EP0339728B1 - Process for manufacturing diaphragms - Google Patents
Process for manufacturing diaphragms Download PDFInfo
- Publication number
- EP0339728B1 EP0339728B1 EP89201031A EP89201031A EP0339728B1 EP 0339728 B1 EP0339728 B1 EP 0339728B1 EP 89201031 A EP89201031 A EP 89201031A EP 89201031 A EP89201031 A EP 89201031A EP 0339728 B1 EP0339728 B1 EP 0339728B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- layer
- thickness
- metal powder
- wire gauze
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 title claims description 6
- 239000000843 powder Substances 0.000 claims description 51
- 239000002184 metal Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims 5
- 230000009969 flowable effect Effects 0.000 claims 2
- 230000001788 irregular Effects 0.000 claims 2
- 238000003825 pressing Methods 0.000 claims 1
- 230000001413 cellular effect Effects 0.000 description 10
- 239000002131 composite material Substances 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1118—Making porous workpieces or articles with particular physical characteristics comprising internal reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
Definitions
- the invention relates to a method for producing diaphragms with a thickness of 0.3 to 3.0 mm, consisting of a wire mesh serving as a carrier, preferably nickel wire mesh, and a porous ceramic layer connected to it and having a thickness of 0.1 to 2 , 8 mm, preferably for electrolysis, whereby a layer of a difficult-to-pour metal powder consisting of sputtered particles, in particular nickel powder, is applied to a layer, the wire mesh is rolled or pressed onto the powder layer with simultaneous compression of the same by 30 to 60% and the metal powder in oxidizing atmosphere at temperatures of 800 to 1500 ° C with a holding time of 1 to 30 minutes, preferably 5 to 15 minutes.
- Diaphragms for electrolysis should be designed in such a way that they are resistant to temperature and corrosion, do not have their own electronic conductivity and have sufficient mechanical strength and have a very low resistance due to the smallest possible thickness against the transport of the electrical charges in the electrolyte.
- EP-B-0 022 252 provides a 0.3 to 0.7 mm thick diaphragm made of porous sintered nickel, iron or copper with a framework structure formed from a wire mesh, preferably nickel wire mesh, the metal is at least partially oxidized to metal oxide.
- a diaphragm is obtained in that a layer of the metal powder is applied to a wire mesh with a mesh size of 100 to 500 ⁇ m in such a way that this is done with binders or simply spread alcohol-sprayed metal powder on the wire mesh or spray it on and compress it by applying a pressure of about 200 kg / cm 2 and at the same time connect it to the wire mesh.
- the metal powder is then subjected to a reducing sintering treatment at a temperature of 700 to 1000 ° C for 10 to 20 minutes and then an oxidizing treatment at a temperature of 1000 to 1200 ° C for up to 3 hours.
- a reducing sintering treatment at a temperature of 700 to 1000 ° C for 10 to 20 minutes
- an oxidizing treatment at a temperature of 1000 to 1200 ° C for up to 3 hours.
- large-area diaphragms should be able to be produced, the strength of which is obtained by an oxidation which is not too extensive, ie by a metallic residual structure.
- Sufficient electrical resistance is provided by the oxide formation penetrating from the surface over the entire body.
- the diaphragms described above especially with larger dimensions, do not have uniform strength, density and thickness over the entire body.
- a constant strength is the prerequisite for the safety of the surfaces of the diaphragms against erosion by gas and liquid flows that occur in the cells of a water electrolysis.
- Constant density and thickness of the diaphragms are the prerequisite for a uniform current density and optimal gas purity; because with uneven current density, ie with local current concentrations, this can lead to local overheating and corrosion attacks and thus to hole formation in the diaphragms, so that, for example, detonating gas can be produced during alkaline water electrolysis.
- the fine-meshed sieve in the manufacture of large diaphragms, the fine-meshed sieve must be kept at a uniform distance from the base by using spacers; because without the spacer, the screen would be bent by the nickel powder applied thereon and the pressure of the doctor blade guided over the nickel powder, so that the distance between the screen and the base would be uneven.
- spacers cause interruptions in the nickel powder layer, so that the resulting defects significantly impair the gas separation and the uniformity of the passage of current.
- the metal powder is evenly distributed and applied to the base according to the bulk volume and the powder layer is rotated under a distributor roller rotating counter to the direction of the powder to form a uniform layer thickness is passed through. This measure is the prerequisite for the uniform layer thickness of the porous ceramic layers connected to the wire mesh and their adhesive strength on the wire mesh.
- the metal powder is expediently applied to the base in an amount of 25 to 500 mg / cm 2 .
- the thickness is 1.0 to 7.0 mm, preferably 3.0 to 5.0 mm.
- This object can also be achieved in such a way that the metal powder is evenly distributed and applied to a wire mesh resting on a base according to the bulk volume and the powder layer is passed under a distributor roller rotating counter to the direction of the powder to form a uniform layer thickness.
- the wire mesh it is necessary for the wire mesh to be coated on both sides, to turn the wire mesh with the powder layer adhering to it upwards, and then to distribute and apply a layer of the same metal powder uniformly according to the bulk volume, to pass it under a distributor roller rotating counter to the direction in which the powder is fed, and then to compact by rolling.
- the wire mesh has a porous ceramic layer on both sides
- a layer of the same metal powder is evenly distributed according to the bulk volume and applied to the wire mesh rolled or pressed onto the compacted metal powder layer against the feed direction of the powder rotating distributor roller passed to form a uniform layer thickness and then compacted by rolling.
- the device for carrying out the method consists of a cellular wheel feeder which allocates and applies the powdered metal, a distributor roller and compacting roller arranged downstream of it. by means of the latter, the wire mesh, which is preferably wound on a drum, is pressed onto the metal powder layer, so that the openings of the wire mesh are filled with metal powder.
- cellular wheel feeder, distributor roller and compacting roller and, if appropriate, the drum interacting with the compacting roller, on which the wire mesh is wound, are combined to form a unit which can be moved along the base.
- the unit consisting of cellular wheel feeder, distributor roller and compacting roller is assigned a further cellular wheel feeder and a distributor roller.
- the wire mesh is pressed into the surface of the sintered metal powder layer brought to a uniform layer thickness by the compacting roller while simultaneously compressing the powder layer, and during the backward movement, the metal powder layer applied to the wire mesh and having a uniform layer thickness is compacted by the compacting roller, which makes the sputtering shaped particles of the metal powder are so firmly connected that the manufactured Composite material can be transported easily.
- the metal powder particles are so closely hooked together that small-format diaphragms can be produced from them without using a wire mesh acting as a support.
- the position of the cellular wheel feeder and the discharge opening of the storage container is selected such that the metal powder cannot be discharged when the cellular wheel feeder is at a standstill. This results in a direct dependence of the discharge amount of the metal powder and thus the layer thickness allocated and applied to the base on the speed of the cellular wheel feeder.
- the layer thickness of the metal powder on the base can be controlled by the speed at which the unit formed by cellular wheel feeder, distributor roller and compacting roller is moved.
- the composite material can be manufactured in sheet or strip form and is so flexible that it can be easily wound onto a drum.
- Fig. 1 and Fig. 2 from the funnel-shaped storage container (1) carbonyl nickel powder (2) in a grain size of 2.2 to 2.8 microns by means of the discharge opening of the storage container (1) closing cellular wheel feeder (3) with a star shape arranged, coaxial trough-like cells in batches to the stationary base (4) in an amount of 50 mg / cm 2 and applied.
- carbonyl nickel powder (10) is applied from the storage container (11) by means of the cellular wheel feeder (12) to the nickel wire mesh (9) in an amount of 50 mg / cm 2 , the powder layer through the distributor roller (14) rotating counter to the direction of the powder is brought to a uniform thickness and then compacted by the compacting roller (7) to a layer thickness of 0.45 mm.
- the material composite which is then fired in an oxidizing atmosphere at a temperature of 1000 ° C and a holding time of 15 min, has a constant thickness and density over the entire surface, which means that the prerequisites for optimal abrasion resistance, uniform current distribution and good gas purity are met. Before firing the composite material, it can be profiled.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Chemically Coating (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Diaphragmen mit einer Dicke von 0,3 bis 3,0 mm, bestehend aus einem als Träger dienenden Drahtnetz, vorzugsweise Nickeldrahtnetz, und einer mit diesem verbundenen porösen keramischen Schicht mit einer Dicke von 0,1 bis 2,8 mm, vorzugsweise für Elektrolysen, wobei auf eine Unterlage eine Schicht eines schwer rieselfähigen, aus spratzigen Teilchen bestehenden Metallpulvers, insbesondere Nickelpulvers, aufgetragen, auf die Pulverschicht das Drahtnetz bei gleichzeitiger Verdichtung derselben um 30 bis 60 % gewalzt oder gepreßt und das Metallpulver in oxidierender Atmosphäre bei Temperaturen von 800 bis 1500°C bei einer Haltezeit von 1 bis 30 min, vorzugsweise 5 bis 15 min, gebrannt wird.The invention relates to a method for producing diaphragms with a thickness of 0.3 to 3.0 mm, consisting of a wire mesh serving as a carrier, preferably nickel wire mesh, and a porous ceramic layer connected to it and having a thickness of 0.1 to 2 , 8 mm, preferably for electrolysis, whereby a layer of a difficult-to-pour metal powder consisting of sputtered particles, in particular nickel powder, is applied to a layer, the wire mesh is rolled or pressed onto the powder layer with simultaneous compression of the same by 30 to 60% and the metal powder in oxidizing atmosphere at temperatures of 800 to 1500 ° C with a holding time of 1 to 30 minutes, preferably 5 to 15 minutes.
Diaphragmen für Elektrolysen sollen so beschaffen sein, daß sie Temperatur- und korrosionsbeständig sind, keine eigene Elektronenleitfähigkeit sowie genügend mechanische Festigkeit aufweisen und einen sehr niedrigen Widerstand durch möglichst kleine Dicke gegen den Transport der elektrischen Ladungen im Elektrolyten besitzen.Diaphragms for electrolysis should be designed in such a way that they are resistant to temperature and corrosion, do not have their own electronic conductivity and have sufficient mechanical strength and have a very low resistance due to the smallest possible thickness against the transport of the electrical charges in the electrolyte.
Um das zu erreichen, ist in der EP-B-0 022 252 ein 0,3 bis 0,7 mm dickes Diaphragma aus porös gesintertem Nickel, Eisen oder Kupfer mit einer aus einem Drahtnetz, vorzugsweise Nickeldrahtnetz, gebildeten Gerüststruktur vorgesehen, wobei das Metall mindestens teilweise zu Metalloxid aufoxidiert ist. Man erhält ein solches Diaphragma dadurch, daß eine Schicht des Metallpulvers auf ein Drahtnetz mit einer Maschenweite von 100 bis 500 µm in der Weise aufgetragen wird, daß das mit Bindemitteln oder einfach mit Alkohol angeteigte Metallpulver auf das Drahtnetz aufgestrichen oder aufgesprüht und durch Druck von etwa 200 Kp/cm2 verdichtet und dabei gleichzeitig mit dem Drahtnetz verbunden wird. Das Metallpulver wird anschließend einer reduzierenden Sinterbehandlung bei einer Temperatur von 700 bis 1000°C für 10 bis 20 min Dauer und danach einer oxidierenden Behandlung bei einer Temperatur von 1000 bis 1200°C bis zu 3 h Dauer unterworfen. Nach diesem Verfahren sollen sich großflächige Diaphragmen herstellen lassen, deren Festigkeit durch eine nicht zu weit getriebene Oxidation, d.h. durch ein metallisches Restgefüge, erhalten wird. Durch die über den Gesamtkörper hinweg von der Oberfläche her vordringende Oxidbildung ist ein ausreichender elektrischer Widerstand gegeben. Es hat sich jedoch herausgestellt, daß die vorstehend beschriebenen Diaphragmen, insbesondere bei größeren Abmessungen, über den Gesamtkörper hinweg keine gleichmäßige Festigkeit, Dichte und Dicke besitzen. Eine konstante Festigkeit bildet aber die Voraussetzung für die Sicherheit der Oberflächen der Diaphragmen gegen Erosion durch Gas- und Flüssigkeitsströme, die in den Zellen einer Wasserelektrolyse auftreten. Konstante Dichte und Dicke der Diaphragmen bilden die Voraussetzung für eine gleichmäßige Stromdichte und optimale Gasreinheit; denn bei ungleichmäßiger Stromdichte, d.h. bei örtlichen Stromkonzentrationen, kann dies zu örtlichen Überhitzungen und Korrosionsangriffen und damit zu Lochbildungen in den Diaphragmen führen, so daß beispielsweise bei der alkalischen Wasserelektrolyse Knallgas entstehen kann.To achieve this, EP-B-0 022 252 provides a 0.3 to 0.7 mm thick diaphragm made of porous sintered nickel, iron or copper with a framework structure formed from a wire mesh, preferably nickel wire mesh, the metal is at least partially oxidized to metal oxide. Such a diaphragm is obtained in that a layer of the metal powder is applied to a wire mesh with a mesh size of 100 to 500 μm in such a way that this is done with binders or simply spread alcohol-sprayed metal powder on the wire mesh or spray it on and compress it by applying a pressure of about 200 kg / cm 2 and at the same time connect it to the wire mesh. The metal powder is then subjected to a reducing sintering treatment at a temperature of 700 to 1000 ° C for 10 to 20 minutes and then an oxidizing treatment at a temperature of 1000 to 1200 ° C for up to 3 hours. According to this process, large-area diaphragms should be able to be produced, the strength of which is obtained by an oxidation which is not too extensive, ie by a metallic residual structure. Sufficient electrical resistance is provided by the oxide formation penetrating from the surface over the entire body. However, it has been found that the diaphragms described above, especially with larger dimensions, do not have uniform strength, density and thickness over the entire body. A constant strength is the prerequisite for the safety of the surfaces of the diaphragms against erosion by gas and liquid flows that occur in the cells of a water electrolysis. Constant density and thickness of the diaphragms are the prerequisite for a uniform current density and optimal gas purity; because with uneven current density, ie with local current concentrations, this can lead to local overheating and corrosion attacks and thus to hole formation in the diaphragms, so that, for example, detonating gas can be produced during alkaline water electrolysis.
Zur Herstellung dünner Diaphragmen mit konstanter Festigkeit, Dichte und Dicke ist versucht worden, Nickelpulver über ein mit einem geringen Abstand über eine Unterlage gespanntes feinmaschiges Sieb auf die Unterlage aufzustreuen, die aufgestreute Nickelpulverschicht durch Walzen zu verdichten und dabei gleichzeitig ein Nickeldrahtnetz mit der Nickelpulverschicht zu verbinden. Diese Maßnahmen gewährleisten jedoch keine gleichmäßige Verteilung des Nickelpulvers auf der Unterlage, so daß Festigkeit, Dichte und Dicke des hergestellten Diaphragmas ungleichmäßig sind. Hinzu kommt, daß bei der Herstellung von flächenmäßig großen Diaphragmen das feinmaschige Sieb durch die Anwendung von Distanzhaltern auf einem gleichmäßigen Abstand zur Unterlage gehalten werden muß; denn ohne Distanzhalter würde das Sieb durch das darauf aufgetragene Nickelpulver und den Druck des über das Nickelpulver geführten Rakels durchgebogen, so daß der Abstand zwischen dem Sieb und der Unterlage ungleichmäßig würde. Darüber hinaus verursachen Distanzhalter Unterbrechungen der Nickelpulverschicht, so daß die dadurch entstandenen Fehlstellen in erheblichem Maße die Gastrennung und die Gleichmäßigkeit des Stromdurchtritts beeinträchtigen.In order to produce thin diaphragms with constant strength, density and thickness, attempts have been made to use nickel powder with a small distance over one Sprinkle the tensioned fine-mesh sieve onto the base, compact the scattered layer of nickel powder by rolling and at the same time connect a nickel wire mesh with the layer of nickel powder. However, these measures do not ensure an even distribution of the nickel powder on the base, so that the strength, density and thickness of the diaphragm produced are uneven. In addition, in the manufacture of large diaphragms, the fine-meshed sieve must be kept at a uniform distance from the base by using spacers; because without the spacer, the screen would be bent by the nickel powder applied thereon and the pressure of the doctor blade guided over the nickel powder, so that the distance between the screen and the base would be uneven. In addition, spacers cause interruptions in the nickel powder layer, so that the resulting defects significantly impair the gas separation and the uniformity of the passage of current.
Es ist die Aufgabe der vorliegenden Erfindung, das Verfahren der eingangs beschriebenen Art so auszugestalten, daß die Herstellung dünner Diaphragmen mit konstanter Dicke, Festigkeit und Dichte auf kontinuierliche Art und Weise sowie in großflächiger Ausführungsform möglich ist.It is the object of the present invention to design the method of the type described in the introduction in such a way that the production of thin diaphragms with constant thickness, strength and density is possible in a continuous manner and in a large-area embodiment.
Die Lösung dieser Aufgabe besteht darin, daß erfindungsgemäß das Metallpulver auf die Unterlage gleichmäßig nach Schüttvolumen zugeteilt und aufgetragen und die Pulverschicht unter einer entgegen der Zuteilrichtung des Pulvers rotierenden Verteilerwalze zur Ausbildung einer einheitlichen Schichtdicke hindurchgeführt wird. Diese Maßnahme ist die Voraussetzung für die einheitliche Schichtdicke der mit dem Drahtnetz verbundenen porösen keramischen Schichten und deren Haftfestigkeit auf dem Drahtnetz.The solution to this problem is that, according to the invention, the metal powder is evenly distributed and applied to the base according to the bulk volume and the powder layer is rotated under a distributor roller rotating counter to the direction of the powder to form a uniform layer thickness is passed through. This measure is the prerequisite for the uniform layer thickness of the porous ceramic layers connected to the wire mesh and their adhesive strength on the wire mesh.
Zweckmäßigerweise wird das Metallpulver in einer Menge von 25 bis 500 mg/cm2 auf die Unterlage aufgetragen.The metal powder is expediently applied to the base in an amount of 25 to 500 mg / cm 2 .
Nachdem die Metallpulverschicht unter der Verteilerwalze durchgelaufen ist, beträgt deren Dicke 1,0 bis 7,0 mm, vorzugsweise 3,0 bis 5,0 mm.After the metal powder layer has passed under the distributor roller, its thickness is 1.0 to 7.0 mm, preferably 3.0 to 5.0 mm.
Die Lösung dieser Aufgabe kann auch in der Weise erfolgen, daß auf ein auf einer Unterlage aufliegendes Drahtnetz das Metallpulver gleichmäßig nach Schüttvolumen zugeteilt und aufgetragen und die Pulverschicht unter einer entgegen der Zuteilrichtung des Pulvers rotierenden Verteilerwalze zur Ausbildung einer einheitlichen Schichtdicke hindurchgeführt wird.This object can also be achieved in such a way that the metal powder is evenly distributed and applied to a wire mesh resting on a base according to the bulk volume and the powder layer is passed under a distributor roller rotating counter to the direction of the powder to form a uniform layer thickness.
In diesem Fall ist es für die beidseitige Beschichtung des Drahtnetzes erforderlich, das Drahtnetz mit der daran haftenden Pulverschicht nach oben zu wenden und dann eine Schicht des gleichen Metallpulvers gleichmäßig nach Schüttvolumen zuzuteilen und aufzutragen, unter einer entgegen der Zuteilrichtung des Pulvers rotierenden Verteilerwalze hindurchzuführen und dann durch Walzen zu verdichten.In this case, it is necessary for the wire mesh to be coated on both sides, to turn the wire mesh with the powder layer adhering to it upwards, and then to distribute and apply a layer of the same metal powder uniformly according to the bulk volume, to pass it under a distributor roller rotating counter to the direction in which the powder is fed, and then to compact by rolling.
Damit das Drahtnetz beidseitig eine poröse keramische Schicht aufweist, wird auf das auf die verdichtete Metallpulverschicht gewalzte oder gepreßte Drahtnetz eine Schicht des gleichen Metallpulvers gleichmäßig nach Schüttvolumen zugeteilt und aufgetragen, unter einer entgegen der Zuteilrichtung des Pulvers rotierenden Verteilerwalze zur Ausbildung einer einheitlichen Schichtdicke hindurchgeführt und anschließend durch Walzen verdichtet.So that the wire mesh has a porous ceramic layer on both sides, a layer of the same metal powder is evenly distributed according to the bulk volume and applied to the wire mesh rolled or pressed onto the compacted metal powder layer against the feed direction of the powder rotating distributor roller passed to form a uniform layer thickness and then compacted by rolling.
Die Vorrichtung zur Durchführung des Verfahrens besteht aus einem das pulverförmige Metall zuteilenden und auftragenden Zellenradspeiser, einer diesem nachgeordneten Verteilerwalze und Verdichtungswalze; mittels letzterer wird das Drahtnetz, das vorzugsweise auf einer Trommel aufgewickelt ist, auf die Metallpulverschicht gedrückt, so daß die Öffnungen des Drahtnetzes mit Metallpulver ausgefüllt sind.The device for carrying out the method consists of a cellular wheel feeder which allocates and applies the powdered metal, a distributor roller and compacting roller arranged downstream of it. by means of the latter, the wire mesh, which is preferably wound on a drum, is pressed onto the metal powder layer, so that the openings of the wire mesh are filled with metal powder.
Nach einer vorzugsweisen Ausbildung der Vorrichtung sind Zellenradspeiser, Verteilerwalze und Verdichtungswalze sowie ggf. die mit der Verdichterwalze zusammenwirkende Trommel, auf der das Drahtnetz aufgewickelt ist, zu einer entlang der Unterlage verfahrbaren Einheit zusammengefaßt.According to a preferred embodiment of the device, cellular wheel feeder, distributor roller and compacting roller and, if appropriate, the drum interacting with the compacting roller, on which the wire mesh is wound, are combined to form a unit which can be moved along the base.
Damit das Drahtnetz auf möglichst zeitsparende Weise auf beiden Seiten beschichtet werden kann, sind der aus Zellenradspeiser, Verteilerwalze und Verdichtungswalze bestehenden Einheit ein weiterer Zellenradspeiser und eine Verteilerwalze zugeordnet. Bei der Vorwärtsbewegung der Einheit wird in die Oberfläche der auf eine einheitliche Schichtdicke gebrachten Sintermetallpulverschicht das Drahtnetz durch die Verdichtungswalze bei gleichzeitiger Verdichtung der Pulverschicht eingedrückt und bei der Rückwärtsbewegung die auf das Drahtnetz aufgetragene, eine einheitliche Schichtdicke besitzende Metallpulverschicht durch die Verdichtungswalze verdichtet, wodurch die spratzig geformten Teilchen des Metallpulvers so fest miteinander verbunden sind, daß der hergestellte Werkstoffverbund problemlos transportierbar ist. Die Metallpulverteilchen sind so stark miteinander verhakt, daß sich daraus kleinformatige Diaphragmen ohne Verwendung eines als Träger wirkenden Drahtnetzes herstellen lassen.So that the wire mesh can be coated on both sides in the most time-saving way possible, the unit consisting of cellular wheel feeder, distributor roller and compacting roller is assigned a further cellular wheel feeder and a distributor roller. During the forward movement of the unit, the wire mesh is pressed into the surface of the sintered metal powder layer brought to a uniform layer thickness by the compacting roller while simultaneously compressing the powder layer, and during the backward movement, the metal powder layer applied to the wire mesh and having a uniform layer thickness is compacted by the compacting roller, which makes the sputtering shaped particles of the metal powder are so firmly connected that the manufactured Composite material can be transported easily. The metal powder particles are so closely hooked together that small-format diaphragms can be produced from them without using a wire mesh acting as a support.
Die Stellung von Zellenradspeiser und Austragsöffnung des Vorratsbehälters ist so gewählt, daß bei stehendem Zellenradspeiser kein Austrag des Metallpulvers erfolgen kann. Dadurch wird eine direkte Abhängigkeit der Austragsmenge des Metallpulvers und damit der auf die Unterlage zugeteilten und aufgetragenen Schichtdicke von der Drehzahl des Zellenradspeisers erreicht. Darüber hinaus ist die Schichtdicke des Metallpulvers auf der Unterlage durch die Geschwindigkeit, mit der die aus Zellenradspeiser, Verteilerwalze und Verdichtungswalze gebildete Einheit verfahren wird, steuerbar.The position of the cellular wheel feeder and the discharge opening of the storage container is selected such that the metal powder cannot be discharged when the cellular wheel feeder is at a standstill. This results in a direct dependence of the discharge amount of the metal powder and thus the layer thickness allocated and applied to the base on the speed of the cellular wheel feeder. In addition, the layer thickness of the metal powder on the base can be controlled by the speed at which the unit formed by cellular wheel feeder, distributor roller and compacting roller is moved.
Der Werkstoffverbund läßt sich in Platten- oder Bandform fertigen und ist so flexibel, daß dieser problemlos auf eine Trommel aufwickelbar ist.The composite material can be manufactured in sheet or strip form and is so flexible that it can be easily wound onto a drum.
Die Erfindung ist in den Zeichnungen beispielhaft dargestellt und wird nachfolgend näher erläutert.The invention is illustrated by way of example in the drawings and is explained in more detail below.
Nach Fig. 1 und Fig. 2 wird aus dem trichterförmigen Vorratsbehälter (1) Carbonyl-Nickelpulver (2) in einer korngröße von 2,2 bis 2,8 µm mittels des die Austragsöffnung des Vorratsbehälters (1) verschließenden Zellenradspeisers (3) mit sternförmig angeordneten, koaxial verlaufenden, muldenartigen Zellen chargenweise auf die ortsfeste Unterlage (4) in einer Menge von 50 mg/cm2 zugeteilt und aufgetragen. Durch die entgegen der Zuteilrichtung des Pulvers rotierende Verteilerwalze (5) wird die Carbonyl-Nickelpulverschicht (6) auf eine einheitliche Schichtdicke gebracht und durch die Verdichtungswalze (7), mittels der gleichzeitig das auf der Trommel (8) aufgewickelte Nickeldrahtnetz (9) mit einer Drahtstärke von 0,125 mm und einer Maschenweite von 0,2 mm von der Trommel (8) ablaufend auf die Carbonyl-Nickelpulverschicht (6) gewalzt wird, auf eine Schichtdicke von 0,3 mm verdichtet.According to Fig. 1 and Fig. 2 from the funnel-shaped storage container (1) carbonyl nickel powder (2) in a grain size of 2.2 to 2.8 microns by means of the discharge opening of the storage container (1) closing cellular wheel feeder (3) with a star shape arranged, coaxial trough-like cells in batches to the stationary base (4) in an amount of 50 mg / cm 2 and applied. By rotating against the feed direction of the powder distributor roller (5) Carbonyl-nickel powder layer (6) brought to a uniform layer thickness and through the compaction roller (7), by means of which the nickel wire mesh (9) wound on the drum (8) with a wire thickness of 0.125 mm and a mesh size of 0.2 mm from the Drum (8) is rolled down onto the carbonyl nickel powder layer (6), compacted to a layer thickness of 0.3 mm.
Nach dem Abschneiden des Nickeldrahtnetzes (9) wird bei der Rückwärtsbewegung Carbonyl-Nickelpulver (10) aus dem Vorratsbehälter (11) mittels des Zellenradspeisers (12) auf das Nickeldrahtnetz (9) in einer Menge von 50 mg/cm2 aufgetragen, die Pulverschicht durch die entgegen der Zuteilrichtung des Pulvers rotierende Verteilerwalze (14) auf eine einheitliche Dicke gebracht und danach durch die Verdichtungswalze (7) auf eine Schichtdicke von 0,45 mm verdichtet.After cutting off the nickel wire mesh (9), during the backward movement, carbonyl nickel powder (10) is applied from the storage container (11) by means of the cellular wheel feeder (12) to the nickel wire mesh (9) in an amount of 50 mg / cm 2 , the powder layer through the distributor roller (14) rotating counter to the direction of the powder is brought to a uniform thickness and then compacted by the compacting roller (7) to a layer thickness of 0.45 mm.
Der anschließend in oxidierender Atmosphäre bei einer Temperatur von 1000°C und einer Haltezeit von 15 min gebrannte Werkstoffverbund besitzt über die gesamte Fläche eine konstante Dicke und Dichte, wodurch die Voraussetzung für optimale Abriebfestigkeit, eine gleichmäßige Stromverteilung und gute Gasreinheit erfüllt sind. Vor dem Brennen des Werkstoffverbundes kann dieser profiliert werden.The material composite, which is then fired in an oxidizing atmosphere at a temperature of 1000 ° C and a holding time of 15 min, has a constant thickness and density over the entire surface, which means that the prerequisites for optimal abrasion resistance, uniform current distribution and good gas purity are met. Before firing the composite material, it can be profiled.
Claims (4)
- A method of manufacturing diaphragms with a thickness of 0.3 to 3.0 mm, consisting of a wire gauze used as substrate, preferably a nickel wire gauze, and of a porous ceramic layer with a thickness of 0,1 to 2.8 mm connected with the same, preferably for electrolyses, where a layer of a hardly flowable metal powder consisting of irregular particles, in particular nickel powder, is coated on a substrate, the wire gauze is rolled or pressed onto the powder layer by simultaneously compacting the same by 30 to 60 %, and the metal powder is burnt in an oxidizing atmosphere at temperatures of 800 to 1500°C for a period of 1 to 30 min, preferably 5 to 15 min, characterized in that the metal powder is uniformly fed and applied onto the substrate according to bulk volume, and the powder layer is passed below a distribution roller rotating against the feeding direction of the powder so as to obtain a uniform layer thickness.
- The method as claimed in claim 1, characterized in that onto the wire gauze rolled or pressed into the powder layer a layer of the same metal powder is uniformly fed and applied according to bulk volume, is passed below a distribution roller rotating against the feeding direction of the powder so as to obtain a uniform layer thickness, and is finally compacted by means of rolling.
- A method of manufacturing diaphragms with a thickness of 0.3 to 3.0 mm, consisting of a wire gauze used as substrate, preferably a nickel wire gauze, and of a porous ceramic layer with a thickness of 0,1 to 2.8 mm connected with the same, preferably for electrolyses, where a layer of a hardly flowable metal powder consisting of irregular particles, in particular nickel powder, is connected with a wire gauze while simultaneously compacting the powder layer by 30 to 60% by means of rolling or pressing, and the metal powder is burnt in an oxidizing atmosphere at temperatures of 800 to 1500°C for the period of 1 to 30 min, preferably 5 to 15 min, characterized in that the metal powder is uniformly fed and applied onto the wire gauze lying on a substrate according to bulk volume, and the powder layer is passed below a distribution roller rotating against the feeding direction of the powder so as to obtain a uniform layer thickness.
- The method as claimed in claim 3, characterized in that the wire gauze with the powder layer adhering on the same is turned upwards, a layer of the same metal powder is uniformly fed and applied according to bulk volume, is passed below a distribution roller rotating against the feeding direction of the powder so as to obtain a uniform layer thickness, and is finally compacted by means of rolling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3813743 | 1988-04-23 | ||
DE3813743A DE3813743A1 (en) | 1988-04-23 | 1988-04-23 | METHOD AND DEVICE FOR PRODUCING DIAPHRAGMS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0339728A1 EP0339728A1 (en) | 1989-11-02 |
EP0339728B1 true EP0339728B1 (en) | 1997-10-15 |
Family
ID=6352725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89201031A Expired - Lifetime EP0339728B1 (en) | 1988-04-23 | 1989-04-21 | Process for manufacturing diaphragms |
Country Status (8)
Country | Link |
---|---|
US (2) | US4961901A (en) |
EP (1) | EP0339728B1 (en) |
JP (1) | JP2869487B2 (en) |
BR (1) | BR8901906A (en) |
CA (1) | CA1319474C (en) |
DE (2) | DE3813743A1 (en) |
NO (1) | NO891630L (en) |
ZA (1) | ZA892958B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0437625B1 (en) * | 1989-07-27 | 1996-01-03 | The Furukawa Electric Co., Ltd. | Method of producing metallic complex and metallic complex produced thereby |
US7560067B2 (en) * | 2001-07-16 | 2009-07-14 | Sherman Andrew J | Powder friction forming |
US20140170012A1 (en) * | 2012-12-18 | 2014-06-19 | United Technologies Corporation | Additive manufacturing using partially sintered layers |
JP6379684B2 (en) | 2014-06-02 | 2018-08-29 | 株式会社リコー | 3D modeling equipment |
US10245786B2 (en) * | 2014-12-17 | 2019-04-02 | Xerox Corporation | System for planarizing objects in three-dimensional object printing systems with reduced debris |
WO2020092485A1 (en) * | 2018-10-31 | 2020-05-07 | Carbon, Inc. | Apparatuses for additively manufacturing three-dimensional objects |
US11376787B2 (en) * | 2019-06-18 | 2022-07-05 | Carbon, Inc. | Additive manufacturing method and apparatus for the production of dental crowns and other objects |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1930287A (en) * | 1927-12-21 | 1933-10-10 | Moraine Products Company | Method of compressing powdered materials |
US2341732A (en) * | 1941-04-04 | 1944-02-15 | Gen Motors Corp | Method and apparatus for briquetting of powdered metal |
US2917821A (en) * | 1954-04-01 | 1959-12-22 | Mannesmann Ag | Method for rolling metal powder |
SU119772A1 (en) * | 1958-11-15 | 1958-11-30 | Ю.Н. Семенов | Device for feeding metal powder into mill rolls |
US3050776A (en) * | 1960-04-21 | 1962-08-28 | Electric Storage Battery Co | Nickel-powder leveling apparatus |
US3194858A (en) * | 1962-02-23 | 1965-07-13 | Alloys Res & Mfg Corp | Continuous powder metallurgical process |
US3403999A (en) * | 1965-10-13 | 1968-10-01 | Texas Instruments Inc | Manufacture of braze shim stock |
GB1515420A (en) * | 1976-03-10 | 1978-06-21 | Davy Loewy Ltd | Treatment of compacted metal powder strip |
JPS55164162A (en) * | 1979-06-06 | 1980-12-20 | Hitachi Ltd | Forming method for thin film |
DE2927566C2 (en) * | 1979-07-07 | 1986-08-21 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Diaphragm for alkaline electrolysis, process for producing the same and its use |
SU980962A1 (en) * | 1981-05-15 | 1982-12-15 | Ордена Трудового Красного Знамени Институт Проблем Материаловедения Ан Усср | Production line for producing bimetal |
SU1041214A1 (en) * | 1982-02-08 | 1983-09-15 | Витебский технологический институт легкой промышленности | Method of producing coatings of powder material |
DE3318758C2 (en) * | 1983-05-24 | 1985-06-13 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Nickel oxide based diaphragm and method of making the same |
US4670214A (en) * | 1986-05-12 | 1987-06-02 | Energy Conversion Devices, Inc. | Method for making electrode material from high hardness active materials |
SU1444081A1 (en) * | 1987-06-04 | 1988-12-15 | Коммунарский горно-металлургический институт | Arrangement for rolling powder |
-
1988
- 1988-04-23 DE DE3813743A patent/DE3813743A1/en not_active Withdrawn
-
1989
- 1989-04-18 US US07/339,747 patent/US4961901A/en not_active Expired - Fee Related
- 1989-04-20 NO NO89891630A patent/NO891630L/en unknown
- 1989-04-21 CA CA000597373A patent/CA1319474C/en not_active Expired - Fee Related
- 1989-04-21 BR BR898901906A patent/BR8901906A/en not_active Application Discontinuation
- 1989-04-21 DE DE58909821T patent/DE58909821D1/en not_active Expired - Fee Related
- 1989-04-21 ZA ZA892958A patent/ZA892958B/en unknown
- 1989-04-21 EP EP89201031A patent/EP0339728B1/en not_active Expired - Lifetime
- 1989-04-24 JP JP1104388A patent/JP2869487B2/en not_active Expired - Fee Related
-
1990
- 1990-07-17 US US07/554,642 patent/US5114326A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5114326A (en) | 1992-05-19 |
BR8901906A (en) | 1989-11-28 |
JP2869487B2 (en) | 1999-03-10 |
EP0339728A1 (en) | 1989-11-02 |
NO891630D0 (en) | 1989-04-20 |
DE3813743A1 (en) | 1989-11-02 |
ZA892958B (en) | 1990-12-28 |
JPH01312097A (en) | 1989-12-15 |
CA1319474C (en) | 1993-06-29 |
DE58909821D1 (en) | 1997-11-20 |
US4961901A (en) | 1990-10-09 |
NO891630L (en) | 1989-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0339717B1 (en) | Process for manufacturing composite materials such as sheet-plates, sheet-strips, and foils with superficial skeleton structure and use of the composites | |
EP1728896B1 (en) | Method of manufacturing gas diffusion electrodes | |
DE19509748C2 (en) | Process for producing a composite of electrode material, catalyst material and a solid electrolyte membrane | |
DE1078649B (en) | Process for the production of electrodes for galvanic elements | |
DE2752875C2 (en) | Electrode for electrochemical processes and processes for their production | |
DE2152619A1 (en) | Process for the production of porous metal plates | |
EP0339728B1 (en) | Process for manufacturing diaphragms | |
DE2909760B2 (en) | Process for the production of zinc electrodes for galvanic cells | |
DE2212606A1 (en) | Output seals made of porous metal | |
EP1346424B1 (en) | Method for producing electrodes, components, half cells and cells for electrochemical energy converters | |
EP0907443B1 (en) | Method of producing laminar material composites | |
DE2537112C3 (en) | Method for producing a welding electrode for hard overlay welding | |
DE1671485A1 (en) | Carrier plate for use in electrochemical facilities | |
DE1771399A1 (en) | Thin electrodes for fuel elements and processes for their manufacture | |
DE1533037B1 (en) | Process for the powder metallurgical production of thin metal strips | |
DE3708296A1 (en) | METHOD FOR PRODUCING CATALYST ELECTRODES WITH STRUCTURALLY CONNECTED SUPPORT BODY AND SUITABLE CATALYST SUSPENSION | |
DE69006240T2 (en) | Process for producing an electrolyte layer of solid electrolytic capacitors. | |
DE2313104C3 (en) | Process for applying a firmly adhering layer of non-metallic substances to an electrically conductive base | |
DE2151603C3 (en) | Process for the production of a primary material for electrical contacts | |
DE2817673A1 (en) | METHOD AND DEVICE FOR PRODUCING A CONTACT LAYER WELDED ON A METALLIC SUPPORT | |
DE1533319B1 (en) | Process for the powder metallurgical production of porous zinc bodies from surface oxidized zinc particles | |
DE1458263A1 (en) | Method for applying a coating made of a metal, a metal alloy, a metal oxide or the like. | |
DE102023209672B3 (en) | electrode for electrochemical cells | |
DE3437472C2 (en) | ||
DE1114870B (en) | Process for the continuous production of sintered framework electrodes for galvanic elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19891129 |
|
17Q | First examination report despatched |
Effective date: 19920312 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE IT LI |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 58909821 Country of ref document: DE Date of ref document: 19971120 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010319 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010421 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050421 |