EP0348771A2 - Method for supplying cold to a consumer of cold - Google Patents

Method for supplying cold to a consumer of cold Download PDF

Info

Publication number
EP0348771A2
EP0348771A2 EP89111056A EP89111056A EP0348771A2 EP 0348771 A2 EP0348771 A2 EP 0348771A2 EP 89111056 A EP89111056 A EP 89111056A EP 89111056 A EP89111056 A EP 89111056A EP 0348771 A2 EP0348771 A2 EP 0348771A2
Authority
EP
European Patent Office
Prior art keywords
cold
consumer
cold water
water
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89111056A
Other languages
German (de)
French (fr)
Other versions
EP0348771A3 (en
Inventor
Thomas Brunder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
York Deutschland GmbH
Original Assignee
York International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by York International GmbH filed Critical York International GmbH
Publication of EP0348771A2 publication Critical patent/EP0348771A2/en
Publication of EP0348771A3 publication Critical patent/EP0348771A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Definitions

  • the invention relates to a method for supplying a cold consumer with cold, in which the cold is taken from an ice store and a liquid cooler and fed to the cold consumer through a cold water circuit.
  • the ice store is charged by a refrigeration machine with the involvement of an intermediate circuit which contains glycol or brine as the coolant.
  • the cold given off by the chiller of the liquid cooler is given to the cold water circuit by a further intermediate circuit and transported by it to the cold consumer.
  • the respective activation of an intermediate circuit in the cold flow has the disadvantage that the temperature gradient required for the transmission of the cold results in a corresponding lowering of the evaporation temperature of the cold means required. This has the consequence that, provided the condensing temperature of the refrigerant remains unchanged, the coefficient of performance and thus the efficiency of the system deteriorate.
  • the object of the invention is therefore to develop the method of the type mentioned at the outset in such a way that the coefficient of performance is improved and, moreover, the effort is reduced.
  • a water cooler is used as the liquid cooler, the chiller of which only releases cold to the ice store during the nighttime break of the cold consumer, whereas cold only gives off to the cold water circuit by direct heat exchange during daily operation of the cold consumer.
  • the chiller or chiller of the water cooler is therefore used alternatively for charging the cold storage or for delivering cold to the cold water circuit.
  • This double utilization of the refrigeration machine considerably reduces the outlay for the method according to the invention. Since the charging of the ice storage and the heat transfer to the cold water circuit is carried out by direct evaporation of the refrigerant in the ice storage or by a direct evaporator inserted into the cold water circuit and intermediate circuits are thus avoided, a higher evaporation temperature of the refrigerant is possible than in the prior art, and it becomes achieved refrigeration with a good coefficient of performance and thus high efficiency.
  • the nominal output of the refrigeration machine can advantageously be selected to be lower than the nominal refrigeration requirement of the refrigeration consumer. This further reduces the effort required to carry out the method according to the invention.
  • a preferred development of the invention is that the cold water circuit is led through the ice store to absorb cold. This enables the ice storage to be discharged without switching on an intermediate circuit and therefore with high efficiency.
  • a chiller As a water cooler. Such a chiller combines high operational reliability with a compact structure.
  • the cold water of the cold water circuit is cooled to absorb cold by about 6 K, preferably from about 12 ° Celsius to about 6 ° Celsius.
  • the system shown in FIG. 1 has a water cooler 10, the compressor 12 of which is connected on the pressure side to the preferably air-cooled condenser 14.
  • a line 16 leads from the condenser to the evaporator 18 of the water cooler, a remote-operated shut-off device 20 and an expansion valve 22 being inserted into the line 16, as seen in the flow direction of the refrigerant.
  • the remote shut-off device 20 receives its opening or closing impulses from a control device, not shown in the drawing.
  • a line 24 leads from the evaporator 18 back to the compressor 12.
  • a line 28 is connected to the line 16 upstream of the remotely operated shut-off device 20 at point 26, into which a second remotely operated shut-off device 30 and a second expansion valve 32 are inserted and which leads to the storage tubes 34 of the ice store 36.
  • the second remotely operated shut-off device 30 is connected for control purposes to the control device not shown in FIG. 1 and already mentioned above.
  • a line 38 leads back to the compressor 12 and is connected upstream of the compressor 12 at the point 40 to the line 24.
  • the storage tubes 34 of the ice store are arranged in a storage space 42 which is filled with water. Since the present exemplary embodiment is an open ice store 36, the storage space 42 is connected to the outer space 44 and forms it a water level in the storage space 42, the surface 46 of which is indicated. The storage tubes 34 are arranged below the surface 46 and run at a mutual distance.
  • a line 48 with inserted circulation pump 50 leads from the lower area of the storage space 42 to the primary-side entrance of a surface heat exchanger 52.
  • a line 54 leads back from the exit of the surface heat exchanger to the upper area of the storage space 42.
  • a distribution valve 56 is inserted into line 54, the distribution line 58 of which leads to line 48 and is connected there downstream of the circulation pump 50.
  • a temperature sensor 62 is inserted into the line 48, which acts on the distribution valve 56 through a control line 64.
  • the secondary side of the surface heat exchanger 52 is inserted into the cold water circuit 66, which transports the cold to the schematically indicated cold consumer 68, for example in the form of a heat exchanger.
  • a pipe 70 leads from the surface heat exchanger 52 to a flow header 72, from which a cold water flow line 74 with inserted second circulation pump 76 leads to the cooling consumer 68.
  • a cold water return line 78 is returned to a return collector 80, which is connected to the secondary side of the surface heat exchanger 52 by a pipe 82 with an inserted third circulation pump 84 to close the cold water circuit 66.
  • a second distribution valve 86 is arranged in the pipeline 82 between the surface heat exchanger 52 and the third circulation pump 84, the distribution line 88 bypassing the surface heat exchanger 52 and at point 90 in the Pipe 70 opens, as can be clearly seen from FIG. 1.
  • a second temperature sensor 92 is arranged in the pipeline 70, the control line 94 of which acts on the distribution valve 86.
  • the evaporator 18 of the water cooler 10 is also designed as a surface heat exchanger, the secondary side of which is inserted into the cold water circuit 66 in parallel on the water side in parallel with the surface heat exchanger 52.
  • the evaporator 18 is connected to the return manifold 80 through the pipeline 96 with an inserted fourth circulation pump 98 and through the pipeline 100 to the flow manifold 72.
  • the flow collector 72 is connected to the return collector 80 by a bypass line 102, an overflow valve 104 being inserted into the bypass line 102 and opening at a predetermined differential pressure between the two collectors.
  • all the circulation pumps 76, 84, 98 of the cold water circuit 66 are switched off.
  • the first circulation pump 50 of the pipeline 48 is switched off, so that no water is circulated from the storage space 42 through the surface heat exchanger 52.
  • the water circuit which connects the storage space 42 of the ice store to the surface heat exchanger 52 is referred to here as an intermediate circuit 106 for the sake of simplicity.
  • the remote-operated shut-off valve 20 is closed, so that no refrigerant can get into the evaporator 18, that is to say the evaporator 18 is out of operation.
  • the compressor 12 of the water cooler now becomes lers put into operation, so that refrigerant passes through the opened second remote shut-off valve 30 and the second expansion valve 32 into the storage tubes 34 and evaporates there.
  • part of the water in the storage space freezes on the outside of the storage tubes 34 and forms an ice layer, which takes over the cold storage. Since the evaporation of the refrigerant takes place directly in the ice store, the difference between the evaporation temperature in the storage tubes 34 and the condensation temperature of the refrigerant in the outside air-cooled condenser 14 is small, so that the ice is stored with a good coefficient of performance and thus with a good efficiency.
  • the condenser 14 Since the condenser 14 is subjected to a relatively cold temperature by outside air during the nightly ice storage and thus the temperature difference between the evaporating and the condensed refrigerant is reduced, an improvement in the coefficient of performance and the efficiency of the system is additionally achieved.
  • the ice storage is now driven until the storage tubes 34 of the ice storage are covered with an ice layer of permissible thickness and the ice storage is thus charged. Then the compressor 12 is switched off.
  • the second remotely operated shut-off device 30 is closed and the first remotely operated shut-off device 20, on the other hand, is opened, so that the evaporator 18 of the water cooler through which the cold water of the cold water circuit 66 flows is acted upon on the refrigerant side.
  • all the circulation pumps 50, 76, 84, 98 are in operation, so that the following cold flow results:
  • the cold water flowing through the cold water circuit is at a temperature of un while the compressor 12 is running cooled 6 ° Celsius and then fed through the pipeline 100 to the flow collector 72.
  • the cold water is fed through the second circulation pump 76 and the flow line 74 to the cold consumer 68, in which the cold water releases cold with an increase in temperature to approximately 12 ° Celsius.
  • This heated cold water is then fed through the return line 78 to the return collector 80 and then through the fourth circulation pump 98 and the pipeline 96 to the evaporator 18 for renewed cooling.
  • the intermediate circuit 106 is in operation, so that water is cooled to approximately 1.5 ° C. by melting ice located in the storage space 42 and is then fed to the surface heat exchanger 52.
  • the temperature of the water is detected by the temperature sensor 62 and passed on through the control line 64 to the distribution valve 56, which influences the water circulation in the intermediate circuit 106 in such a way that the desired temperature of 1.5 ° Celsius in the line 48 is maintained.
  • the water of the intermediate circuit heats up to approximately 4 ° Celsius.
  • the cold supplied from the ice store 36 to the surface heat exchanger 52 is passed on to the cold water circuit 66.
  • cooled cold water flows from the return collector 80 under the action of the third circulation pump 84, and heated cold water flows from the return collector 80 through the pipeline 82 to the surface heat exchanger 52, in which it is cooled from approximately 12 ° Celsius to 6 ° Celsius.
  • the cooled cold water then flows through the line 70 to the flow collector 72.
  • the water flows coming from the surface heat exchanger 52 and from the evaporator 18 are combined in the flow collector 72 and then flow together through the flow line 74 to the cooling consumer 68.
  • bypass line 102 is provided, which is released at a presettable differential pressure between the flow collector 72 and the return collector 80 by automatically opening the overflow valve 104 so that an emergency circuit is released the cold water is maintained.
  • the cold water temperature in the pipeline 70 is detected by the second temperature sensor 92 and passed on through the control line to the second distribution valve 86, which the cold water flowing to the surface heat exchanger corresponds to the desired temperature conditions
  • Surface heat exchanger 52 and the distribution line 88 divides.
  • the cooling of the cold water in the evaporator 18 is advantageously carried out by influencing the refrigerant circuit, e.g. regulated by switching the compressor on and off, 12.
  • FIG. 2 shows an embodiment variant of the system according to FIG. 1. Individual parts of FIG. 1 recurring in FIG. 2 are provided with reference numbers in FIG. 2 only insofar as this is necessary for understanding, the individual parts of FIG. 1 recurring in FIG. 2 being provided with reference numbers that are equal to 100 have been expanded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

In the conventional supply of cold to a cold consumer by an ice storage device and a liquid cooler, the generated cold is fed by means of intermediate circuits both to the ice storage device for charging it and to a cold-water circuit circulating through the cold consumer. To obtain the temperature gradient necessary for the functioning of the intermediate circuits, the evaporation temperature of the associated refrigerant circuits has to be reduced correspondingly, thereby impairing the efficiency. The cold is therefore transferred by direct heat exchange to the ice storage device (36) and to the cold-water circuit (66) in which the cold consumer (68) is inserted. This allows an increase in the evaporation temperature of the refrigerant and thus ensures an increase in the performance number and efficiency. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Versorgung ei­nes Kälteverbrauchers mit Kälte, bei dem die Kälte einem Eisspeicher und einem Flüssigkeitskühler entnommen und durch einen Kaltwasserkreislauf dem Kälteverbraucher zugeführt wird.The invention relates to a method for supplying a cold consumer with cold, in which the cold is taken from an ice store and a liquid cooler and fed to the cold consumer through a cold water circuit.

Bei einem aus dem internen Stand der Technik bekannten Verfahren dieser Art wird der Eisspeicher von einer Käl­temaschine unter Einschaltung eines Zwischenkreislaufs, der als Kälteträger Glykol oder Sole enthält, aufgela­den. Ebenso wird die von der Kältemaschine des Flüssig­keitskühlers abgegebene Kälte durch einen weiteren Zwi­schenkreislauf an den Kaltwasserkreislauf abgegeben und von diesen zum Kälteverbraucher transportiert. Die je­weilige Einschaltung eines Zwischenkreislaufes in den Kältefluß hat den Nachteil, daß das für die Übertragung der Kälte erforderliche Temperaturgefälle eine dement­sprechende Absenkung der Verdampfungstemperatur des Käl­ temittels erfordert. Dies hat zur Folge, daß, unter der Voraussetzung einer unveränderten Kondensationstempera­tur des Kältemittels, die Leistungszahl und somit der Wirkungsgrad der Anlage sich verschlechtert.In a method of this type known from the internal prior art, the ice store is charged by a refrigeration machine with the involvement of an intermediate circuit which contains glycol or brine as the coolant. Likewise, the cold given off by the chiller of the liquid cooler is given to the cold water circuit by a further intermediate circuit and transported by it to the cold consumer. The respective activation of an intermediate circuit in the cold flow has the disadvantage that the temperature gradient required for the transmission of the cold results in a corresponding lowering of the evaporation temperature of the cold means required. This has the consequence that, provided the condensing temperature of the refrigerant remains unchanged, the coefficient of performance and thus the efficiency of the system deteriorate.

Aufgabe der Erfindung ist es daher, das Verfahren der eingangs genannten Art so weiterzubilden, daß die Lei­stungszahl verbessert und darüber hinaus der Aufwand verringert ist.The object of the invention is therefore to develop the method of the type mentioned at the outset in such a way that the coefficient of performance is improved and, moreover, the effort is reduced.

Die Lösung dieser Aufgabe besteht erfindungsgemäß darin, daß als Flüssigkeitskühler ein Wasserkühler verwendet wird, dessen Kältemaschine während der nächtlichen Be­triebspause des Kälteverbrauchers Kälte nur an den Eis­speicher, während des täglichen Betriebs des Kältever­brauchers dagegen Kälte nur an den Kaltwasserkreislauf jeweils durch direkten Wärmetausch abgibt.The solution to this problem is, according to the invention, that a water cooler is used as the liquid cooler, the chiller of which only releases cold to the ice store during the nighttime break of the cold consumer, whereas cold only gives off to the cold water circuit by direct heat exchange during daily operation of the cold consumer.

Die Kältemaschine oder das Kälteaggregat des Wasserküh­lers wird also alternativ für die Aufladung des Kälte­speichers oder zur Kälteabgabe an den Kaltwasserkreis­lauf eingesetzt. Durch diese doppelte Ausnutzung der Kältemaschine ist der Aufwand für das erfindungsgemäße Verfahren erheblich verringert. Da die Aufladung des Eisspeichers und die Wärmeabgabe an den Kaltwasserkreis­lauf durch direkte Verdampfung des Kältemittels im Eis­speicher bzw. durch einen in den Kaltwasserkreislauf eingefügten Direktverdampfer erfolgt und Zwischenkreis­läufe demnach vermieden sind, ist eine gegenüber dem Stand der Technik höhere Verdampfungstemperatur des Käl­temittels möglich, und es wird eine Kälteerzeugung mit guter Leistungszahl und damit hohem Wirkungsgrad er­reicht. Da während des täglichen Betriebes des Kältever­brauchers die hierzu erforderliche Kälte gleichzeitig vom Eisspeicher und vom Wasserkühler geliefert wird, kann in vorteilhafter Weise die Nennleistung der Kälte­maschine geringer gewählt werden als der Nennkältebedarf des Kälteverbrauchers. Hierdurch wird der Aufwand für die Durchführung des erfindungsgemäßen Verfahrens weiter vermindert.The chiller or chiller of the water cooler is therefore used alternatively for charging the cold storage or for delivering cold to the cold water circuit. This double utilization of the refrigeration machine considerably reduces the outlay for the method according to the invention. Since the charging of the ice storage and the heat transfer to the cold water circuit is carried out by direct evaporation of the refrigerant in the ice storage or by a direct evaporator inserted into the cold water circuit and intermediate circuits are thus avoided, a higher evaporation temperature of the refrigerant is possible than in the prior art, and it becomes achieved refrigeration with a good coefficient of performance and thus high efficiency. Since the cold required for this is supplied by the ice store and the water cooler at the same time during the daily operation of the cooling consumer, the nominal output of the refrigeration machine can advantageously be selected to be lower than the nominal refrigeration requirement of the refrigeration consumer. This further reduces the effort required to carry out the method according to the invention.

Wird ein geschlossener Eisspeicher eingesetzt, so be­steht eine bevorzugte Weiterbildung der Erfindung darin, daß der Kaltwasserkreislauf zur Kälteaufnahme durch den Eisspeicher geführt wird. Hierdurch wird eine Entladung des Eisspeichers ohne Einschaltung eines Zwischenkreis­laufes und daher mit hohem Wirkungsgrad ermöglicht.If a closed ice store is used, a preferred development of the invention is that the cold water circuit is led through the ice store to absorb cold. This enables the ice storage to be discharged without switching on an intermediate circuit and therefore with high efficiency.

Um den Aufwand weiter zu verringern empfiehlt es sich, als Wasserkühler einen Kaltwassersatz zu benutzen. Ein solcher Kaltwassersatz vereint hohe Betriebssicherheit mit kompaktem Aufbau.To further reduce the effort, it is recommended to use a chiller as a water cooler. Such a chiller combines high operational reliability with a compact structure.

Da infolge des Eisspeichers und des Kaltwasserkreislau­fes Kälte nur mit einem Temperaturniveau über der Ge­friertemperatur des Wassers, d.h. 0° Celsius, geliefert werden kann, empfiehlt es sich zur Optimierung des Käl­tetransportes, daß das Kaltwasser des Kaltwasserkreis­laufes zur Kälteaufnahme um ungefähr 6 K, vorzugsweise von ungefähr 12° Celsius auf ungefähr 6° Celsius, abge­kühlt wird.As due to the ice store and the cold water circuit, cold only with a temperature level above the freezing temperature of the water, i.e. 0 ° Celsius can be delivered, it is recommended to optimize the cold transport that the cold water of the cold water circuit is cooled to absorb cold by about 6 K, preferably from about 12 ° Celsius to about 6 ° Celsius.

Weitere Vorteile und Merkmale des erfindungsgemäßen Ver­fahrens gehen aus der beispielsweisen Beschreibung von Anlagen hervor, die für die Durchführung des erfindungs­gemäßen Verfahrens geeignet und in den Zeichnungen sche­matisch dargestellt sind.Further advantages and features of the method according to the invention emerge from the exemplary description of systems which are suitable for carrying out the method according to the invention and are shown schematically in the drawings.

Hierbei zeigt:

  • Fig. 1 das vereinfachte Schaltschema einer für die Versorgung eines Kälteverbrauchers vorgesehe­nen Anlage mit offenen Eisspeicher und
  • Fig. 2 eine Ausführungsvariante des Gegenstands der Fig. 1 mit geschlossenem Eisspeicher.
Here shows:
  • Fig. 1 shows the simplified circuit diagram for one Supply of a refrigeration system provided with an open ice store and
  • Fig. 2 shows an embodiment of the object of Fig. 1 with the ice store closed.

Die in Fig. 1 gezeigte Anlage weist einen Wasserkühler 10 auf, dessen Verdichter 12 druckseitig an den vorzugs­weise luftgekühlten Kondensator 14 angeschlossen ist. Vom Kondensator führt eine Leitung 16 zum Verdampfer 18 des Wasserkühlers, wobei, in Strömungsrichtung des Käl­temittels gesehen, ein fernbetätigtes Absperrorgan 20 sowie ein Expansionsventil 22 in die Leitung 16 einge­fügt sind. Das fernbetätigte Absperrorgan 20 erhält sei­ne Öffnungs- oder Schließimpulse von einem in der Zeich­nung nicht dargestellten Steuergerät. Um den Kältemit­telkreislauf zu schließen, führt eine Leitung 24 vom Verdampfer 18 zum Verdichter 12 zurück.The system shown in FIG. 1 has a water cooler 10, the compressor 12 of which is connected on the pressure side to the preferably air-cooled condenser 14. A line 16 leads from the condenser to the evaporator 18 of the water cooler, a remote-operated shut-off device 20 and an expansion valve 22 being inserted into the line 16, as seen in the flow direction of the refrigerant. The remote shut-off device 20 receives its opening or closing impulses from a control device, not shown in the drawing. In order to close the refrigerant circuit, a line 24 leads from the evaporator 18 back to the compressor 12.

An die Leitung 16 ist stromauf des fernbetätigten Ab­sperrorgans 20 an der Stelle 26 eine Leitung 28 ange­schlossen, in die ein zweites fernbetätigtes Absperror­gan 30 sowie ein zweites Expansionsventil 32 eingefügt sind und die zu den Speicherrohren 34 des Eisspeichers 36 führt. Das zweite fernbetätigte Absperrorgan 30 ist zur Steuerung mit dem in Fig. 1 nicht dargestellten und bereits zuvor erwähnten Steuergerät verbunden. Vom Ende der Speicherrohre 34 führt eine Leitung 38 zum Verdich­ter 12 zurück und ist stromauf des Verdichters 12 an der Stelle 40 an die Leitung 24 angeschlossen.A line 28 is connected to the line 16 upstream of the remotely operated shut-off device 20 at point 26, into which a second remotely operated shut-off device 30 and a second expansion valve 32 are inserted and which leads to the storage tubes 34 of the ice store 36. The second remotely operated shut-off device 30 is connected for control purposes to the control device not shown in FIG. 1 and already mentioned above. From the end of the storage tubes 34, a line 38 leads back to the compressor 12 and is connected upstream of the compressor 12 at the point 40 to the line 24.

Die Speicherrohre 34 des Eisspeichers sind in einem Speicherraum 42 angeordnet, der mit Wasser gefüllt ist. Da es sich beim vorliegenden Ausführungsbeispiel um ei­nen offenen Eisspeicher 36 handelt, ist der Speicherraum 42 mit dem Außenraum 44 in Verbindung, und es bildet sich im Speicherraum 42 ein Wasserstand aus, dessen Oberfläche 46 angedeutet ist. Die Speicherrohre 34 sind unterhalb der Oberfläche 46 angeordnet und verlaufen mit gegenseitigem Abstand.The storage tubes 34 of the ice store are arranged in a storage space 42 which is filled with water. Since the present exemplary embodiment is an open ice store 36, the storage space 42 is connected to the outer space 44 and forms it a water level in the storage space 42, the surface 46 of which is indicated. The storage tubes 34 are arranged below the surface 46 and run at a mutual distance.

Vom unteren Bereich des Speicherraums 42 führt eine Lei­tung 48 mit eingefügter Umwälzpumpe 50 zum primärseiti­gen Eingang eines Oberflächenwärmetauschers 52. Vom Aus­gang des Oberflächenwärmetauschers führt eine Leitung 54 zum oberen Bereich des Speicherraums 42 zurück. In die Leitung 54 ist ein Verteilventil 56 eingefügt, dessen Verteilleitung 58 zur Leitung 48 führt und dort stromab der Umwälzpumpe 50 angeschlossen ist. Zwischen der An­schlußstelle 60 der Verteilleitung an die Leitung 48 und dem Oberflächenwärmetauscher 52 ist in die Leitung 48 ein Temperaturfühler 62 eingefügt, der durch eine Steu­erleitung 64 auf das Verteilventil 56 einwirkt.A line 48 with inserted circulation pump 50 leads from the lower area of the storage space 42 to the primary-side entrance of a surface heat exchanger 52. A line 54 leads back from the exit of the surface heat exchanger to the upper area of the storage space 42. A distribution valve 56 is inserted into line 54, the distribution line 58 of which leads to line 48 and is connected there downstream of the circulation pump 50. Between the connection point 60 of the distribution line to the line 48 and the surface heat exchanger 52, a temperature sensor 62 is inserted into the line 48, which acts on the distribution valve 56 through a control line 64.

Die Sekundärseite des Oberflächenwärmetauschers 52 ist in den Kaltwasserkreislauf 66 eingefügt, der die Kälte zu dem schematisch angedeuteten Kälteverbraucher 68, z.B. in Form eines Wärmetauschers, transportiert. Hierzu führt eine Rohrleitung 70 vom Oberflächenwärmetauscher 52 zu einem Vorlaufsammler 72, von dem eine Kaltwasser­vorlaufleitung 74 mit eingefügter zweiter Umwälzpumpe 76 zum Kälteverbraucher 68 führt. Von diesem ist eine Kalt­wasserrücklaufleitung 78 zu einem Rücklaufsammler 80 zu­rückgeführt, der durch eine Rohrleitung 82 mit eingefüg­ter dritter Umwälzpumpe 84 zur Schließung des Kaltwas­serkreislaufes 66 mit der Sekundärseite des Oberflächen­wärmetauschers 52 vebunden ist. Hierbei ist in die Rohrleitung 82 zwischen dem Oberflächenwärmetauscher 52 und der dritten Umwälzpumpe 84 ein zweites Verteilventil 86 angeordnet, dessen Verteilleitung 88 den Oberflächen­wärmetauscher 52 umgeht und an der Stelle 90 in die Rohrleitung 70 mündet, wie dies deutlich aus Fig. 1 zu erkennen ist. Stromab der Stelle 90 ist in der Rohrlei­tung 70 ein zweiter Temperaturfühler 92 angeordnet, des­sen Steuerleitung 94 auf das Verteilventil 86 einwirkt.The secondary side of the surface heat exchanger 52 is inserted into the cold water circuit 66, which transports the cold to the schematically indicated cold consumer 68, for example in the form of a heat exchanger. For this purpose, a pipe 70 leads from the surface heat exchanger 52 to a flow header 72, from which a cold water flow line 74 with inserted second circulation pump 76 leads to the cooling consumer 68. From this, a cold water return line 78 is returned to a return collector 80, which is connected to the secondary side of the surface heat exchanger 52 by a pipe 82 with an inserted third circulation pump 84 to close the cold water circuit 66. In this case, a second distribution valve 86 is arranged in the pipeline 82 between the surface heat exchanger 52 and the third circulation pump 84, the distribution line 88 bypassing the surface heat exchanger 52 and at point 90 in the Pipe 70 opens, as can be clearly seen from FIG. 1. Downstream of the point 90, a second temperature sensor 92 is arranged in the pipeline 70, the control line 94 of which acts on the distribution valve 86.

Der Verdampfer 18 des Wasserkühlers 10 ist ebenfalls als Oberflächenwärmetauscher ausgebildet, dessen Sekundär­seite in wasserseitiger Parallelschaltung zum Oberflä­chenwärmetauscher 52 in den Kaltwasserkreislauf 66 ein­gefügt ist. Hierzu ist der Verdampfer 18 durch die Rohr­leitung 96 mit eingefügter vierter Umwälzpumpe 98 an den Rücklaufsammler 80 und durch die Rohrleitung 100 mit dem Vorlaufsammler 72 verbunden. Der Vorlaufsammler 72 ist durch eine Bypaßleitung 102 mit dem Rücklaufsammler 80 verbunden, wobei in die Bypaßleitung 102 ein Überström­ventil 104 eingefügt ist, das bei einem vorgegebenen Differenzdruck zwischen den beiden Sammlern öffnet.The evaporator 18 of the water cooler 10 is also designed as a surface heat exchanger, the secondary side of which is inserted into the cold water circuit 66 in parallel on the water side in parallel with the surface heat exchanger 52. For this purpose, the evaporator 18 is connected to the return manifold 80 through the pipeline 96 with an inserted fourth circulation pump 98 and through the pipeline 100 to the flow manifold 72. The flow collector 72 is connected to the return collector 80 by a bypass line 102, an overflow valve 104 being inserted into the bypass line 102 and opening at a predetermined differential pressure between the two collectors.

Während der nächtlichen Beitriebspause des Kälteverbrau­chers 68, in der kein Kältebedarf gedeckt werden muß, sind sämtliche Umwälzpumpen 76,84,98 des Kaltwasser­kreislaufes 66 ausgeschaltet. Desgleichen ist die erste Umwälzpumpe 50 der Rohrleitung 48 ausgeschaltet, so daß kein Wasser vom Speicherraum 42 im Kreislauf durch den Oberflächenwärmetauscher 52 geführt wird. Der Wasser­kreislauf, der den Speicherraum 42 des Eisspeichers mit dem Oberflächenwärmetauscher 52 verbindet, wird hier der Einfachheit halber als Zwischenkreislauf 106 bezeichnet. Desweiteren ist das fernbetätigte Absperrventil 20 ge­schlossen, so daß kein Kältemittel in den Verdampfer 18 gelangen kann, das heißt der Verdampfer 18 ist außer Betrieb.During the nocturnal break in operation of the cold consumer 68, in which no cooling need has to be covered, all the circulation pumps 76, 84, 98 of the cold water circuit 66 are switched off. Likewise, the first circulation pump 50 of the pipeline 48 is switched off, so that no water is circulated from the storage space 42 through the surface heat exchanger 52. The water circuit which connects the storage space 42 of the ice store to the surface heat exchanger 52 is referred to here as an intermediate circuit 106 for the sake of simplicity. Furthermore, the remote-operated shut-off valve 20 is closed, so that no refrigerant can get into the evaporator 18, that is to say the evaporator 18 is out of operation.

Während dieser nächtlichen Betriebspause des Kältever­brauchers 68 wird nun der Verdichter 12 des Wasserküh­ lers in Betrieb genommen, so daß Kältemittel durch das geöffnete zweite fernbetätigte Absperrventil 30 und das zweite Expansionsventil 32 in die Speicherrohre 34 ge­langt und dort verdampft. Hierbei gefriert ein Teil des im Speicherraum befindlichen Wassers außen an den Spei­cherrohren 34 an und bildet jeweils eine Eisschicht, welche die Kältespeicherung übernimmt. Da die Verdamp­fung des Kältemittels direkt im Eisspeicher erfolgt, ist der Unterschied zwischen der Verdampfungstemperatur in den Speicherrohren 34 und der Kondensationstemperatur des Kältemittels im außenluftgekühlten Kondensator 14 gering, so daß die Eisspeicherung mit guter Leistungs­zahl und somit mit gutem Wirkungsgrad erfolgt. Da wäh­rend der nächtlichen Eisspeicherung der Kondensator 14 durch Außenluft mit verhältnismäßig kalter Temperatur beaufschlagt und somit die Temperaturdifferenz zwischen dem verdampfenden und dem kondensierten Kältemittel ver­ringert ist, wird zusätzlich eine Verbesserung der Lei­stungszahl und des Wirkungsgrads der Anlage erreicht. Die Eisspeicherung wird nun soweit getrieben, bis die Speicherrohre 34 des Eisspeichers mit einer Eisschicht von zulässiger Dicke belegt sind und somit der Eisspei­cher aufgeladen ist. Dann wird der Verdichter 12 abge­schaltet.During this nocturnal break in operation of the cold consumer 68, the compressor 12 of the water cooler now becomes lers put into operation, so that refrigerant passes through the opened second remote shut-off valve 30 and the second expansion valve 32 into the storage tubes 34 and evaporates there. Here, part of the water in the storage space freezes on the outside of the storage tubes 34 and forms an ice layer, which takes over the cold storage. Since the evaporation of the refrigerant takes place directly in the ice store, the difference between the evaporation temperature in the storage tubes 34 and the condensation temperature of the refrigerant in the outside air-cooled condenser 14 is small, so that the ice is stored with a good coefficient of performance and thus with a good efficiency. Since the condenser 14 is subjected to a relatively cold temperature by outside air during the nightly ice storage and thus the temperature difference between the evaporating and the condensed refrigerant is reduced, an improvement in the coefficient of performance and the efficiency of the system is additionally achieved. The ice storage is now driven until the storage tubes 34 of the ice storage are covered with an ice layer of permissible thickness and the ice storage is thus charged. Then the compressor 12 is switched off.

Während des täglichen Betriebs des Wärmeverbrauchers 68 ist das zweite fernbetätigte Absperrorgan 30 geschlossen und das erste fernbetätigte Absperrorgan 20 dagegen ge­öffnet, so daß der vom Kaltwasser des Kaltwasserkreis­laufs 66 durchströmte Verdampfer 18 des Wasserkühlers kältemittelseitig beaufschlagt wird. Gleichzeitig sind sämtliche Umwälzpumpen 50,76,84,98 in Betrieb, so daß sich folgender Kältefluß ergibt: Im Verdampfer 18 wird das durchströmende Kaltwasser des Kaltwasserkreislaufes bei laufendem Verdichter 12 auf eine Temperatur von un­ gefährt 6° Celsius abgekühlt und dann durch die Rohrlei­tung 100 dem Vorlaufsammler 72 zugeführt. Von hier wird das Kaltwasser durch die zweite Umwälzpumpe 76 und die Vorlaufleitung 74 dem Kälteverbraucher 68 zugeführt, in dem das Kaltwasser unter Temperaturerhöhung auf ungefähr 12° Celsius Kälte abgibt. Dieses erwärmte Kaltwasser wird dann durch die Rücklaufleitung 78 dem Rücklaufsamm­ler 80 zugeführt und dann durch die vierte Umwälzpumpe 98 und die Rohrleitung 96 zu erneuter Abkühlung dem Ver­dampfer 18 zugeleitet.During the daily operation of the heat consumer 68, the second remotely operated shut-off device 30 is closed and the first remotely operated shut-off device 20, on the other hand, is opened, so that the evaporator 18 of the water cooler through which the cold water of the cold water circuit 66 flows is acted upon on the refrigerant side. At the same time, all the circulation pumps 50, 76, 84, 98 are in operation, so that the following cold flow results: In the evaporator 18, the cold water flowing through the cold water circuit is at a temperature of un while the compressor 12 is running cooled 6 ° Celsius and then fed through the pipeline 100 to the flow collector 72. From here, the cold water is fed through the second circulation pump 76 and the flow line 74 to the cold consumer 68, in which the cold water releases cold with an increase in temperature to approximately 12 ° Celsius. This heated cold water is then fed through the return line 78 to the return collector 80 and then through the fourth circulation pump 98 and the pipeline 96 to the evaporator 18 for renewed cooling.

Da das Kaltwasser im Verdampfer 18 durch direkten Wärme­tausch gekühlt wird, ist ebenfalls eine gute Leistungs­zahl und somit ein entsprechend guter Wirkungsgrad der Anlage gewährleistet.Since the cold water in the evaporator 18 is cooled by direct heat exchange, a good coefficient of performance and thus a correspondingly good efficiency of the system is also guaranteed.

Gleichzeitig ist der Zwischenkreislauf 106 im Betrieb, so daß durch Abschmelzen von sich im Speicherraum 42 be­findenden Eis Wasser auf ungefähr 1,5° Celsius abgekühlt und dann dem Oberflächenwärmetauscher 52 zugeführt wird. Die Temperatur des Wassers wird vom Temperaturfühler 62 erfaßt und durch die Steuerleitung 64 an das Verteilven­til 56 weitergegeben, das die Wasserzirkulation im Zwi­schenkreislauf 106 derart beeinflußt, daß die gewünschte Temperatur von 1,5° Celsius in der Leitung 48 eingehal­ten wird. Im Oberflächenwärmetauscher 52 erwärmt sich das Wasser des Zwischenkreislaufs auf ungefähr 4° Celsi­us.At the same time, the intermediate circuit 106 is in operation, so that water is cooled to approximately 1.5 ° C. by melting ice located in the storage space 42 and is then fed to the surface heat exchanger 52. The temperature of the water is detected by the temperature sensor 62 and passed on through the control line 64 to the distribution valve 56, which influences the water circulation in the intermediate circuit 106 in such a way that the desired temperature of 1.5 ° Celsius in the line 48 is maintained. In the surface heat exchanger 52, the water of the intermediate circuit heats up to approximately 4 ° Celsius.

Die vom Eisspeicher 36 dem Oberflächenwärmetauscher 52 zugeführte Kälte wird an den Kaltwasserkreislauf 66 wei­tergegeben. Hierzu strömt abgekühltes Kaltwasser vom Rücklaufsammler 80 unter Einwirkung der dritten Umwälz­pumpe 84 erwärmtes Kaltwasser vom Rücklaufsammler 80 durch die Rohrleitung 82 zum Oberflächenwärmetauscher 52, in dem es von ungefähr 12° Celsius auf 6° Celsius abgekühlt wird. Das abgekühlte Kaltwasser strömt dann durch die Leitung 70 dem Vorlaufsammler 72 zu. Im Vor­laufsammler 72 vereinen sich die vom Oberflächenwärmeta­uscher 52 und vom Verdampfer 18 kommenden Wasserströme und fließen dann durch die Vorlaufleitung 74 gemeinsam dem Kälteverbraucher 68 zu. Um eine Zirkulation im Kalt­wasserkreislauf bei Ausfall der zweiten Umwälzpumpe 76 aufrechterhalten zu können, ist die Bypaßleitung 102 vorgesehen, die bei einem voreinstellbaren Differenz­druck zwischen dem Vorlaufsammler 72 und dem Rücklauf­sammler 80 durch ein selbsstätiges Öffnen des Überström­ventils 104 zum Durchfluß freigegeben wird, so daß ein Notkreislauf des Kaltwassers aufrechterhalten bleibt.The cold supplied from the ice store 36 to the surface heat exchanger 52 is passed on to the cold water circuit 66. For this purpose, cooled cold water flows from the return collector 80 under the action of the third circulation pump 84, and heated cold water flows from the return collector 80 through the pipeline 82 to the surface heat exchanger 52, in which it is cooled from approximately 12 ° Celsius to 6 ° Celsius. The cooled cold water then flows through the line 70 to the flow collector 72. The water flows coming from the surface heat exchanger 52 and from the evaporator 18 are combined in the flow collector 72 and then flow together through the flow line 74 to the cooling consumer 68. In order to be able to maintain a circulation in the cold water circuit in the event of failure of the second circulating pump 76, the bypass line 102 is provided, which is released at a presettable differential pressure between the flow collector 72 and the return collector 80 by automatically opening the overflow valve 104 so that an emergency circuit is released the cold water is maintained.

Um die Abkühlung des Kaltwassers des Kaltwasserkreis­laufs im Oberflächenwärmetauscher 52 beeinflussen zu können, wird durch den zweiten Temperaturfühler 92 die Kaltwassertemperatur in der Rohrleitung 70 erfaßt und durch die Steuerleitung an das zweite Verteilventil 86 weitergegeben, das das dem Oberflächenwärmetauscher zu­strömende Kaltwasser den gewünschten Temperaturverhält­nissen entsprechend auf den Oberflächenwärmetauscher 52 und die Verteilleitung 88 aufteilt. Die Abkühlung des Kaltwassers im Verdampfer 18 wird zweckmäßig durch Be­einflussung des Kältemittelkreislaufs, z.B. durch Ein- und Ausschalten des Verdichters, 12 geregelt.In order to be able to influence the cooling of the cold water of the cold water circuit in the surface heat exchanger 52, the cold water temperature in the pipeline 70 is detected by the second temperature sensor 92 and passed on through the control line to the second distribution valve 86, which the cold water flowing to the surface heat exchanger corresponds to the desired temperature conditions Surface heat exchanger 52 and the distribution line 88 divides. The cooling of the cold water in the evaporator 18 is advantageously carried out by influencing the refrigerant circuit, e.g. regulated by switching the compressor on and off, 12.

In Fig. 2 ist eine Ausführungsvariante der Anlage gemäß Fig. 1 dargestellt. In Fig. 2 wiederkehrende Einzelteile der Fig. 1 sind in Fig. 2 nur insoweit mit Bezugsziffern versehen, als dies für das Verständnis erforderlich ist, wobei die in Figur 2 wiederkehrenden Einzelteile der Fig. 1 mit Bezugsziffern versehen sind, die um den Be­trag 100 erweitert wurden.FIG. 2 shows an embodiment variant of the system according to FIG. 1. Individual parts of FIG. 1 recurring in FIG. 2 are provided with reference numbers in FIG. 2 only insofar as this is necessary for understanding, the individual parts of FIG. 1 recurring in FIG. 2 being provided with reference numbers that are equal to 100 have been expanded.

Die Unterschiede der Anlage gemäß Fig. 2 gegenüber jener der Fig. 1 bestehen darin, daß der Speicherraum 142 des Eisspeichers 136 geschlossen ist, und daß der Oberflä­chenwärmetauscher 52 sowie die Umwälzpumpe 50 nicht vor­handen sind. Stattdessen fließt das vom Rücklaufsammler 180 kommende, erwärmte Kaltwasser durch die Rohrleitung 182 unmittelbar in den oberen Bereich des Speicherraums 142, wo es unter Abschmelzen der Eisschichten sich ab­kühlt. Dieses abgekühlte Kaltwasser strömt dann durch die Rohrleitung 171 zum Vorlaufsammler 172, von wo es dann dem Kälteverbraucher 168 zufließt, wie es im Zusam­menhang mit Fig. 1 beschrieben wurde. Die Temperatur des Kaltwassers, das dem Vorlaufsammler 172, zufließt, wird durch das Verteilventil 156 auf die gleiche Weise wie in Fig. 1 beschrieben, konstant gehalten. Der Gesamtbetrieb der Anlage verläuft auch hier ebenso wie im Zusammenhang mit Fig. 1 beschrieben, so daß sich weitere Ausführungen erübrigen. Der Vorteil der Anlage gemäß Fig. 2 gegenüber jener der Fig. 1 ist darin zu sehen, daß durch den Weg­fall des Oberflächenwärmetauschers 52 der Aufwand ver­ringert ist und durch die unmittelbare Kühlung des Kalt­wassers des Kaltwasserkreislaufs im Eisspeicher der Wir­kungsgrad der Anlage zusätzlich gesteigert ist.The differences between the system according to FIG. 2 and that of FIG. 1 are that the storage space 142 of the ice storage 136 is closed and that the surface heat exchanger 52 and the circulation pump 50 are not present. Instead, the heated cold water coming from the return collector 180 flows through the pipeline 182 directly into the upper region of the storage space 142, where it cools down as the ice layers melt. This cooled cold water then flows through the pipeline 171 to the flow collector 172, from where it then flows to the cold consumer 168, as was described in connection with FIG. 1. The temperature of the cold water flowing to the flow header 172 is kept constant by the distribution valve 156 in the same manner as described in FIG. 1. The overall operation of the system also runs here as described in connection with FIG. 1, so that further explanations are unnecessary. The advantage of the system according to FIG. 2 over that of FIG. 1 can be seen in the fact that the elimination of the surface heat exchanger 52 reduces the expenditure and the efficiency of the system is additionally increased by the direct cooling of the cold water of the cold water circuit in the ice store.

Claims (4)

1. Verfahren zur Versorgung eines Kälteverbrauchers mit Kälte, bei dem die Kälte einem Eisspeicher und einem Flüssigkeitskühler entnommen und durch einen Kaltwasser­kreislauf dem Kälteverbraucher zugeführt wird, dadurch gekennzeichnet, daß als Flüssigkeitskühler ein Wasser­kühler (10) verwendet wird, dessen Kältemaschine während der nächtlichen Betriebspause des Kälteverbrauchers (68;168) Kälte nur an den Eisspeicher (36;136), während des täglichen Betriebs des Kälteverbrauchers (68;168) dagegen Kälte nur an den Kaltwasserkreislauf (66;166) jeweils durch direkten Wärmetausch abgibt.1. A method for supplying a cold consumer with cold, in which the cold is removed from an ice store and a liquid cooler and fed to the cold consumer through a cold water circuit, characterized in that a water cooler (10) is used as the liquid cooler, the cooling machine of which is used during the nightly break in operation The cold consumer (68; 168) only releases cold to the ice store (36; 136), whereas the daily operation of the cold consumer (68; 168) only releases cold to the cold water circuit (66; 166) through direct heat exchange. 2. Verfahren nach Anspruch 1 unter Verwendung eines geschlossenen Eisspeichers (136), dadurch gekennzeich­net, daß der Kaltwasserkreislauf (166) zur Kälteaufnahme durch den Eisspeicher (136) geführt wird.2. The method according to claim 1 using a closed ice storage (136), characterized in that the cold water circuit (166) for cold absorption through the ice storage (136) is performed. 3. Verfahren nach Anspruch 1 oder 2, dadurch ge­kennzeichnet, daß das Kaltwasser des Kaltwasserkreis­laufs (66;166) zur Kälteaufnahme um ungefähr 6 K, vor­zugsweise von ungefähr 12° Celsius auf ungefähr 6° Cel­sius, abgekühlt wird.3. The method according to claim 1 or 2, characterized in that the cold water of the cold water circuit (66; 166) for cold absorption by about 6 K, preferably from about 12 ° Celsius to about 6 ° Celsius, is cooled. 4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Wasserkühler (10) ein Kaltwassersatz verwendet wird.4. The method according to at least one of claims 1 to 3, characterized in that a water chiller is used as the water cooler (10).
EP19890111056 1988-06-29 1989-06-19 Method for supplying cold to a consumer of cold Withdrawn EP0348771A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3821910 1988-06-29
DE19883821910 DE3821910A1 (en) 1988-06-29 1988-06-29 METHOD FOR SUPPLYING A COLD CONSUMER WITH COLD

Publications (2)

Publication Number Publication Date
EP0348771A2 true EP0348771A2 (en) 1990-01-03
EP0348771A3 EP0348771A3 (en) 1991-03-27

Family

ID=6357508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890111056 Withdrawn EP0348771A3 (en) 1988-06-29 1989-06-19 Method for supplying cold to a consumer of cold

Country Status (2)

Country Link
EP (1) EP0348771A3 (en)
DE (1) DE3821910A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9404321U1 (en) * 1994-03-15 1994-05-05 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Refrigeration system
DE9404320U1 (en) * 1994-03-15 1994-05-05 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Distribution and control device for a refrigeration system
DE9404319U1 (en) * 1994-03-15 1994-05-19 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Refrigeration system
EP0602911A1 (en) * 1992-12-10 1994-06-22 Baltimore Aircoil Company, Inc. Supplementary cooling system
EP0861406A1 (en) * 1995-11-17 1998-09-02 Lennox Industries Inc. Thermal energy storage air conditioning system
WO1999002929A1 (en) * 1997-07-10 1999-01-21 York International Corporation Compound refrigeration system for water chilling and thermal storage
EP0927861A1 (en) * 1997-10-31 1999-07-07 Fafco SA Cooling storage system with an ice bank
DE19907250A1 (en) * 1999-02-20 2000-08-24 Christian Liebetanz Cooling system, especially for use in vehicles such as mobile shops, comprises a cold storage element with a eutectic brine adjusted to a specific freezing point, and cooling agent pipes.
EP1085277A3 (en) * 1999-09-17 2001-12-05 Hitachi Air Conditioning Systems Co., Ltd. Ammonia refrigerator
US6634182B2 (en) 1999-09-17 2003-10-21 Hitachi, Ltd. Ammonia refrigerator
WO2006021440A1 (en) * 2004-08-26 2006-03-02 Thermo Electron (Karlsruhe) Gmbh Tempering device
CN104110926A (en) * 2014-07-18 2014-10-22 合肥美菱股份有限公司 Heat dissipation structure of condenser and refrigerator with such structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688784A5 (en) * 1993-03-05 1998-03-13 Escher Wyss Gmbh Cooling device.
DE102007031335B4 (en) 2007-07-05 2018-03-22 Kälte-Eckert GmbH Cooking device and method for cooling a cooking device
DE102012208941A1 (en) * 2012-05-29 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ice storage for cooling environment or for cooling of foodstuffs and for production of ice, comprises container and heat exchanger, which is elastic conduit element that has outer surface with coating having anti ice adhesion characteristic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246401A (en) * 1933-10-03 1941-06-17 Carrier Corp Method and means for providing refrigeration
DE3428713A1 (en) * 1984-05-26 1985-11-28 Hilbers, Heinrich, Dipl.-Ing., 5205 St Augustin Method and device relating to a closed ice accummulator for the supply of cold to a room air-conditioning system
EP0181137A2 (en) * 1984-11-05 1986-05-14 Calmac Manufacturing Corporation Method of cyclic air conditioning with cogeneration of ice

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3409480A1 (en) * 1984-03-15 1985-09-26 Meyer, Rud. Otto, 2000 Hamburg Process for the production of cold with interposed cold reservoir for the supply of ventilating plants or the like and plants for the performance of the process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246401A (en) * 1933-10-03 1941-06-17 Carrier Corp Method and means for providing refrigeration
DE3428713A1 (en) * 1984-05-26 1985-11-28 Hilbers, Heinrich, Dipl.-Ing., 5205 St Augustin Method and device relating to a closed ice accummulator for the supply of cold to a room air-conditioning system
EP0181137A2 (en) * 1984-11-05 1986-05-14 Calmac Manufacturing Corporation Method of cyclic air conditioning with cogeneration of ice

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602911A1 (en) * 1992-12-10 1994-06-22 Baltimore Aircoil Company, Inc. Supplementary cooling system
DE9404321U1 (en) * 1994-03-15 1994-05-05 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Refrigeration system
DE9404320U1 (en) * 1994-03-15 1994-05-05 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Distribution and control device for a refrigeration system
DE9404319U1 (en) * 1994-03-15 1994-05-19 Gesellschaft für Kältetechnik-Klimatechnik mbH, 50859 Köln Refrigeration system
EP0861406A1 (en) * 1995-11-17 1998-09-02 Lennox Industries Inc. Thermal energy storage air conditioning system
EP0861406A4 (en) * 1995-11-17 1998-12-30 Lennox Ind Inc Thermal energy storage air conditioning system
WO1999002929A1 (en) * 1997-07-10 1999-01-21 York International Corporation Compound refrigeration system for water chilling and thermal storage
US5894739A (en) * 1997-07-10 1999-04-20 York International Corporation Compound refrigeration system for water chilling and thermal storage
EP0927861A1 (en) * 1997-10-31 1999-07-07 Fafco SA Cooling storage system with an ice bank
US6053006A (en) * 1997-10-31 2000-04-25 Delroc Sa Cold-storing installation having an ice storage reservoir
DE19907250A1 (en) * 1999-02-20 2000-08-24 Christian Liebetanz Cooling system, especially for use in vehicles such as mobile shops, comprises a cold storage element with a eutectic brine adjusted to a specific freezing point, and cooling agent pipes.
EP1085277A3 (en) * 1999-09-17 2001-12-05 Hitachi Air Conditioning Systems Co., Ltd. Ammonia refrigerator
US6634182B2 (en) 1999-09-17 2003-10-21 Hitachi, Ltd. Ammonia refrigerator
WO2006021440A1 (en) * 2004-08-26 2006-03-02 Thermo Electron (Karlsruhe) Gmbh Tempering device
CN104110926A (en) * 2014-07-18 2014-10-22 合肥美菱股份有限公司 Heat dissipation structure of condenser and refrigerator with such structure

Also Published As

Publication number Publication date
DE3821910A1 (en) 1990-01-04
EP0348771A3 (en) 1991-03-27
DE3821910C2 (en) 1990-04-12

Similar Documents

Publication Publication Date Title
DE3500252C2 (en) Heat pump for heating or cooling
EP0348771A2 (en) Method for supplying cold to a consumer of cold
EP1164035B1 (en) Air conditioner with refrigerating and heat pump modes
DE69315700T2 (en) Absorption heat pump with direct heat exchange between the expeller of a second circuit and the absorber and condenser of a first circuit
DE69109532T2 (en) Air conditioner.
DE10019580A1 (en) Device for cooling interior of motor vehicle has inner heat exchanger in auxiliary circuit to enable heat to be exchanged between a feed line and a return line
DE102004035879A1 (en) Cooling system, in particular for a motor vehicle, and method for cooling a heat source
DE2602530B1 (en) LATENTHEAT STORAGE
EP1533116B1 (en) Device for controlling the temperature of a printing press
EP0911156B1 (en) Tempering assembly in printing machines
DE2915979A1 (en) HEAT PUMP SYSTEM SET UP FOR COOLING OPERATION
WO1996031694A1 (en) Method and switching arrangement for operating heat accumulators, in particular for sensible heat
DE2722357A1 (en) AIR CONDITIONER
DE2606053A1 (en) SYSTEM FOR HEATING A FLUID, PREFERRED WATER, IN A CONVENTIONAL CENTRAL HEATING SYSTEM USING THE HEAT GENERATED BY SEVERAL COOLING DEVICES
DE69004009T2 (en) Cooling system with additional heat storage.
DE3344608A1 (en) SOLAR HEATING SYSTEM
DE2754132C2 (en) Cooling device
DE3204230A1 (en) ABSOLUTION COOLING AND HEATING SYSTEM
DE2721740A1 (en) PROCEDURE AND EQUIPMENT FOR HEAT EXCHANGE
DE2606507A1 (en) AIR CONDITIONER
DE3035538A1 (en) ARRANGEMENT FOR RECORDING AND STORING ENVIRONMENTAL HEAT FOR THE HEATING AND COOLING OF BUILDINGS
DE4344803C2 (en) Heat transfer system using hydrogen absorbing metals
DE3609313C2 (en)
DE4408087C2 (en) Process for operating a heat exchanger system for recuperative heat exchange
EP3953652B1 (en) Heat exchanger assembly having at least one multi-pass heat exchanger and method for operating a heat exchanger assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE LI

17P Request for examination filed

Effective date: 19910422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19910426

R18W Application withdrawn (corrected)

Effective date: 19910426