JPS59130664A - Cooler for continuous casting billet - Google Patents

Cooler for continuous casting billet

Info

Publication number
JPS59130664A
JPS59130664A JP339883A JP339883A JPS59130664A JP S59130664 A JPS59130664 A JP S59130664A JP 339883 A JP339883 A JP 339883A JP 339883 A JP339883 A JP 339883A JP S59130664 A JPS59130664 A JP S59130664A
Authority
JP
Japan
Prior art keywords
water
air
liquid
gas
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP339883A
Other languages
Japanese (ja)
Inventor
Akio Uehara
彰夫 上原
Toshio Hori
堀 利男
Hidetoshi Niimi
新美 英俊
Tomio Inoue
富夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP339883A priority Critical patent/JPS59130664A/en
Publication of JPS59130664A publication Critical patent/JPS59130664A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Abstract

PURPOSE:To spray water over a wide range with a small amt. of air by connecting a branch in the upper direction of a liquid header pipe, and disposing an externally mixing type gas ejecting part for forming a liquid-gas mixture in the outlet part thereof. CONSTITUTION:The top end of a water branch 4 disposed in the upper part of a water header 2 is extended to the outside of an air header 3 and air is discharged from the header 3 to the outside from an air branch 5. The number of the branches 5 is 2 per one water branch in this case but is permitted to use >=3 depending upon the condition of use. Then the flow of the water and the flow of the air from the two directions collide roughly simultaneously against each other in the front end part 6 of the branch 4 and the branch 5, and the water is atomized by the energy of the air; at the same time, the water drops atomized by the colliding film of the air formed by the two streams of the air flow spread. A prescribed spraying angle is obtainable by selecting adequately the angle 9 at which the flow of the water and the flow of the air collide against each other between 0-60 deg..

Description

【発明の詳細な説明】 本発明に鋼の連続鋳造における鋳片を冷却するための装
置、詳しくは広い液体(一般的[は水)量制御範囲を確
保するための二流体噴霧冷却ノズルに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for cooling slabs in continuous steel casting, and more particularly, to a two-fluid spray cooling nozzle for ensuring a wide liquid (generally [water]) amount control range. It is.

連続鋳造設備において、二次冷却領域で行なう冷却条件
に重要な要素であり、冷却条件の良否によって連続鋳造
鋳片の品質に大きな影響を与える。
In continuous casting equipment, it is an important element in the cooling conditions performed in the secondary cooling area, and the quality of continuously cast slabs is greatly influenced by the quality of the cooling conditions.

鋼の連続鋳造に溶鋼を水冷モールドで冷却し、10〜2
0閣の凝固殻を形成させた後、まだ内部が溶鋼の状態に
ある、表面温度が1200℃程度の鋳片の表面に高圧エ
ネルギによるスプレー状または空気エネルギーVC、!
、る噴霧状の冷却水を吹きつけ、鋳片の内部を完全に凝
固させる。この冷却では完全に凝固するまで鋳片を均−
VC耐却する必要がある。二次冷却の条件と鋳片の品質
との関係を第1図を用い、以下に詳細に説明する。
For continuous casting of steel, molten steel is cooled in a water-cooled mold, and 10 to 2
After forming a solidified shell, high-pressure energy is applied to the surface of the slab, which is still in the state of molten steel, at a surface temperature of about 1200℃, or air energy VC is applied!
A spray of cooling water is sprayed to completely solidify the inside of the slab. During this cooling process, the slab is leveled until it is completely solidified.
It is necessary to withstand VC. The relationship between the secondary cooling conditions and the quality of the slab will be explained in detail below using FIG. 1.

二次冷却が不充分であると、凝固殻の強度が不充分とな
り、鋳片の凝固殻が溶鋼の静圧により′ロールとロール
の間でふくらむ現象が生じる。この現象が冶金学的欠陥
、Pとえは中心偏析や内部割れなどの大きな原因の一つ
であることば周知であり、それを防止するに汀、ある一
定収上の水量を鋳片へ与える必要があり、その水量に鋳
造速度。
If the secondary cooling is insufficient, the strength of the solidified shell will be insufficient, and the solidified shell of the slab will bulge between the rolls due to the static pressure of the molten steel. It is well known that this phenomenon is one of the major causes of metallurgical defects, such as central segregation and internal cracks.To prevent this, it is necessary to provide a certain amount of water to the slab. There is a casting speed depending on the amount of water.

鋼種および成分、等鋳造条件により制約される。Restricted by steel type, composition, casting conditions, etc.

さらに、連続鋳造鋳片の欠陥の一つである表面割れに、
二次冷却条件が大きく影響する。この表面割′rLvc
対しでに、その材料の冶金学的強度特性として700℃
から950℃近傍に存在する脆化域の影響を無視するこ
とにできない。よって、横割れ感受性の高いボロン含有
鋼等を鋳造する場合[は、鋳片の表面横割れを防止する
目的で、彎曲曲げ型連続鋳造機の矯正部付近の鋳片表面
温度を上述の脆化域の高温側へ回避する必要があり、低
水量、緩冷却を指向しなければならない。そのような部
分の二次冷却用ノズルとして汀、非常に低水量の制御範
囲を有する必要がある。この時の冷却パターンに第1図
の曲線■となる。
Furthermore, surface cracks, which are one of the defects in continuously cast slabs,
Secondary cooling conditions have a major influence. This surface split'rLvc
On the other hand, the metallurgical strength properties of the material are 700℃
The influence of the embrittlement region that exists near 950°C cannot be ignored. Therefore, when casting boron-containing steel, etc., which is highly susceptible to transverse cracking, in order to prevent transverse cracking on the surface of the slab, the surface temperature of the slab near the straightening part of the curved continuous casting machine must be adjusted to the above-mentioned embrittlement level. It is necessary to avoid the high temperature side of the region, and it is necessary to aim for low water flow and slow cooling. As a secondary cooling nozzle for such parts, it is necessary to have a very low water flow control range. The cooling pattern at this time is the curve ◯ in Figure 1.

一方、連続鋳造技術を高級鋼、特に低温靭性用鋼へ適用
する際には、冷却速度をある一定以上に保ち、TiNの
微細化をVJ、かる必要かあり、二次冷却のノズルとし
て汀高水量の制御範囲を有する必要がある。この時の冷
却パターンに第1図の曲線Iとなる。つ壕9、多品種高
級鋼を製造する連続鋳造機とじては、その鋳造鋼種によ
り、第1図に示すよ′)&?:冷却パターンを変更しな
ければならない。よって、この種の二次冷却としては、
低水量1、2 ’/sin m′(olo ’A=本)
から高水量120 ’/m= m’(10’1m1n本
)という広水量範囲を制御できる気体と液体を併用する
二流体噴霧冷却ノズルが必要である。
On the other hand, when applying continuous casting technology to high-grade steels, especially steels for low-temperature toughness, it is necessary to maintain the cooling rate above a certain level and to refine the TiN using a VJ. It is necessary to have a control range for the amount of water. The cooling pattern at this time is curve I in FIG. Continuous casting machines that produce a wide variety of high-grade steels are shown in Figure 1 depending on the type of steel being cast. : Cooling pattern must be changed. Therefore, for this type of secondary cooling,
Low water flow 1, 2'/sin m' (olo 'A = book)
There is a need for a two-fluid spray cooling nozzle that uses both gas and liquid and can control a wide water flow range from 120'/m=m'(10'1m1n lines) to a high water flow rate.

これに対し、現状の二流体噴霧冷却ノズルは、第2図に
示すようにそのほとんどが構造上内部混合型であり、(
たとえば「鉄と鋼JVOT、  68  (1982年
)1782頁)この形式のノズルは空気圧と水圧のバラ
ンスにより、低水量側が制御不能や水が出なくなるとい
う欠点がある。−万、第3図に一例を示す(「鉄と鋼J
 VOL 65 (1979年)608頁)従来の外部
混合型二流体噴M冷却ノズルは比較的広範囲の水量制御
が可能であるが、その噴霧角度が小さいことと、ある水
量を噴霧化するの[H多量の空気を必要とする欠点を有
している。
In contrast, most of the current two-fluid spray cooling nozzles are internally mixed in structure, as shown in Figure 2.
For example, "Tetsu to Hagane JVOT, 68 (1982) p. 1782) This type of nozzle has the disadvantage that the low water volume side cannot be controlled or water does not come out due to the balance between air pressure and water pressure. (“Tetsu to Hagane J
VOL 65 (1979, p. 608) Conventional external mixing type two-fluid jet M cooling nozzles are capable of controlling the amount of water over a relatively wide range, but the spray angle is small and it is difficult to atomize a certain amount of water [H It has the disadvantage of requiring a large amount of air.

たとえば、内部混合型の噴霧角度に100°から120
°位であるのに″対し、従来の外部混合型のr5t、霧
角度は数十度程度である。よって、従来の内部混合型二
流体噴霧ノズルをかかる高級鋼用連続鋳造機に使用する
と低水量側で制御不能となり、不均一冷却となるし、従
来の外部混合型の二流体噴霧ノズルを使用すると、鋳片
の横方向の不均一冷却による温度分布の不均一が生じた
り、多大な圧空コストを必要とする。
For example, the internal mixing type spray angle can vary from 100° to 120°.
In contrast, the r5t and mist angle of conventional external mixing types are about several tens of degrees.Therefore, when conventional internal mixing type two-fluid spray nozzles are used in such continuous casting machines for high-grade steel, The amount of water cannot be controlled, resulting in non-uniform cooling, and when conventional external mixing type two-fluid spray nozzles are used, non-uniform temperature distribution occurs due to non-uniform cooling in the lateral direction of the slab, and a large amount of pressure and air is required. Requires cost.

本発明に、このような問題点を解消するために、大きい
噴霧角度と、広い水量制御範囲を有する外部混合型二流
体啜霧ノズルに関するものであり、液体ヘソグー管より
上部方向に液体枝管を接続配置し、該液体枝管の出口部
近傍に液体・ガス混合気生成用外部混合型ガス噴出部を
配設したことと、水の流量特性と空気の流量特性を相互
に干渉せずに制御でき、かつI噴霧角度を広角力)ら挟
角まで自由自在に確保できることを特徴とする外部混合
型二流体噴霧ノズルである。
In order to solve these problems, the present invention relates to an external mixing type two-fluid spray nozzle that has a large spray angle and a wide water volume control range, and includes a liquid branch pipe upward from the liquid goo pipe. In addition, an external mixing type gas ejection part for generating a liquid/gas mixture is arranged near the outlet of the liquid branch pipe, and the flow rate characteristics of water and air can be controlled without mutual interference. This external mixing type two-fluid spray nozzle is characterized in that the spray angle can be freely secured from a wide-angle force to a narrow-angle angle.

以下に本発明の実施例を第4図、第5図、第7図、第8
図を用い、詳細に説明する。なお、本発明においてに、
液体および気体の種類は限定しないが、便宜上各々水お
よび空気として説明する。
Examples of the present invention are shown below in Figs. 4, 5, 7, and 8.
This will be explained in detail using figures. In addition, in the present invention,
Although the types of liquid and gas are not limited, they will be described as water and air, respectively, for convenience.

第4図に本発明の装置の一例を示す全体図、第6図に本
発明に対する比較例、第7図(a)から(d)までに本
発明の実施例の断面図、第8図に本発明の噴霧状況を示
す図であり、■は鋳片、2は水ヘソグー、3は空気ヘソ
グー、4は水抜管、5は空気枝管である。供給されP水
に、まず水ヘツダ−2によりほぼ均一に各水抜管へ分配
される。この際、第5図(a)に示すように水ヘツダ−
2より上部方向に水抜管4が取り伺けられていることを
特徴としていることにより、低水量でも水ヘッダー内が
水で充満しているため、充分にヘッダー効果を示し、均
一に水を分配できる。1ことえば、水抜管の取り出し口
が水へラグ−の横や下部にある場合に汀、水の均一分配
可能な下限水量は117’;n□本であるのに対し、上
部方向に設置することにより、下限水量をO,l 1−
A=本本玉下で拡大できる。水ヘッダーで均一分配され
た水は水抜管中を流れ、ノズル外へ出る。
FIG. 4 is an overall view showing an example of the device of the present invention, FIG. 6 is a comparative example for the present invention, FIGS. 7(a) to (d) are cross-sectional views of the embodiment of the present invention, and FIG. It is a figure showing the spraying situation of the present invention, where ■ is a slab, 2 is a water hole, 3 is an air hole, 4 is a water drain pipe, and 5 is an air branch pipe. The supplied P water is first distributed almost uniformly to each drain pipe by the water header 2. At this time, as shown in Figure 5(a), the water header
Since the water drain pipe 4 is extended upward from 2, the inside of the water header is filled with water even when the amount of water is low, so it exhibits a sufficient header effect and distributes water evenly. can. 1. For example, if the outlet of the drain pipe is located next to or at the bottom of the water rug, the minimum amount of water that can be distributed evenly is 117'; By this, the lower limit water amount is O, l 1-
A = Can be enlarged under the main ball. The water is evenly distributed in the water header, flows through the drain pipe, and exits the nozzle.

なお、水ヘツダ−2と水抜管4との取p合いば、その使
用条件によV第5図(b)またU (C)のようにして
も何らさしつかえなく、要は水ヘッダー2よりも水抜管
4が上部方向に配置していればよく、これによジ本発明
の効果を発揮できる。また、水ヘツダ−1本当りの水抜
管の数についても特に制約はなく、鋳造鋳片の大きさ7
幅あるいは厚みによって適宜決定できる。
Furthermore, if the water header 2 and the water drain pipe 4 are connected, depending on the conditions of use, it may be no problem to do it as shown in Fig. 5 (b) or U (C), and the point is that the It is only necessary that the drain pipe 4 is disposed in the upper direction, and thereby the effects of the present invention can be exhibited. There is also no particular restriction on the number of drain pipes per water header, and the size of the cast slab is 7.
It can be determined as appropriate depending on the width or thickness.

次にノズル部分の構造および噴霧化の機構について説明
する。第6図の比較例に水の枝管4の先端が空気ヘッダ
ー3内に存在している場合であり〜水の出口にヘッダー
内の空気圧が作用し、内部混合型と同様に、低水量側で
息つき(脈動している状態)や水量の不均一が生じ、制
御できなくなる欠点を有する。この欠点を解決するため
、ナ枝管4の先端を空気ヘッダー3の外1で延長したこ
とを特徴とするノズルの実施例を第7図(a)に示す。
Next, the structure of the nozzle portion and the atomization mechanism will be explained. In the comparative example shown in Fig. 6, the tip of the water branch pipe 4 is located inside the air header 3. This has the disadvantage of causing breathing (pulsating state) and uneven water volume, making it impossible to control. In order to solve this drawback, an embodiment of a nozzle characterized in that the tip of the branch pipe 4 is extended outside the air header 3 is shown in FIG. 7(a).

この場合、水の出口に空気圧が作用しないため、低水量
でも息つき現象が起こらず、広い水量範囲に対し、充分
に噴霧化し得る。しかし、この形状のノズルの場合でも
、外部混合二流体ノズルの欠点である、噴霧角度が小さ
いことはまだ改善されていない。
In this case, since air pressure does not act on the water outlet, no breathing phenomenon occurs even at low water volumes, and sufficient atomization can be achieved over a wide range of water volumes. However, even in the case of this shaped nozzle, the shortcoming of the external mixing two-fluid nozzle, which is the small spray angle, has not yet been improved.

第7図(b)〜(d)の実施例に、@霧角度を拡大する
ために、さらに改良を加えた一例である。この場合、空
気に空気ヘッダー3から供給され、空気枝管5より系外
へ吐出される。空気枝管5の数は基本的には水抜管1本
につき2本であるが、使用状況によって3本以上になっ
ても有効である。
This is an example in which further improvements have been added to the embodiments shown in FIGS. 7(b) to 7(d) in order to expand the @ fog angle. In this case, air is supplied from the air header 3 and discharged from the air branch pipe 5 to the outside of the system. The number of air branch pipes 5 is basically two per drain pipe, but depending on usage conditions, three or more may be effective.

水抜管4と空気枝管5の先端部6で、水の流れと2つの
方向からの空気の流れがほぼ同一に衝突し、水に空気の
エネルギーにより、噴霧化されるとともに、2つの空気
流により形成される空気の衝突膜により噴霧化された水
滴が広がる。この際、水の流れと空気の流れの衝突角9
を06から60゜の間で適宜選定することにより、所定
の噴霧角度8(第8図)が得られる。
At the tip 6 of the drain pipe 4 and the air branch pipe 5, the water flow and the air flow from two directions collide almost identically, and the water is atomized by the energy of the air, and the two air flows are The atomized water droplets spread due to the air collision film formed by this. At this time, the collision angle between the water flow and the air flow is 9
A predetermined spray angle 8 (FIG. 8) can be obtained by appropriately selecting the angle between 06 and 60 degrees.

衝突角9と噴霧角度8の関係を第10図に示T。The relationship between the collision angle 9 and the spray angle 8 is shown in FIG.

1ことえば、広い噴霧角度を望む場合にに、衝突角度を
60°に選定すると噴霧角度に140°にも達し、噴霧
冷却領域7は600ミリメートルにもなる。しかし衝突
角度をさらに大きくすることは噴霧が広がりすぎ、供給
水量に対する有効水量の割合が減小するためかえってよ
くない。
For example, if a wide spray angle is desired and the impingement angle is selected to be 60°, the spray angle will reach 140° and the spray cooling area 7 will be 600 mm. However, increasing the collision angle even further is not good because the spray spreads too much and the ratio of the effective amount of water to the amount of supplied water decreases.

なお、空気ヘッダー、水ヘツダ−、空気枝管。In addition, air header, water header, and air branch pipe.

水抜管の形状は本説明では円筒形として説明したが、各
々の必要な断面積が確保される限り、円形以外のだ円形
や角であっても何ら差しつかえなく、本発明に適用でき
る。
Although the shape of the water drain pipe has been described as a cylindrical shape in this description, as long as each required cross-sectional area is ensured, any shape other than a circle, such as an oval or a corner, is acceptable and can be applied to the present invention.

11こ、空気枝管と水抜管との大きさの関係としては、
噴霧広がり全範囲で噴霧良好となるために、空気枝管の
直径またにだ円形の場合には長径りと水抜管の直径dと
の間には次式の関係が必要である。
11. The relationship between the sizes of the air branch pipe and the drain pipe is as follows:
In order to achieve good spraying over the entire range of spray spread, the following equation must be satisfied between the diameter of the air branch pipe or, in the case of an oval shape, the major axis and the diameter d of the drain pipe.

D〉d     ・・・・・・・・・・・・・・(1)
以上説明したように、本発明ノズルでは、先端で空気流
と水流がある角度をもって衝突しているため、水の噴霧
化に対し、空気のエネルギーがむだなく有効に働き、第
9図に示すように、本発明による噴霧良好域に従来の内
部混合型噴霧ノズルに比べると空気の必要量に非常に少
′ない。また、基本的には外部混合型であるため、空気
噴出特性と水の噴出特性とにお互いに干渉せず、実機使
用における制御も容易である。
D〉d・・・・・・・・・・・・・・・(1)
As explained above, in the nozzle of the present invention, since the air flow and the water flow collide at a certain angle at the tip, the energy of the air works effectively to atomize water without wasting it, as shown in Figure 9. Furthermore, the amount of air required for the good atomization range according to the present invention is very small compared to conventional internal mixing type spray nozzles. Furthermore, since it is basically an external mixing type, the air jetting characteristics and the water jetting characteristics do not interfere with each other, and control in actual use is easy.

前述の如く、本発明の二流体噴霧冷却ノズルを連続鋳造
の二次冷却として使用することにより、比較的低量の空
気で、鋳片の均一な噴霧冷却が可能と斤ジ、表面割れの
発生が防止できると共に、鋼種によっては強冷却するこ
とも可能となり、同一の連続鋳造機で多品種の鋼を高品
位に製造することが可能となる。
As mentioned above, by using the two-fluid spray cooling nozzle of the present invention for secondary cooling in continuous casting, it is possible to uniformly spray cool the slab with a relatively small amount of air, and to prevent the occurrence of cavities and surface cracks. It is possible to prevent this, and depending on the type of steel, strong cooling is also possible, making it possible to manufacture a wide variety of high-quality steels with the same continuous casting machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造における強冷却の場合と緩冷却の場合
の代表的な冷却パターンを示す図、第2図は従来の内部
混合型噴霧ノズルの一例を示す図、第3図は従来の外部
混合型噴霧ノズルの一例を示す図、第4図は本発明の装
置の一例を示す全体図、第5図に本発明における水へラ
ダーと木枝管の取り合い関係を示す断面図、第6図は本
発明に対する比較例を示す図、第7図は本発明の実施例
を示す噴霧ノズルの断面図、第8図に本発明の噴霧状況
を示す図、第9図に既存ノズルと本発明ノズルの水量と
空気量の関係を示す図、第10図に衝突角度と噴霧角度
および衝突角度と水の有効割合を示す図である。 ■=鋳片、2:水ヘツダ−,3:空気ヘッダー、4:木
枝管、5:空気枝管、6:水と空気の衝突部、7:噴霧
冷却領域、8:噴霧角度、9:水と空気の衝突角度。 特許出願人 代理人 弁理士 矢 葺 知 之(はの)1名)第 1図 竿 2【・J 366− 第3図 第4[4 第5図 第6図 第8図 第 7図 (b) (a) 第9図 本号(り一島本) 第10図 挿↑突色度 368
Figure 1 shows typical cooling patterns for strong cooling and slow cooling in continuous casting, Figure 2 shows an example of a conventional internal mixing spray nozzle, and Figure 3 shows a conventional external mixing spray nozzle. FIG. 4 is a diagram showing an example of a mixing type spray nozzle, FIG. 4 is an overall view showing an example of the device of the present invention, FIG. 5 is a sectional view showing the relationship between the water rudder and the tree branch pipe in the present invention, and FIG. 7 is a cross-sectional view of a spray nozzle showing an example of the present invention, FIG. 8 is a diagram showing a spraying situation of the present invention, and FIG. 9 is a diagram showing an existing nozzle and a nozzle of the present invention. FIG. 10 is a diagram showing the relationship between the amount of water and the amount of air, and FIG. 10 is a diagram showing the impact angle, the spray angle, and the effective ratio of the impact angle and water. ■ = Slab, 2: Water header, 3: Air header, 4: Tree branch pipe, 5: Air branch pipe, 6: Collision area of water and air, 7: Spray cooling area, 8: Spray angle, 9: The angle of collision between water and air. Patent Applicant Representative Patent Attorney Hano (1 person) Fig. 1 Pole 2 [・J 366- Fig. 3 Fig. 4 [4 Fig. 5 Fig. 6 Fig. 8 Fig. 7 (b) (a) Figure 9 This issue (Richishima book) Figure 10 insert ↑ Chromaticity 368

Claims (1)

【特許請求の範囲】 (])液体ヘッダー管より上部方向に液体枝管を接続配
置し、該液体枝管の出口部近傍に液体・ガス混合気生成
用外部混合型ガス噴出部を配設したことを特徴とする連
続鋳造鋳片用冷却装置。 (2)液体・ガス混合気生成用外部混合型ガス噴出部は
、液体枝管がガスヘッダー内を貫通し、液体枝管の出口
でガスへラダーの)ら供給されるガスにより液体が噴霧
化されることにより、液体の流量特性とガスの流量特性
を相互に干渉せずに制御できる外部混合型二流体噴霧ノ
ズルから構成される特許請求の範囲第1項記載の冷却装
置。 (3)  液体・ガス混合気生成用外部混合型ガス噴出
部は、液体が液体枝管(直径d)K出た直後液体の流れ
る方向に対し、00力1ら6o0の範囲で適宜の角度を
もって相対する二方向以上のガス枝管(直径りが液体枝
管径dより大きい)よりガス流を衝突させ、噴霧角度を
広角力)ら挟角まで任意に確保できることを特徴とする
外部混合型二流体噴霧ノズルから構成される特許請求の
範囲第1項記載の冷却装置。
[Claims] (]) A liquid branch pipe is connected and arranged above the liquid header pipe, and an external mixing type gas jetting part for generating a liquid/gas mixture is arranged near the outlet of the liquid branch pipe. A cooling device for continuous casting slabs, characterized by the following. (2) In the external mixing type gas ejection part for generating a liquid/gas mixture, a liquid branch pipe passes through the gas header, and the liquid is atomized by the gas supplied from the ladder to the gas at the exit of the liquid branch pipe. 2. The cooling device according to claim 1, comprising an external mixing type two-fluid spray nozzle that can control liquid flow rate characteristics and gas flow rate characteristics without interfering with each other. (3) The external mixing type gas ejection part for generating a liquid/gas mixture should be installed at an appropriate angle in the range of 00 force 1 to 6o0 with respect to the direction in which the liquid flows immediately after the liquid exits the liquid branch pipe (diameter d) K. External mixing type 2 is characterized in that gas flows collide from gas branch pipes in two or more opposing directions (the diameter is larger than the liquid branch pipe diameter d), and the spray angle can be arbitrarily maintained from wide angle force to narrow angle. A cooling device according to claim 1, comprising a fluid spray nozzle.
JP339883A 1983-01-14 1983-01-14 Cooler for continuous casting billet Pending JPS59130664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP339883A JPS59130664A (en) 1983-01-14 1983-01-14 Cooler for continuous casting billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP339883A JPS59130664A (en) 1983-01-14 1983-01-14 Cooler for continuous casting billet

Publications (1)

Publication Number Publication Date
JPS59130664A true JPS59130664A (en) 1984-07-27

Family

ID=11556255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP339883A Pending JPS59130664A (en) 1983-01-14 1983-01-14 Cooler for continuous casting billet

Country Status (1)

Country Link
JP (1) JPS59130664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934445A (en) * 1983-05-19 1990-06-19 Swiss Aluminum Ltd. Process and device for cooling an object
DE102018115879A1 (en) 2018-06-29 2020-01-23 Uwe Richter Method and device for contour-like tempering of shell-shaped molds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934445A (en) * 1983-05-19 1990-06-19 Swiss Aluminum Ltd. Process and device for cooling an object
DE102018115879A1 (en) 2018-06-29 2020-01-23 Uwe Richter Method and device for contour-like tempering of shell-shaped molds

Similar Documents

Publication Publication Date Title
US4591099A (en) Nozzle to provide fan-shaped spray pattern
RU2213627C2 (en) Slotted nozzle for sprinkling article produced by continuous casting with cooling liquid
KR101045363B1 (en) Apparatus and method for controlled cooling of steel sheet
CA1316969C (en) Process and device for cooling an object
JPH09108794A (en) Nozzle to introduce liquid metal to casting die for metal continuous casting
JP4377873B2 (en) Steel sheet controlled cooling device and cooling method
JPS59130664A (en) Cooler for continuous casting billet
KR100547477B1 (en) Cooling header for steel sheet cooling equipment
JPS58150456A (en) Nozzle for gas-water mist
JP2006315044A (en) Spray cooling method in continuous casting
GB1571150A (en) Spraying apparatus
JPH04309438A (en) Casting device for non-ferrous metal
JPH09141408A (en) Secondary cooling method in continuous casting
JPH06257938A (en) Device for manufacturing snow-like dry ice
US20220241856A1 (en) Metal powder production apparatus
JPH05220550A (en) Secondary cooling device for continuous casting
JPH0211961Y2 (en)
CN208067267U (en) A kind of crystallizer with impinging cooling structure
JPH0353984B2 (en)
JPH04337012A (en) Apparatus for producing metallic powder
JPS638752Y2 (en)
JPS6254056B2 (en)
JP4752252B2 (en) H-shaped steel cooling method
JP2023056684A (en) nozzle
JPS6221331Y2 (en)