet optique désiré. Pour ce qui concerne le choix définitif de la lentille divergente, il existe de nombreuses solutions. Une d'elles est représentée par une lentille plane-hyperbolique concave 14, indiquée en tant que deuxième forme de réalisation, (voir les Fig. 3 et 3A des dessins annexés) avec la face plane 15 tournée vers le système de filtres dichro ques et la face concave 16 vers la lentille asphérique 9. Dans ce cas également, les différents calculs sont effectués de manière analogue en tenant compte du fait que l'ovale de Descartes se transforme en une hyperbole dont le foyer est co ncident avec le foyer F1 de la lentille asphérique 9

Figure imgb0002
Dans ce cas "a" pourra être fixé entre 0,5 et 200 mm et l'épaisseur "s" entre 0,2 et 15 mm. La face de ladite lentille plan-hyperbolique (14) qui est tournée vers la lentille asphérique (9) peut être avantageusement du type "Fresnell" avec les elements prismatiques positionnés de manière à obtenir l'effet divergent désiré (Fig 8 et 8A).The essential characteristics which the diverging lens 11 must have:
- be located in the conical beam of rays with the virtual focal point placed on the focal point of the aspherical lens so as to obtain the smallest axial bulk;
- be correlated, with regard to the aperture and the inter-distance, with the other elements of the system, in relation either to the maximum optical exploitation of the aspherical lens, or to the maximum energy yield of a parabolic mirror of maximum efficiency to obtain the maximum brightness;
- have a second degree surface to solve the problem of spherical aberration and achieve the stigmatism of the desired optical path. As for the final choice of the divergent lens, there are many solutions. One of them is represented by a concave plane-hyperbolic lens 14, indicated as a second embodiment, (see FIGS. 3 and 3A of the appended drawings) with the plane face 15 facing the dichro filter system and the concave face 16 towards the aspherical lens 9. In this case also, the various calculations are carried out in an analogous manner taking into account the fact that the Descartes oval is transformed into a hyperbola whose focal point is coincident with the focal point F1 of the aspherical lens 9
Figure imgb0002
In this case "a" can be fixed between 0.5 and 200 mm and the thickness "s" between 0.2 and 15 mm. The face of said plane-hyperbolic lens (14) which faces the aspherical lens (9) can advantageously be of the "Fresnell" type with the prismatic elements positioned so as to obtain the desired diverging effect (FIGS. 8 and 8A).

D'autres solutions peuvent être envisagées avec les lentilles divergentes sphériques, même si elles présentent des désavantages au niveau du stigmatisme et de l'aberration sphérique.Other solutions can be envisaged with divergent spherical lenses, even if they have disadvantages in terms of stigmatism and spherical aberration.

Alors que la lentille asphérique peut restée dépourvue de traitement antiréfléchissant, il est préférable que la face convexe de la lentille divergente 11 soit traitée pour le moins avec une couche monomoléculaire de fluorure de magnésium (Mg F2), en particulier en cas de non exubérence d'énergie et pour réduire considérablement le soi-­disant "effet fantasme". Le traitement antiréfléchissant peut être plus efficacement à couches multiples.While the aspherical lens can remain devoid of anti-reflective treatment, it is preferable that the convex face of the diverging lens 11 is treated at least with a monomolecular layer of magnesium fluoride (Mg F2), in particular in the case of non-exuberance of energy and to significantly reduce the so-called "fantasy effect". Anti-reflective treatment can be more effectively multi-layered.

Pour ce qui est des paraboles réfléchissantes des miroirs en verre 3, l'équation de la courbe parabolique intéressée est, en simplifiant: y = 4 fx avec f = distance focale; en outre il convient d'effectuer un traitement qui soit, dans le domaine du visible, également réfléchissant pour toutes les longueurs d'onde, et de préférence:
- un traitement d'aluminage et de protection avec du SiO ou SiO₂, procédé plus simple, plus sur et répétable pour obtenir des réflexions avec des rendements optiquse allant jusqu'à 90%; ou
- un traitement multicouche améliorant la capacité de réflexion, mais non sélectif, pour obtenir un rendement d'environ 96%; ou
- un traitement dichro que à la lumière froide pour éviter une réflexion des radiations calorifères sur les autres éléments optiques du système tout en conservant une capacité de réflexion optimale; ou
- un traitement d'argenture (ou similaire) de la face postérieure et avec la protection requise et en réalisant cette face avec

f = f1 - Δ n

Figure imgb0003
.With regard to the reflective parables of the glass mirrors 3, the equation of the parabolic curve concerned is, by simplifying: y = 4 fx with f = focal distance; in addition, a treatment should be carried out which is, in the visible range, also reflecting for all wavelengths, and preferably:
- an aluminizing and protective treatment with SiO or SiO₂, a simpler, safer and more repeatable process to obtain reflections with optical yields of up to 90%; or
- a multilayer treatment improving the reflection capacity, but not selective, to obtain a yield of approximately 96%; or
- a dichro treatment only in cold light to avoid a reflection of the heat radiation on the other optical elements of the system while retaining an optimal capacity of reflection; or
- a silvering (or similar) treatment of the posterior face and with the required protection and by making this face with

f = f1 - Δ not
Figure imgb0003
.

Avantageusement, conformément à l'invention, il est prévu de disposer, en amont de chaque filtre dichro que 6,7,8 un miroir sphérique 18 de récupération des radiations, obtenu de préférence par un traitement d'aluminage et protection au monoxyde de silicium, qui est orienté de manière à ce que le centre de courbure co ncide avec le foyer F du miroir parabolique correspondant, dans le but d'empêcher la lentille divergente 11 de voir directement également le foyer réèl de la parabole, en plus du faisceau de rayons provenant, par réflexion, des miroirs paraboliques.Advantageously, in accordance with the invention, provision is made, upstream of each dichro filter that 6,7,8 a spherical mirror 18 for recovering radiation, preferably obtained by an aluminizing treatment and protection with silicon monoxide , which is oriented so that the center of curvature coincides with the focal point F of the corresponding parabolic mirror, in order to prevent the divergent lens 11 from also directly seeing the real focal point of the parabola, in addition to the beam of rays coming, by reflection, from parabolic mirrors.

Dans le but d'empêcher d'éventuelles erreurs de positionnement des filtres dichro ques et d'éliminer des dégats considérables en cas de détérioration dans le temps du sandwich des filtres interférentiels relatifs à la solution de Gouiler-­Prande, il est avantageusement prévu, conformément à l'invention, de disposer en amont de chaque filtre dichro que, un filtre 19 coloré en pâte, la perte de radiations correspondante provoquée pouvant être insignifiante par rapport au surplus de radiation qu'il est possible d'obtenir grâce aux miroirs paraboliques d'efficacité maximale. Cette disposition permet d'augmenter la sécurité du système, ce pourquoi même une éventuelle erreur ou déterioration en aval serait automatiquement détectée et/ou ma trisée aussi bien en phase de montage que sur le lieu de fonctionnement réèl.In order to prevent possible positioning errors of the dichroic filters and to eliminate considerable damage in the event of deterioration over time of the sandwich of the interference filters relating to the Gouiler-Prande solution, it is advantageously provided, in accordance with to the invention, to have upstream of each dichro filter that, a filter 19 colored in paste, the corresponding loss of radiation caused being able to be insignificant compared to the excess of radiation that it is possible to obtain thanks to the parabolic mirrors d maximum efficiency. This arrangement makes it possible to increase the security of the system, which is why even a possible downstream error or deterioration would be automatically detected and / or controlled both during the assembly phase and at the actual operating location.

Il va de soi que n'importe quel mesure connue en soi visant à corriger ultérieurement les aberrations chromatiques ou extra-axiales peut être appliqué au système optique selon l'invention.It goes without saying that any measure known in self aimed at subsequently correcting chromatic or extra-axial aberrations can be applied to the optical system according to the invention.

Les avantages obtenus avec le système optique conforme à l'invention par rapport aux systèmes connus à ce jour, spécialement dans le domaine de la signalisation ferroviaire, consistent essentiellement en une plus grande luminosité à égalité d'efficacités lumineuses des sources lumineuses utilisées et donc en une possible économie d'énergie; en une diminution des encombrements dans la direction axiale, avec d'évidentes économies dans les coûts de conception et de fabrication; en un plus grand stigmatisme du système parfaitement corrigé du point de vue optique-géométrique pour ce qui est de l'aberration sphérique pour un point situé sur l'axe X-X et une aberration plus faible pour les points situés hors de l'axe, de sorte que le faisceau émis s'avère plus correct et plus exactement répétable.The advantages obtained with the optical system according to the invention compared to the systems known to date, especially in the field of railway signaling, essentially consist in greater brightness with equal light efficiency of the light sources used and therefore in possible energy savings; in a reduction in dimensions in the axial direction, with obvious savings in design and manufacturing costs; in a greater stigmatism of the system perfectly corrected from the optical-geometric point of view with regard to the spherical aberration for a point located on the axis XX and a lower aberration for the points located off the axis, so that the beam emitted turns out to be more correct and more exactly repeatable.

Dans le but d'atténuer les effets non homogènes et non répétables du solide photométrique dans le cas de sources lumineuses à filament, on propose, conformément à l'invention, d'utiliser une plaquette de verre anti Newton pour permettre une légère diffusion du faisceau émis; cette plaquette pouvant être placée devant chaque source lumineuse ou en un point quelconque utile de l'axe X-X et perpendiculairement à celui-ci. En variante, il est possible de traiter avec un effet anti-Newton la face plane de la lentille asphérique 9 ou une face de la lentille divergente 11 et/ou celle des miroirs paraboliques 3.In order to reduce the non-homogeneous and non-repeatable effects of the photometric solid in the case of filament light sources, it is proposed, in accordance with the invention, to use an anti-Newton glass plate to allow a slight diffusion of the beam. issued; this plate can be placed in front of each light source or at any useful point on the axis XX and perpendicular thereto. As a variant, it is possible to treat with an anti-Newton effect the flat face of the aspherical lens 9 or one face of the divergent lens 11 and / or that of the parabolic mirrors 3.

Pour améliorer ultérieurement la luminosité du signal, il est prévu, conformément à l'invention, d'utiliser des sources lumineuses monochromatiques du type laser par exemple à état solide, permettant en outre d'éliminer les miroirs paraboliques 3. La lentille divergente 11 pourra ainsi avoir une épaisseur "s" comprise entre 0,2 et 10 mm; et sa face concave, si elle est sphérique, pourra présenter un rayon de r = 0,5 ÷ 100 mm. La lentille 11, lorsqu'elle est du type plane-­hyperbolique concave, pourra être déterminée en posant a = 2 mm et son épaisseur pourra avoir une valeur s = 0,2 ÷ 10 mm.In order to further improve the brightness of the signal, provision is made, in accordance with the invention, for using monochromatic light sources of the laser type, for example in the solid state, moreover making it possible to eliminate the parabolic mirrors 3. The diverging lens 11 may thus have a thickness "s" of between 0.2 and 10 mm; and its concave face, if it is spherical, may have a radius of r = 0.5 ÷ 100 mm. The lens 11, when it is of the concave plane-hyperbolic type, can be determined by setting a = 2 mm and its thickness can have a value s = 0.2 ÷ 10 mm.

Exemples de réalisationExamples of realization

Ci-après seront indiquées les valeurs des coordonnées de deux lentilles divergentes et de deux miroirs paraboliques, utilisés dans des formes concrètes de réalisation considérées. a) Lentille ménisque elliptique-négative y (mm) x (mm) y(mm) x(mm) 5 0,553 20 10,052 10 2,261 25 17,609 15 5,294 30 35,764 b) Lentille plan-hyperbolique (avec a= 10 et N = 1,523) y (mm) x (mm) y(mm) x(mm) 11 5,264 21 21,212 12 7,619 22 22,509 13 9,541 23 23,79 14 11,254 24 25,061 15 12,842 25 26,320 16 14,347 26 27,568 17 15,792 27 28,809 18 17,192 28 30,042 19 18,557 29 31,269 20 19,896 30 32,490 c) Miroir parabolique de rendement relatif maximum (avec f = 3,751 mm) y (mm) x(mm) y(mm) x(mm) 5 1,664 25 41,652 10 6,664 28 52,248 15 14,994 30 59,979 20 26,657 d) Miroir parabolique simplifié (avec f= 8mm) y (mm) x (mm) y(mm) x(mm) 2,5 0,195 15 7,031 5 0,781 17,5 9,570 7,5 1,757 20 12,500 10 3,125 22,5 15,829 12,5 4,692 25 19,531 15 7,031 27,5 23,632 The values of the coordinates of two diverging lenses and of two parabolic mirrors, used in concrete embodiments considered, will be indicated below. a) Elliptical-negative meniscus lens y (mm) x (mm) y (mm) x (mm) 5 0.553 20 10,052 10 2,261 25 17.609 15 5.294 30 35,764 b) Plan-hyperbolic lens (with a = 10 and N = 1.523) y (mm) x (mm) y (mm) x (mm) 11 5.264 21 21,212 12 7.619 22 22.509 13 9.541 23 23.79 14 11,254 24 25,061 15 12,842 25 26,320 16 14.347 26 27,568 17 15,792 27 28.809 18 17,192 28 30,042 19 18.557 29 31,269 20 19,896 30 32,490 c) Parabolic mirror of maximum relative efficiency (with f = 3.751 mm) y (mm) x (mm) y (mm) x (mm) 5 1,664 25 41,652 10 6.664 28 52,248 15 14.994 30 59.979 20 26,657 d) Simplified parabolic mirror (with f = 8mm) y (mm) x (mm) y (mm) x (mm) 2.5 0.195 15 7.031 5 0.781 17.5 9.570 7.5 1.757 20 12,500 10 3.125 22.5 15,829 12.5 4.692 25 19.531 15 7.031 27.5 23,632

Claims (21)

1) Système optique pour signaux lumineux de façon permanente, du type à filtres dichro ques, en particulier pour la signalisation ferroviaire, comprenant plusieurs sources lumineuses (5) avec des miroirs réfléchissants en verre (3) et des filtres dichro ques (6,7,8) correspondants disposés suivant le prisme pentagonal de Gouiler-Prande, et une lentille asphérique (9) d'émergence du faisceau de rayons lumineux qui constituent le signal, caractérisé en ce que ladite lentille asphérique (9) est disposée de manière à ce que son foyer (F1) co ncide avec le point (10) considéré comme centre optique de symétrie du prisme pentagonal; en ce qu'une lentille divergente (11,14), à surface du second degré, est interposée entre ledit point (10) du prisme pentagonal et ladite lentille asphérique (9) et avec son axe co ncident avec celui X-X de la lentille asphérique (9); et en ce que lesdits miroirs (3) sont paraboliques et avantageusement de rendement relatif maximal.1) Optical system for permanent light signals, of the dichroic filter type, in particular for railway signaling, comprising several light sources (5) with reflecting glass mirrors (3) and dichroic filters (6,7 , 8) correspondents arranged according to the pentagonal prism of Gouiler-Prande, and an aspherical lens (9) of emergence of the beam of light rays which constitute the signal, characterized in that said aspherical lens (9) is arranged so that that its focus (F1) coincides with the point (10) considered as the optical center of symmetry of the pentagonal prism; in that a divergent lens (11,14), on the second degree surface, is interposed between said point (10) of the pentagonal prism and said aspherical lens (9) and with its axis coincide with that XX of the aspherical lens (9); and in that said mirrors (3) are parabolic and advantageously of maximum relative efficiency. 2) Système optique selon la revendication 1, caractérisé en ce que ladite lentille divergente (11) est une lentille ménisque elliptique-négative dont la face convexe sphérique (13), qui est tournée vers ladite lentille asphérique (9), a son centre de courbure co ncident avec son propre foyer virtuel et avec le foyer de ladite lentille asphérique (9).2) Optical system according to claim 1, characterized in that said diverging lens (11) is an elliptical-negative meniscus lens whose spherical convex face (13), which faces towards said aspherical lens (9), has its center of curvature coincide with its own virtual focus and with the focus of said aspherical lens (9). 3) Système optique selon la revendication 2, caractérisé en ce que la face concave (12) de ladite lentille (11) ménisque elliptique-négative est ellipso dale et que ses coordonnées peuvent être tirées de l'équation de l'ovale de Descartes en fixant la nature du matériau de la lentille et le demi-axe majeur: a = 1 ÷ 200 mm.3) Optical system according to claim 2, characterized in that the concave face (12) of said lens (11) elliptical-negative meniscus is ellipso dal and that its coordinates can be taken from the equation of the Descartes oval by fixing the nature of the lens material and the major semi-axis: a = 1 ÷ 200 mm. 4) Système optique selon la revendication 2, caractérisé en ce que la face concave (12) de ladite lentille (11) ménisque elliptique-négative, est sphérique et son rayon, qui correspond à celui de la sphère osculatrice, est compris entre 1 et 200 mm.4) Optical system according to claim 2, characterized in that the concave face (12) of said lens (11) elliptical-negative meniscus, is spherical and its radius, which corresponds to that of the osculating sphere, is between 1 and 200 mm. 5) Système optique selon la revendication 2 et 3, caractérisé en ce que l'épaisseur de la lentille (11) ménisque-elliptique négative suivant l'axe X-X est: s = 0,1 ÷ 15 mm.5) Optical system according to claim 2 and 3, characterized in that the thickness of the negative meniscus-elliptical lens (11) along the axis X-X is: s = 0.1 ÷ 15 mm. 6) Système optique selon la revendication 1, caractérisé en ce que ladite lentille divergente (14) est une lentille plan-hyperbolique concave, avec la face hyperbolique (16) tournée vers la lentille asphérique (9) et avec son foyer co ncident avec celui de la lentille asphérique (9).6) Optical system according to claim 1, characterized in that said diverging lens (14) is a concave plane-hyperbolic lens, with the hyperbolic face (16) facing the aspherical lens (9) and with its focal point coinciding with that of the aspherical lens (9). 7) Système optique selon la revendication 6, caractérisé en ce que les coordonnées de la face concave de ladite lentille (11) plan-hyperbolique concave (14) peuvent être tirées de l'équation de l'ovale de Descartes en fixant a = 0,5 - 200 mm.7) Optical system according to claim 6, characterized in that the coordinates of the concave face of said lens (11) concave hyperbolic plane (14) can be taken from the equation of the Descartes oval by setting a = 0 , 5 - 200 mm. 8) Système optique selon la revendication 6, caractérisé en ce que la face concave de ladite lentille plan-hyperbolique (14) est sphérique avec un rayon correspondant à celui de la sphère osculatrice et compris entre 1 et 200 mm.8) Optical system according to claim 6, characterized in that the concave face of said plan-hyperbolic lens (14) is spherical with a radius corresponding to that of the osculating sphere and between 1 and 200 mm. 9) Système optique selon la revendication 2 et 3, caractérisé en ce que la lentille plan-hyperbolique (14) a, suivant l'axe X-X, une épaisseur:
s = 0,1 ÷ 15 mm.
9) Optical system according to claim 2 and 3, characterized in that the plane-hyperbolic lens (14) has, along the axis XX, a thickness:
s = 0.1 ÷ 15 mm.
10) Système optique selon la revendication 6, caractérisé en ce que ladite lentille divergente (11,14) a la face qui est tournée respectivement vers les filtres dichro ques ou vers la lentille asphérique (9), du typem"Fresnell" et avec les elements prismatiques positionnés de manière à obtenir un effet divergent.10) Optical system according to claim 6, characterized in that said diverging lens (11,14) has the face which is respectively turned towards the dichro c filters or towards the aspherical lens (9), of the "Fresnell" type and with the prismatic elements positioned so as to obtain a divergent effect. 11) Système optique selon la revendication 1, caractérisé en ce qu'un filtre coloré (19) est interposé entre chaque source lumineuse (5) et le filtre dichro que correspondant.11) Optical system according to claim 1, characterized in that a color filter (19) is interposed between each light source (5) and the corresponding dichro filter. 12) Système optique selon la revendication 11, caractérisé en ce qu'un miroir sphérique (18) est interposé entre chaque source lumineuse (5) et le filtre coloré (19) correspondant et avec son centre de courbure co ncident avec le foyer du miroir parabolique correspondant pour permettre la récupération des radiations.12) Optical system according to claim 11, characterized in that a spherical mirror (18) is interposed between each light source (5) and the corresponding color filter (19) and with its center of curvature coincide with the focus of the mirror parabolic corresponding to allow the recovery of radiation. 13) Système optique selon la revendication 1, caractérisé en ce que les sources lumineuses (5) sont des sources de rayons laser, et que le faisceau parallèle émis remplace celui des miroirs paraboliques.13) Optical system according to claim 1, characterized in that the light sources (5) are sources of laser rays, and that the parallel beam emitted replaces that of the parabolic mirrors. 14) Système optique selon la revendication 1, caractérisé en ce que lesdites lentilles (9,11,14) sont réalisées en verre optique ou semi-optique ou autres matériaux transparents avec indice de réfraction compris entre 1,33 et 1,95.14) Optical system according to claim 1, characterized in that said lenses (9,11,14) are made of optical or semi-optical glass or other transparent materials with refractive index between 1.33 and 1.95. 15) Système optique selon la revendication 1, caracterisé en ce que lesdits miroirs paraboliques (3) sont réalisés par électroformage en nickel, en chrome, en argent, en aluminium ou similaires, et traités de préférence avec du rhodium ou similaire.15) Optical system according to claim 1, characterized in that said parabolic mirrors (3) are made by electroforming of nickel, chromium, silver, aluminum or the like, and preferably treated with rhodium or the like. 16) Système optique selon la revendication 1, caractérisé en ce que les paraboles réfléchissantes desdits miroirs paraboliques (3) sont réalisées en verre avec un traitement superficiel réfléchissant tel qu'un aluminage et avec protection au SiO ou au SiO2.16) Optical system according to claim 1, characterized in that the reflective parabolas of said parabolic mirrors (3) are made of glass with a reflective surface treatment such as aluminization and with protection with SiO or SiO2. 17) Système optique selon la revendication 1, caractérisé en ce que les paraboles réfléchissantes desdits miroirs paraboliques (3) sont pourvues d'un traitement multicouche pour permettre l'augmentation de la capacité de réflexion.17) Optical system according to claim 1, characterized in that the reflecting parabolas of said parabolic mirrors (3) are provided with a multilayer treatment to allow the increase of the reflection capacity. 18) Système optique selon la revendication 1, caractérisé en ce que les paraboles réfléchissantes desdits miroirs paraboliques (3) sont pourvues d'un traitement à la lumière froide.18) Optical system according to claim 1, characterized in that the reflecting dishes of said parabolic mirrors (3) are provided with a treatment with cold light. 19) Système optique selon la revendication 1 et 15, caractérisé en ce que les paraboles réfléchissantes desdits miroirs paraboliques sont en verre, avec la face postérieure argentée dûment protégée et en ce que ladite face est une surface parabolique parallèle ou pratiquement parallèle à la face antérieure, et avec la distance focale (f) égale à celle (f1) de la face antérieure diminuée de l'épaisseur au centre divisée par l'indice de réfraction (n) du matériau

(f = f1 - Δ n
Figure imgb0004
).
19) Optical system according to claim 1 and 15, characterized in that the reflective parabolas of said parabolic mirrors are made of glass, with the silvered rear face duly protected and in that said face is a parabolic surface parallel or practically parallel to the front face , and with the focal length (f) equal to that (f1) of the anterior face reduced by the thickness at the center divided by the refractive index (n) of the material

(f = f1 - Δ not
Figure imgb0004
).
20) Système optique selon la revendication 1, caractérisé en ce qu'il comprend au moins une plaquette de verre anti Newton placée en un point utile quelconque du faisceau lumineux constituant le signal.20) Optical system according to claim 1, characterized in that it comprises at least one anti Newton glass plate placed at a point any useful light beam constituting the signal. 21) Système optique selon une ou plusieurs des revendications précédentes, caractérisé en ce qu'au moins une des faces des lentilles (9,11,14) et/ou celle des miroirs paraboliques (3) est traitée avec un effet anti Newton.21) Optical system according to one or more of the preceding claims, characterized in that at least one of the faces of the lenses (9,11,14) and / or that of the parabolic mirrors (3) is treated with an anti Newton effect.
EP89830310A 1988-07-15 1989-07-04 Optical system for permanent luminous signals of different colours, especially for railway signalling Expired - Lifetime EP0351380B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT8809448A IT1224982B (en) 1988-07-15 1988-07-15 OPTICAL SYSTEM FOR SIGNALS OF DIFFERENT COLORS, PERMANENTLY BRIGHT, ESPECIALLY FOR RAILWAY SIGNALING
IT944888 1988-07-15

Publications (3)

Publication Number Publication Date
EP0351380A2 true EP0351380A2 (en) 1990-01-17
EP0351380A3 EP0351380A3 (en) 1991-03-13
EP0351380B1 EP0351380B1 (en) 1997-02-05

Family

ID=11130291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89830310A Expired - Lifetime EP0351380B1 (en) 1988-07-15 1989-07-04 Optical system for permanent luminous signals of different colours, especially for railway signalling

Country Status (4)

Country Link
EP (1) EP0351380B1 (en)
AT (1) ATE148665T1 (en)
DE (1) DE68927750T2 (en)
IT (1) IT1224982B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH487367A (en) * 1968-12-12 1970-03-15 Camille Berger Michel Apparatus for the production of variously colored light beams
US4454570A (en) * 1981-03-09 1984-06-12 Wabco Westinghouse Compagnia Italiana Segnali S.P.A. Multiple colored searchlight signal unit
US4754272A (en) * 1986-09-18 1988-06-28 General Signal Corporation Three aspect signalling device using no moving parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH487367A (en) * 1968-12-12 1970-03-15 Camille Berger Michel Apparatus for the production of variously colored light beams
US4454570A (en) * 1981-03-09 1984-06-12 Wabco Westinghouse Compagnia Italiana Segnali S.P.A. Multiple colored searchlight signal unit
US4754272A (en) * 1986-09-18 1988-06-28 General Signal Corporation Three aspect signalling device using no moving parts

Also Published As

Publication number Publication date
IT8809448A0 (en) 1988-07-15
ATE148665T1 (en) 1997-02-15
DE68927750D1 (en) 1997-03-20
EP0351380A3 (en) 1991-03-13
IT1224982B (en) 1990-10-30
EP0351380B1 (en) 1997-02-05
DE68927750T2 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
EP3396241B1 (en) Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle
CA2018204C (en) Wide field ergonomic helmet sight visualization device
EP1792224B1 (en) Method for making an ophthalmic lens designed to produce an optical display
EP0290347B1 (en) High output signal light, especially for motor vehicles
EP3830474A1 (en) Luminous module that images the illuminated surface of a collector
EP0011024A1 (en) Helmet mounted visualization system
FR3039883A1 (en) LIGHT MODULE IN TRANSPARENT MATERIAL WITH TWO FACES OF REFLECTION
EP1746339A1 (en) Device for lighting or signalising, in particular for vehicles
WO2006095107A1 (en) Optical imager for producing an optical display
FR2664677A1 (en) REFLECTOR FOR A LIGHTING DEVICE OF A MOTOR VEHICLE, AND PROJECTOR AND SIGNALING LIGHT INCORPORATING SUCH A REFLECTOR.
EP2976569B1 (en) Illuminating and/or signalling module for an automotive vehicle
FR2755210A1 (en) LIGHT-DRIVEN PROJECTOR FOR MOTOR VEHICLES
FR2614969A1 (en) Signalling lamp with large angle of illumination and homogeneous luminance in particular for motor vehicles
FR3044743A1 (en) OPTICAL PROJECTION SYSTEM, LUMINOUS MODULE AND LIGHTING DEVICE FOR A MOTOR VEHICLE HAVING SUCH A SYSTEM
EP0351380B1 (en) Optical system for permanent luminous signals of different colours, especially for railway signalling
FR2635166A1 (en) AUTOMOTIVE HEADLIGHT COMPRISING AN INTERMEDIATE DEFLECTION GLASS
EP2853804B1 (en) Lighting and/or signalling module with a plurality of rotary optical systems
WO2001067153A2 (en) Aberration correcting optical relay for optical system, in particular mirror telescope
FR2687795A1 (en) Optoelectric system for the detection and angular location of a luminous object
FR2472762A1 (en) BINOCULAR DAY VISION DEVICE
FR3077117A1 (en) LUMINOUS MODULE FOR A MOTOR VEHICLE, AND LIGHTING AND / OR SIGNALING DEVICE EQUIPPED WITH SUCH A MODULE
FR2653905A1 (en) OPTICAL DEVICE FOR THE CORRECTION OF DEFECTS INTRODUCED BY A SPHERICAL HOPPER USED OUTSIDE AXIS.
WO2020216728A1 (en) Light module
EP2410238B1 (en) Optical reflector consisting of a transparent blade with an undercut
FR3128769A1 (en) LIGHT MODULE WITH REMOTE REFLECTOR FOR LIGHT SOURCES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910208

17Q First examination report despatched

Effective date: 19930226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970205

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970205

REF Corresponds to:

Ref document number: 148665

Country of ref document: AT

Date of ref document: 19970215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 68927750

Country of ref document: DE

Date of ref document: 19970320

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970505

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970502

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: LABORATORIO OTTICO FIORENTINO DI VANNINI LUIGI

Effective date: 19970731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980728

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980804

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981019

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990704

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990704

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040627

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070704