EP0343103B1 - Method and apparatus for cooling an object - Google Patents

Method and apparatus for cooling an object Download PDF

Info

Publication number
EP0343103B1
EP0343103B1 EP89810325A EP89810325A EP0343103B1 EP 0343103 B1 EP0343103 B1 EP 0343103B1 EP 89810325 A EP89810325 A EP 89810325A EP 89810325 A EP89810325 A EP 89810325A EP 0343103 B1 EP0343103 B1 EP 0343103B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
gas
cooling
process according
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810325A
Other languages
German (de)
French (fr)
Other versions
EP0343103A1 (en
Inventor
Miroslaw Plata
Kurt Buxmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to AT89810325T priority Critical patent/ATE82171T1/en
Publication of EP0343103A1 publication Critical patent/EP0343103A1/en
Application granted granted Critical
Publication of EP0343103B1 publication Critical patent/EP0343103B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the invention relates to a method for cooling an object by spraying a gas / liquid mixture in the form of a mist onto the surface of the object by means of at least one nozzle.
  • Atomized air / water mixtures have the advantage of a lower explosion risk compared to the pure application of water when cooling continuous cast ingots, since the water mist hitting the surface can be adjusted in such a way that it practically completely evaporates.
  • Venturi nozzles of this type have the disadvantage that the amount of air required to form the water mist is extraordinarily large.
  • the cooling intensity on the surface exposed to the water mist is very different locally, since the surface area lying in the nozzle axis is cooled much more strongly than edge areas.
  • the inventor has set himself the goal of creating a method of the type mentioned at the outset with which the cooling effect can be improved while reducing the gas flow rate.
  • this is achieved in that a liquid jet is sprayed through the nozzle opening to form a spray with droplet size ⁇ 100 ⁇ m and after exiting the nozzle is acted upon by gas jets at an angle between 0 and 90 ° to the nozzle axis to accelerate and direct the droplets.
  • the procedure according to the invention enables the gas flow rate to be reduced by a multiple compared to a jet mixing process based on the Venturi nozzle.
  • the atomization of the liquid jet according to the invention and the acceleration of the droplets after the nozzle opening result in a uniform distribution of the cooling intensity over the surface of the liquid mist on the surface of the object to be cooled.
  • the intensity of the gas jets is regulated independently of one another. This makes it possible to change the direction of the conically atomized liquid jet formed after the nozzle opening over a wide range. With a given arrangement of nozzles, this enables the cooling of the object to be cooled to be fine-tuned.
  • Coolant Any coolant can be used as the cooling liquid, water being preferred in most cases.
  • Air can be used as the gas, but other gases such as nitrogen or argon can also be used.
  • the method is particularly suitable for cooling conventionally or electromagnetically cast strands as well as rolled and pressed products made of metal, in particular aluminum.
  • the method is also suitable for cooling hot surfaces with complete evaporation of the coolant, the cooling intensities preferably being between 500 and 3000 W / m2 ° K.
  • a device suitable for carrying out the method according to the invention is characterized by a liquid-carrying nozzle and gas guide channels arranged in the region of the nozzle opening at an angle between 0 and 90 ° to the nozzle axis.
  • two gas guide channels arranged symmetrically and concentrically to the nozzle axis are provided, which can be acted upon independently of one another by gas of different pressure.
  • gas jet arrangements with three or more gas guide channels are also possible, which are preferably also arranged symmetrically and concentrically to the nozzle axis.
  • a device R for cooling an object consists of a part 1 which has a water-carrying nozzle 3 with a nozzle opening 4 and which is penetrated by two diametrically opposite bores 5a, b for gas guidance.
  • the supply lines for water and air are shown schematically.
  • the part 1 is fitted into a counterpart 2 with the formation of cavities 6a, b in the form of ring segments and adjoining gas guide channels 7a, b.
  • the gas guide channels 7a, b form an angle ⁇ of, for example, 45 ° with the nozzle axis x.
  • the direction of the conical water jet 9 can be changed over a wide range.

Abstract

In the method, a gas/liquid mixture is sprayed in the form of a mist onto the surface of the object to be cooled. A jet of liquid is atomised by the nozzle orifice to form a spray mist with a particle size < 100 mu m and, after its emergence from the nozzle, is acted upon by gas jets at an angle ( alpha ) of between 0 and 90 DEG to the nozzle axis (x) for the purpose of acceleration and direction. The intensity of the gas jets can be controlled independently of one another. The method is suitable for cooling conventionally or electromagnetically cast strands and for rolled and pressed products made of metal, especially aluminium. <??>An apparatus suitable for carrying out the method essentially comprises a part (1) which contains the nozzle (3) guiding the liquid and holes (5a, b) for guiding the gas and, to form gas-guiding channels (7a, b), is fitted into a mating part (2). <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Kühlen eines Gegenstandes durch Aufsprühen eines Gas/Flüssigkeit-Gemisches in der Form eines Nebels auf die Oberfläche des Gegenstandes mittels wenigstens einer Düse.The invention relates to a method for cooling an object by spraying a gas / liquid mixture in the form of a mist onto the surface of the object by means of at least one nozzle.

Verdüste Luft/Wasser-Gemische haben im Vergleich zur reinen Wasserbeaufschlagung bei der Kühlung von Stranggussbarren den Vorteil einer geringeren Explosionsgefahr, da der auf die Oberfläche auftreffende Wassernebel derart eingestellt werden kann, dass er praktisch vollständig verdampft.Atomized air / water mixtures have the advantage of a lower explosion risk compared to the pure application of water when cooling continuous cast ingots, since the water mist hitting the surface can be adjusted in such a way that it practically completely evaporates.

Bekannte Düsensysteme beruhen auf dem Prinzip des Venturirohrs, wo die Bildung des Luft/Wasser-Gemisches bereits innerhalb der Düse erfolgt. Derartige Venturidüsen haben den Nachteil, dass die benötigte Luftmenge zur Bildung des Wassernebels ausserordentlich gross ist. Hinzu kommt, dass die Kühlintensität an der mit dem Wassernebel beaufschlagten Fläche lokal sehr unterschiedlich ist, da der in der Düsenachse liegende Flächenbereich gegenüber Randbereichen viel stärker gekühlt wird.Known nozzle systems are based on the principle of the Venturi tube, where the air / water mixture is already formed inside the nozzle. Venturi nozzles of this type have the disadvantage that the amount of air required to form the water mist is extraordinarily large. In addition, the cooling intensity on the surface exposed to the water mist is very different locally, since the surface area lying in the nozzle axis is cooled much more strongly than edge areas.

Angesichts dieser Gegebenheiten hat sich der Erfinder das Ziel gesetzt, ein Verfahren der eingangs erwähnten Art zu schaffen, mit welchem die Kühlwirkung unter gleichzeitiger Verminderung der Gasdurchflussmenge verbessert werden kann.In view of these circumstances, the inventor has set himself the goal of creating a method of the type mentioned at the outset with which the cooling effect can be improved while reducing the gas flow rate.

Erfindungsgemäss wird die dadurch gelöst, bei dass ein Flüssigkeitsstrahl durch die Düsenöffnung zu einem Sprühnebel mit Tröpfchengrösse<100µm verdüst und nach dem Austritt aus der Düse zur Beschleunigung und Richtungslenkung der Tröpfchen mit Gasstrahlen in einem Winkel zwischen 0 und 90° zur Düsenachse beaufschlagt wird.According to the invention this is achieved in that a liquid jet is sprayed through the nozzle opening to form a spray with droplet size <100 μm and after exiting the nozzle is acted upon by gas jets at an angle between 0 and 90 ° to the nozzle axis to accelerate and direct the droplets.

Durch die erfindungsgemässe Verfahrensweise kann die Gasdurchflussmenge gegenüber einem Strahlmischverfahren auf der Grundlage der Venturidüse um ein mehrfaches gesenkt werden. Ueberraschenderweise hat sich zudem gezeigt, dass sich durch das erfindungsgemässe Verdüsen des Flüssigkeitsstrahls und die Beschleunigung der Tröpfchen nach der Düsenöffnung eine über die Auftreffläche des Flüssigkeitsnebels auf der Oberfläche des zu kühlenden Gegenstandes gleichmässige Verteilung der Kühlintensität ergibt.The procedure according to the invention enables the gas flow rate to be reduced by a multiple compared to a jet mixing process based on the Venturi nozzle. Surprisingly, it has also been found that the atomization of the liquid jet according to the invention and the acceleration of the droplets after the nozzle opening result in a uniform distribution of the cooling intensity over the surface of the liquid mist on the surface of the object to be cooled.

Bei einer bevorzugten Durchführung des Verfahrens wird die Intensität der Gasstrahlen unabhängig voneinander geregelt. Dadurch wird es möglich, die Richtung des nach der Düsenöffnung gebildeten, kegelförmig verdüsten Flüssigkeitsstrahls in weiten Bereichen zu verändern. Dies ermöglicht bei einer gegebenen Anordnung von Düsen eine Feineinstellung der Kühlung am zu kühlenden Gegenstand.In a preferred implementation of the method, the intensity of the gas jets is regulated independently of one another. This makes it possible to change the direction of the conically atomized liquid jet formed after the nozzle opening over a wide range. With a given arrangement of nozzles, this enables the cooling of the object to be cooled to be fine-tuned.

Als Kühlflüssigkeit kann ein beliebiges Kühlmittel verwendet werden, wobei in den meisten Fällen Wasser bevorzugt wird.Any coolant can be used as the cooling liquid, water being preferred in most cases.

Als Gas bietet sich die Verwendung von Luft an, jedoch können auch andere Gase wie Stickstoff oder Argon eingesetzt werden.Air can be used as the gas, but other gases such as nitrogen or argon can also be used.

Das Verfahren eignet sich insbesondere zum Kühlen von konventionell oder elektromagnetisch gegossenen Strängen sowie Walz- und Pressprodukten aus Metall, insbesondere Aluminium.The method is particularly suitable for cooling conventionally or electromagnetically cast strands as well as rolled and pressed products made of metal, in particular aluminum.

Bei Pressprofilen mit Querschnittsdimensionen unterschiedlicher Dicke ist eine Anpassung der Kühlintensität zur Vermeidung von nachträglichen Richtoperationen besonders wünschenswert. Mit einer vorgängig berechneten Anordnung mehrerer Düsen und der anschliessenden Feinregulierung der Kühlintensität durch unterschiedlich starke Einstellung der Gasstrahlen kann eine verzugsfreie Herstellung von Pressprofilen erzielt werden.In the case of press profiles with cross-sectional dimensions of different thicknesses, an adjustment of the cooling intensity to avoid subsequent straightening operations is particularly desirable. With a previously calculated arrangement of several nozzles and the subsequent fine adjustment of the cooling intensity by setting the Gas jets can achieve a distortion-free production of pressed profiles.

Das Verfahren eignet sich auch zum Kühlen heisser Oberflächen mit vollständiger Verdampfung des Kühlmittels, wobei die Kühlintensitäten bevorzugt zwischen 500 und 3000 W/m²°K liegen.The method is also suitable for cooling hot surfaces with complete evaporation of the coolant, the cooling intensities preferably being between 500 and 3000 W / m² ° K.

Eine weitere Anwendungsmöglichkeit des erfindungsgemässen Verfahrens wird darin gesehen, dass der zu kühlende Gegenstand (z.B. Pressprofile, Walzbänder, umlaufende Walzzylinder) an einem feststehenden Düsensystem vorbeigeführt wird, wobei die Kühlwirkung mit vollständiger Verdampfung des Kühlmittels erfolgt und die Wärmeübergangszahl des zu kühlenden Gegenstandes einer vorgegebenen Sollkurve folgt.
Eine zur Durchführung des erfindungsgemässen Verfahrens geeignete Vorrichtung ist gekennzeichnet durch eine flüssigkeitsführende Düse und im Bereich der Düsenöffnung in einem Winkel zwischen 0 und 90° zur Düsenachse angeordnete Gasführungskanäle.
Another possible application of the method according to the invention is seen in the fact that the object to be cooled (e.g. press profiles, rolling belts, rotating rolling cylinders) is guided past a fixed nozzle system, the cooling effect taking place with complete evaporation of the coolant and the heat transfer coefficient of the object to be cooled according to a predetermined desired curve follows.
A device suitable for carrying out the method according to the invention is characterized by a liquid-carrying nozzle and gas guide channels arranged in the region of the nozzle opening at an angle between 0 and 90 ° to the nozzle axis.

Im einfachsten Fall sind zwei symmetrisch und konzentrisch zur Düsenachse angeordnete Gasführungskanäle vorgesehen, die unabhängig voneinander mit Gas unterschiedlichen Druckes beaufschlagt werden können. Selbstverständlich sind auch andere Gasstrahlanordnungen mit drei oder mehr Gasführungskanälen möglich, die vorzugsweise ebenfalls symmetrisch und konzentrisch zur Düsenachse angeordnet sind.In the simplest case, two gas guide channels arranged symmetrically and concentrically to the nozzle axis are provided, which can be acted upon independently of one another by gas of different pressure. Of course, other gas jet arrangements with three or more gas guide channels are also possible, which are preferably also arranged symmetrically and concentrically to the nozzle axis.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Betrachtung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt in

  • Fig.1 einen schematisierten Querschnitt durch eine geeignete Vorrichtung zur Durchfuhrung der erfindungsgemässen Verfahrens ;
  • Fig.2 eine Draufsicht auf die Vorrichtung von Fig.1.
Further advantages, features and details of the invention result from the following consideration of a preferred exemplary embodiment and from the drawing; this shows in
  • 1 shows a schematic cross section through a suitable device for carrying out the method according to the invention;
  • 2 shows a plan view of the device from FIG.

Eine Vorrichtung R zum Kühlen eines Gegenstandes besteht aus einem eine wasserführende Düse 3 mit Düsenöffnung 4 aufweisenden Teil 1, welches mit zwei einander diametral gegenüberliegenden Bohrungen 5a,b zur Gasführung durchsetzt ist. In der Zeichnung sind die Zuführungsleitungen für Wasser und Luft schematisch angegeben. Das Teil 1 ist unter Bildung von ringsegmentförmigen Hohlräumen 6a,b und daran anschliessenden Gasführungskanälen 7a,b in ein Gegenstück 2 eingepasst. Die Gasführungskanäle 7a,b schliessen mit der Düsenachse x einen Winkel α von beispielsweise 45° ein.A device R for cooling an object consists of a part 1 which has a water-carrying nozzle 3 with a nozzle opening 4 and which is penetrated by two diametrically opposite bores 5a, b for gas guidance. In the drawing, the supply lines for water and air are shown schematically. The part 1 is fitted into a counterpart 2 with the formation of cavities 6a, b in the form of ring segments and adjoining gas guide channels 7a, b. The gas guide channels 7a, b form an angle α of, for example, 45 ° with the nozzle axis x.

Durch unterschiedliche Druckbeaufschlagung der Bohrungen 5a,b kann die Richtung des kegelförmig verdüsten Wasserstrahls 9 in einem weiten Bereich verändert werden.Through different pressurization of the bores 5a, b, the direction of the conical water jet 9 can be changed over a wide range.

Claims (7)

  1. Process for cooling an object by spraying a gas/liquid mixture in the form of a mist onto the surface of the object by means of at least one nozzle, characterised in that a liquid jet is atomised through the nozzle opening to form a spray mist with droplet size < 100 µm and after leaving the nozzle is contacted by gas jets at an angle (α) between 0 and 90° to the nozzle axis (x) to accelerate and steer the direction of the droplets.
  2. Process according to claim 1, characterised in that the intensity of each gas jet is controlled independently of the other.
  3. Process according to one of claims 1 and 2, characterised in that air is used as the gas.
  4. Process according to one of claims 1 to 3, characterised in that water is used as the liquid.
  5. Use of the process according to claim 1 for cooling strands cast conventionally or electromagnetically as well as rolled and pressed products made from metal, in particular aluminium.
  6. Use of the process according to claim 1 for cooling hot surfaces with complete evaporation of the coolant, preferably at cooling intensities of 500-3,000 W/m²°K.
  7. Use of the process according to claim 1 for cooling objects which are guided past a fixed nozzle system, wherein the cooling effect takes place with complete evaporation of the coolant and the heat transfer coefficient of the object to be cooled follows a given theoretical curve.
EP89810325A 1988-05-19 1989-05-01 Method and apparatus for cooling an object Expired - Lifetime EP0343103B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89810325T ATE82171T1 (en) 1988-05-19 1989-05-01 METHOD AND DEVICE FOR COOLING AN OBJECT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH191088 1988-05-19
CH1910/88 1988-05-19

Publications (2)

Publication Number Publication Date
EP0343103A1 EP0343103A1 (en) 1989-11-23
EP0343103B1 true EP0343103B1 (en) 1992-11-11

Family

ID=4221457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810325A Expired - Lifetime EP0343103B1 (en) 1988-05-19 1989-05-01 Method and apparatus for cooling an object

Country Status (9)

Country Link
US (1) US4934445A (en)
EP (1) EP0343103B1 (en)
JP (1) JP2647198B2 (en)
AT (1) ATE82171T1 (en)
AU (1) AU619293B2 (en)
CA (1) CA1316969C (en)
DE (1) DE58902656D1 (en)
IS (1) IS1566B (en)
NO (1) NO174614C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133867A1 (en) 2016-02-05 2017-08-10 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Continuous flow cooling device and method for cooling a metal strip
DE102018115879A1 (en) 2018-06-29 2020-01-23 Uwe Richter Method and device for contour-like tempering of shell-shaped molds

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072883A (en) * 1990-04-03 1991-12-17 Spraying Systems Co. Full cone spray nozzle with external air atomization
US5065943A (en) * 1990-09-06 1991-11-19 Nordson Corporation Nozzle cap for an adhesive dispenser
US5169071A (en) * 1990-09-06 1992-12-08 Nordson Corporation Nozzle cap for an adhesive dispenser
CH686072A5 (en) * 1992-06-19 1995-12-29 Alusuisse Lonza Services Ag Spray system for Kuhlen profiles.
US5800867A (en) * 1992-08-13 1998-09-01 Nordson Corporation Deflection control of liquid or powder stream during dispensing
ES2120471T3 (en) * 1993-12-17 1998-11-01 Pari Gmbh Spezialisten Fuer Effektive Inhalation SPRAY NOZZLE.
US5453383A (en) * 1994-06-14 1995-09-26 General Mills, Inc. Method of applying sugar coating by using steam assisted discharge nozzle
US5640872A (en) 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
AU729427B2 (en) * 1996-07-08 2001-02-01 Corning Incorporated Gas-assisted atomizing device
EP0839918B1 (en) 1996-11-01 2002-02-27 Alcan Technology & Management AG Method and apparatus for cooling an object
EP0839589A1 (en) * 1996-11-04 1998-05-06 Alusuisse Technology &amp; Management AG Method for producing a metallic profiled strand
CA2277392C (en) 1998-07-10 2004-05-18 Ipsco Inc. Differential quench method and apparatus
NL1010262C2 (en) * 1998-10-07 2000-04-10 Hoogovens Corporate Services B Chill casting of aluminum ingots, comprises spraying the ingots with drops of coolant in order to achieve gentle cooling
AU6988400A (en) * 1999-08-07 2001-03-05 Henkel Kommanditgesellschaft Auf Aktien Metal shaping process using a novel two phase cooling lubricant system
JP2002275603A (en) * 2001-03-16 2002-09-25 Kobe Steel Ltd Process and cooling device for press quenching of heat- treated aluminum alloy extruded material
DE10207584A1 (en) * 2002-02-22 2003-09-11 Vits Maschb Gmbh I Ins Process for cooling metal strips or plates and cooling device
DE102006056683A1 (en) 2006-01-11 2007-07-12 Sms Demag Ag Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation
UA89895C2 (en) * 2006-01-11 2010-03-10 Смс Зімаг Акцієнгезелльшафт method and device for continuous casting
DE102008064083A1 (en) * 2008-12-19 2010-06-24 Messer Group Gmbh Device for cooling during the thermal treatment of substrate surface, comprises a cooling nozzle connected to a coolant supply for outputting a coolant beam from an orifice of the cooling nozzle, and a protective gas arrangement
FR2942629B1 (en) * 2009-03-02 2011-11-04 Cmi Thermline Services METHOD FOR COOLING A METAL STRIP CIRCULATING IN A COOLING SECTION OF A CONTINUOUS THERMAL TREATMENT LINE, AND INSTALLATION FOR CARRYING OUT SAID METHOD
KR101034747B1 (en) * 2009-05-29 2011-05-17 삼성에스디아이 주식회사 Mixing device
FI125490B (en) * 2009-06-18 2015-10-30 Beneq Oy Method and apparatus for curing materials
CN103590019A (en) * 2013-10-31 2014-02-19 沈阳拓荆科技有限公司 Multi-gas independent channel spraying method combining stereo partitioning and plane partitioning
ES2886898T3 (en) * 2014-01-13 2021-12-21 Scient And Manufacturing Enterprise Tomsk Electronic Company Ltd Method and device for thermal processing of a steel product
DE102014108471A1 (en) * 2014-06-17 2015-12-17 Brp-Engineering Gmbh Method and device for quenching workpieces
US10900098B2 (en) 2017-07-04 2021-01-26 Daido Steel Co., Ltd. Thermal treatment furnace
DE102017119462A1 (en) * 2017-08-25 2019-02-28 Gelupas Gmbh Dispensing device for spraying a sprayable fluid or powder
WO2023148771A1 (en) 2022-02-03 2023-08-10 Hindalco Industries Limited Apparatus for cooling of hot rolled sheet coils

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302399A (en) * 1964-11-13 1967-02-07 Westinghouse Electric Corp Hollow conical fuel spray nozzle for pressurized combustion apparatus
US3693352A (en) * 1970-09-22 1972-09-26 Demag Ag Method and apparatus for cooling wide continuous metal castings, particularly steel castings
US3675852A (en) * 1970-09-28 1972-07-11 Nikex Nehezipari Kulkere Outer nozzle for the cutting head of a flame cutter
FR2256790A1 (en) * 1974-01-04 1975-08-01 Fives Cail Babcock Cooling plant for continuously cast ingots - comprising rows of air and water jets to produce water spray
DE2444613B1 (en) * 1974-09-16 1976-01-29 Mannesmann Ag PROCESS FOR SPRAYING COOLANT DURING CONTINUOUS STEEL SLABS, AND DEVICE FOR CARRYING OUT THE PROCESS
DE2751013C3 (en) * 1977-11-15 1981-07-09 Kleinewefers Gmbh, 4150 Krefeld Cooling device
JPS5719144A (en) * 1980-07-10 1982-02-01 Nippon Steel Corp Conveying method for high-temperature ingot
DE3239042A1 (en) * 1982-10-22 1984-04-26 SMS Schloemann-Siemag AG, 4000 Düsseldorf DEVICE FOR SPRAYING A FUEL AND COOLANT MIXTURE ONTO A STEEL SLAM
JPS59130664A (en) * 1983-01-14 1984-07-27 Nippon Steel Corp Cooler for continuous casting billet
US4531675A (en) * 1983-10-25 1985-07-30 Accuspray, Inc. Spray nozzle
JPS60145980U (en) * 1984-03-09 1985-09-27 トヨタ自動車株式会社 water spray cooling device
JPS60197275A (en) * 1984-03-19 1985-10-05 Toyota Motor Corp Water spray cooling method
US4645127A (en) * 1984-08-31 1987-02-24 Spraying Systems Co. Air atomizing spray nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133867A1 (en) 2016-02-05 2017-08-10 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Continuous flow cooling device and method for cooling a metal strip
DE102018115879A1 (en) 2018-06-29 2020-01-23 Uwe Richter Method and device for contour-like tempering of shell-shaped molds

Also Published As

Publication number Publication date
IS3467A7 (en) 1989-11-20
ATE82171T1 (en) 1992-11-15
JPH0225671A (en) 1990-01-29
US4934445A (en) 1990-06-19
NO891950D0 (en) 1989-05-16
CA1316969C (en) 1993-04-27
EP0343103A1 (en) 1989-11-23
NO891950L (en) 1989-11-20
NO174614B (en) 1994-02-28
AU619293B2 (en) 1992-01-23
DE58902656D1 (en) 1992-12-17
AU3502989A (en) 1989-11-23
JP2647198B2 (en) 1997-08-27
NO174614C (en) 1994-06-08
IS1566B (en) 1994-12-13

Similar Documents

Publication Publication Date Title
EP0343103B1 (en) Method and apparatus for cooling an object
DE2939951C2 (en)
DE4437933C2 (en) Device for cleaning a workpiece with abrasive CO2 snow
DE3027846C2 (en) Method and device for cooling sheet metal, in particular sheet steel, by means of water
DE1958610C3 (en) Method and device for disintegrating or atomizing a free-falling stream of liquid
DE2040610A1 (en) Method and device for cooling steel objects
DE3901674A1 (en) DEVICE AND METHOD FOR SPRAYING LIQUID MATERIALS
CH617105A5 (en) Process for coating a face of a workpiece by means of a jet of heated gas and molten material, and an application of the process.
EP1022078B1 (en) Process and apparatus for preparing metal powder by gas atomisation
EP0608286B1 (en) Hot-rolling process and hot-rolling mill for metal strip
DE2254491A1 (en) PROCESS FOR COATING SURFACES ON WORKPIECES BY SPRAYING ON LAMINATES, PREFERABLY BY PLASMA SPRAYING, AND ARRANGEMENT FOR PERFORMING THE PROCESS
DE2053947C3 (en) Method and device for generating coolant jets for cooling metal cast strands
DE4208500C2 (en) Spray device for applying a liquid medium such as paint
DE4417100A1 (en) Process and device for producing metal granules
DE3714416A1 (en) METHOD FOR PRODUCING PLASMA INJECTION
DE4208208C2 (en) Method and device for reducing scale formation during hot forming of metal, in particular steel
DE3420376A1 (en) METHOD FOR COOLING WELDED WORKPIECE SURFACES BEFORE AND / OR AFTER THE WELDING POINT BY MEANS OF A WATER-AIR MIXTURE AND DEVICE FOR CARRYING OUT THE METHOD
DE2039389A1 (en) Pre-cooling device for an ultrasonic measuring device
DE2705642A1 (en) Paint spray head jet width control system - has compressed air discharge holes on each side of slot for varying pressure
WO2005123311A1 (en) Method and device for atomizing liquid films
DE202010015304U1 (en) jet
DE3150221A1 (en) Process and equipment for producing metal powder from a melt
DE4430856C2 (en) Process for reducing and controlling the surface scaling when hot rolling flat products, especially hot strips
DE1809971A1 (en) Method for applying a layer of liquid to metal strips or sheets, in particular method for oiling steel strip, and device for carrying out the method
DE2419684C3 (en) Method and device for cooling during continuous casting of metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALUSUISSE-LONZA SERVICES AG

17P Request for examination filed

Effective date: 19900226

17Q First examination report despatched

Effective date: 19900822

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 82171

Country of ref document: AT

Date of ref document: 19921115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58902656

Country of ref document: DE

Date of ref document: 19921217

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080624

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080524

Year of fee payment: 20

Ref country code: DE

Payment date: 20080630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080529

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090430

BE20 Be: patent expired

Owner name: *ALUSUISSE-LONZA SERVICES A.G.

Effective date: 20090501

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080519

Year of fee payment: 20