EP0338920B1 - Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse - Google Patents

Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse Download PDF

Info

Publication number
EP0338920B1
EP0338920B1 EP89401083A EP89401083A EP0338920B1 EP 0338920 B1 EP0338920 B1 EP 0338920B1 EP 89401083 A EP89401083 A EP 89401083A EP 89401083 A EP89401083 A EP 89401083A EP 0338920 B1 EP0338920 B1 EP 0338920B1
Authority
EP
European Patent Office
Prior art keywords
coil
cooler according
casing
porous mass
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89401083A
Other languages
German (de)
English (en)
Other versions
EP0338920A2 (fr
EP0338920A3 (en
Inventor
Virginie Bragard
Dominique Chazot
Serge Reale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP0338920A2 publication Critical patent/EP0338920A2/fr
Publication of EP0338920A3 publication Critical patent/EP0338920A3/fr
Application granted granted Critical
Publication of EP0338920B1 publication Critical patent/EP0338920B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Definitions

  • the present invention relates to Joule-Thomson expansion cryogenic coolers of the type comprising an envelope having a location to be cooled, a coil intended to convey gas under high pressure, disposed in the envelope and having an expansion orifice in the vicinity of the location, and a porous mass filling the region of the envelope which contains the coil but leaving free an expansion chamber into which opens said expansion orifice and forming, in the envelope, a return path for the expanded gas in the expansion chamber, the porous mass consisting of granular particles coated with a layer of a material having a melting point lower than that of the material of which the particles are made, the latter being linked to each other by melting of said material .
  • the present invention relates more particularly to coolers intended to very quickly obtain low temperatures of between 80 and 200K approximately and used for example to cool infrared detectors, as described in document FR-A-2 602 316.
  • the present invention aims to provide a simple and economical technology for producing such a cooler, making it possible to obtain a low temperature very close to the normal boiling point of the expanded gas and very well reproducible.
  • the subject of the invention is a cooler of the aforementioned type, characterized in that the particles consist of balls having a uniform diameter and of the same order of magnitude as the outside diameter of the tube constituting the coil.
  • Document FR-A-2 081 613 also describes a heat exchanger, more particularly a boiler, comprising groups of particles or of linked balls arranged between parallel pipes for circulation of fluid and crossed by a hot gas.
  • FIGS. 1 and 2 are views in axial section of two embodiments of a cryostat comprising a cooler according to the invention .
  • the cryostat shown in FIG. 1 has the same general constitution as that described with reference to FIG. 9 of the aforementioned document FR-A-2 602 316. It includes a Joule-Thomson cooler 1 placed in a vacuum enclosure 2. The assembly has a general axis of symmetry X-X assumed to be vertical.
  • the cooler 1 comprises a cylindrical envelope 3 with a single wall open upwards and itself constituted by a metallic tubular section 4 closed at its lower end by a cup 5 made of copper, a capillary coil 6 made of stainless steel, and a mass porous 7 which is the only difference between this cryostat and that of Figure 9 of the aforementioned FR-A.
  • An element 8 to be cooled for example a disk forming an infrared detector, is fixed to the bottom of the cup 5, outside of the latter.
  • the upper end of the section 4 is fitted and tightly brazed in an opening 9 of a circular cover 10 of the cryostat.
  • the coil 6 enters the envelope 3 through the opening 9, then has a helically wound part approximately up to the lower end of the section 4.
  • the entire wound part of the coil is embedded in the porous mass 7, which fills the space left free by the coil in the corresponding part of the section 4, to the lower end thereof.
  • the metal cup 5 is hermetically fixed to the lower end of the section 4 and provides under the mass 7 an expansion chamber 12 into which the orifice 11 opens.
  • the porous mass 7 consists of tinned bronze balls linked to each other, to the coil 6 and to the section 4, by melting the tin, as will be described in detail below.
  • the vacuum enclosure 2 is defined on the one hand by the cooler 1 and on the other hand by the cover 10 and by tubular sections 13, 14 of axis XX, these elements being connected to each other by flange assemblies - clamps - sealing devices 15.
  • the cryostat enclosure is connected downwards to a vacuum pump (not shown).
  • the capillary coil 6 is helically wound on a mandrel (not shown), which is then removed.
  • the propeller is arranged with a large radial clearance in the tubular section 4, and the latter is filled with bronze balls of 0.5 mm in diameter on which a thin layer of tin having a thickness of 1 is previously deposited. 'order of 5 microns, until the coiled part of the coil is completely covered.
  • the diameter of the beads is slightly greater than the outside diameter of the capillary tube 6; more generally, depending on the performance requested from the cooler, the diameter of the balls can be roughly of the same order of magnitude as this outside diameter, and the ratio of the diameter of the balls to the thickness of the fusible layer can be of the order of 100 .
  • a slight vibration is applied to the assembly to allow a homogeneous arrangement of the balls in the space allotted to them, an arrangement which can be controlled by weighing the exchanger.
  • a few drops of acid such as the All State product sold under the trade name "Duzall Flux" are distributed between the beads, then the whole is heated, for example with a device for blowing hot air at 600 °. C, in an oven, by induction, etc.
  • the heating temperature is chosen to be higher than the melting temperature of tin but lower than that of bronze.
  • the assembly is rinsed with hot water and dried, then the elements 5 and 8 are put in place.
  • the external end of the coil 6 is connected to a source of a gas under very high pressure, for example argon under 700 bars.
  • the high pressure gas purified by a filter (not shown), circulates in the coil, is expanded and therefore cooled as the orifice 11 passes, and enters the chamber 12. From there, it rises through the porous mass 7 by yielding, essentially by means of this mass, from the cold to the high pressure gas contained in the coil 6, and the high pressure gas is evacuated to the atmosphere through the opening 9.
  • the temperature rapidly decreases in the chamber 12, until liquid forms therein at the temperature which corresponds to the pressure prevailing there, which is defined by the pressure drop of the low pressure circuit through the mass 7.
  • the pressure drop of the low pressure circuit formed by the porous mass 7 is low, because the thermal bridges between balls formed by the melting of the tin are small and do not obstruct the inter-ball spaces. In addition, this pressure drop is very reproducible. It is thus possible to mass produce coolers having a precise low temperature and very close to the normal boiling point of the expanded gas.
  • the cryostat represented in figure 2 with the same constitution general than that described with reference to FIG. 8 of the aforementioned FR-A-2 602 316. It also includes a Joule-Thomson cooler 1A with a structure similar to that of FIG. 1, placed in a vacuum enclosure 2A, but the general configuration is planar and circular and assumed to have a vertical axis.
  • the capillary coil 6A made of stainless steel is wound in a flat spiral with contiguous turns; the outer end of this tube is provided with a filter (not shown), while its inner end is closed and has a calibrated orifice 11A axially oriented.
  • the vacuum enclosure 2A consists of two flat plates 4A, 4B having good resistance to mechanical and thermal stresses, in particular made of stainless steel. These plates 4A, 4B have the same outside diameter as the spiral 6A and have a cylindrical peripheral rim 16 directed opposite the spiral. A washer 17 is fixed by brazing, welding or gluing on each flange 16, after putting under vacuum, so as to constitute on each side of the cooler a sealed vacuum chamber.
  • the element 8 to be cooled is fixed to the center of the plate 4A towards which the expansion orifice 11A is oriented, in the corresponding vacuum chamber.
  • the porous mass 7A is again the only difference between this cooler and that of FIG. 8 of the aforementioned FR-A.
  • the coil is arranged in a horizontal plane located at equal distance from the two plates 4A, 4B and spaced therefrom, and the mass 7A fills all the space remaining free between these two plates, with the exception of a central region forming expansion chamber 12A, into which opens the orifice 11A.
  • the mass 7A consists of tinned bronze balls linked to each other, to the coil 6A and to the plates 4A, 4B by melting the tin.
  • the cooler according to the invention may have other configurations, for example a conical configuration intermediate between those of FIGS. 1 and 2.
  • other pairs of materials can be envisaged to constitute balls and their fusible coating, the balls possibly being for example of a ceramic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention est relative aux refroidisseurs cryogéniques à détente Joule-Thomson du type comprenant une enveloppe présentant un emplacement à refroidir, un serpentin destiné à véhiculer du gaz sous haute pression, disposé dans l'enveloppe et présentant un orifice de détente au voisinage de l'emplacement, et une masse poreuse emplissant la région de l'enveloppe qui contient le serpentin mais laissant libre une chambre de détente dans laquelle débouche ledit orifice de détente et formant, dans l'enveloppe, un trajet de retour pour le gaz détendu dans la chambre de détente, la masse poreuse étant constituée de particules granuleuses revêtues d'une couche d'un matériau ayant un point de fusion inférieur à celui de la matière dont sont constituées les particules, ces dernières étant liées les unes aux autres par fusion dudit matériau.
  • Un refroidisseur de ce type, pour cryosonde chirurgicale, est décrit dans le document US-A-3 800 552.
  • La présente invention concerne plus particulièrement les refroidisseurs destinés à obtenir très rapidement des températures basses comprises entre 80 et 200K environ et utilisés par exemple pour refroidir des détecteurs infra-rouges, comme décrit dans le document FR-A-2 602 316.
  • La présente invention a pour but de fournir une technologie simple et économique de réalisation d'un tel refroidisseur, permettant d'obtenir une température basse très proche du point d'ébullition normal du gaz détendu et très bien reproductible.
  • A cet effet, l'invention a pour objet un refroidisseur du type précité, caractérisé en ce que les particules sont constituées de billes ayant un diamètre uniforme et du même ordre de grandeur que le diamètre extérieur du tube constituant le serpentin.
  • Le document FR-A-2 081 613 décrit par ailleurs un échangeur de chaleur, plus particulièrement une chaudière, comportant des groupes de particules ou de boules liées disposées entre des canalisations parallèles de circulation de fluide et traversées par un gaz chaud.
  • Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard du dessin annexé, sur lequel les figures 1 et 2 sont des vues en coupe axiale de deux modes de réalisation d'un cryostat comprenant un refroidisseur conforme à l'invention.
  • Le cryostat représenté à la figure 1 a la même constitution générale que celui décrit en regard de la figure 9 du document FR-A-2 602 316 précité. Il comprend un refroidisseur Joule-Thomson 1 disposé dans une enceinte sous vide 2. L'ensemble possède un axe général de symétrie X-X supposé vertical.
  • Le refroidisseur 1 comprend une enveloppe cylindrique 3 à simple paroi ouverte vers le haut et constituée elle-même d'un tronçon tubulaire métallique 4 obturé à son extrémité inférieure par une coupelle 5 en cuivre, un serpentin capillaire 6 en acier inoxydable, et une masse poreuse 7 qui constitue la seule différence entre ce cryostat et celui de la figure 9 du FR-A précité. Un élément 8 à refroidir, par exemple un disque formant détecteur infra-rouge, est fixé sur le fond de la coupelle 5, à l'extérieur de celle-ci.
  • L'extrémité supérieure du tronçon 4 est emboîtée et brasée hermétiquement dans une ouverture 9 d'un couvercle circulaire 10 du cryostat. Le serpentin 6 pénètre dans l'enveloppe 3 par l'ouverture 9, puis présente une partie bobinée en hélice à peu près jusqu'à l'extrémité inférieur du tronçon 4. Toute la partie bobinée du serpentin est noyée dans la masse poreuse 7, laquelle emplit l'espace laissé libre par le serpentin dans la partie correspondante du tronçon 4, jusqu'à l'extrémité inférieure de celui-ci.
  • L'extrémité aval du serpentin 6 émerge sur une courte longueur sous la masse 7, est recourbée horizontalement sous cette masse, est obturée à son extrémité et présente latéralement un orifice de détente calibré 11 orienté vers le bas.
  • La coupelle métallique 5 est fixée hermétiquement à l'extrémité inférieure du tronçon 4 et ménage sous la masse 7 une chambre de détente 12 dans laquelle débouche l'orifice 11.
  • La masse poreuse 7 est constituée de billes de bronze étamées liées les unes aux autres, au serpentin 6 et au tronçon 4, par fusion de l'étain, comme on le décrira en détail plus loin.
  • L'enceinte sous vide 2 est définie d'une part par le refroidisseur 1 et d'autre part par le couvercle 10 et par des tronçons tubulaires 13, 14 d'axe X-X, ces éléments étant reliés les uns aux autres par des ensembles brides - colliers - dispositifs d'étanchéité 15. L'enceinte du cryostat est reliée vers le bas à une pompe à vide (non représentée).
  • Pour réaliser le refroidisseur 1, le serpentin capillaire 6 est bobiné en hélice sur un mandrin (non représenté), lequel est ensuite retiré. L'hélice est disposée avec un large jeu radial dans le tronçon tubulaire 4, et ce dernier est empli de billes de bronze de 0,5 mm de diamètre sur lesquelles on a au préalable déposé une fine couche d'étain ayant une épaisseur de l'ordre de 5 microns, jusqu'à ce que la partie bobinée du serpentin soit complètement recouverte. Dans cet exemple, le diamètre des billes est un peu supérieur au diamètre extérieur du tube capillaire 6 ; plus généralement, suivant les performances demandées au refroidisseur, le diamètre des billes peut être grossièrement du même ordre de grandeur que ce diamètre extérieur, et le rapport du diamètre des billes à l'épaisseur de la couche fusible peut être de l'ordre de 100.
  • Un légère vibration est appliquée à l'ensemble pour permettre une disposition homogène des billes dans l'espace qui leur est imparti, disposition qui peut être contrôlée par pesée de l'échangeur.
  • Quelques gouttes d'acide tel que le produit de la Société All State vendu sous la dénomination commerciale "Duzall Flux" sont réparties entre les billes, puis l'ensemble est chauffé, par exemple avec un dispositif de soufflage d'air chaud à 600°C, dans un four, par induction, etc. La température de chauffage est choisie supérieure à la température de fusion de l'étain mais inférieure à celle du bronze.
  • Après refroidissement, l'ensemble est rincé à l'eau chaude et séché, puis les éléments 5 et 8 sont mis en place.
  • En fonctionnement, après avoir établi un vide secondaire (inférieur à 10⁻⁴ mb) dans l'enceinte du cryostat, on relie l'extrémité extérieure du serpentin 6 à une source d'un gaz sous très haute pression, par exemple d'argon sous 700 bars. Le gaz haute pression, épuré par un filtre (non représenté), circule dans le serpentin, est détendu et donc refroidi au passage de l'orifice 11, et pénètre dans la chambre 12. De là, il remonte à travers la masse poreuse 7 en cédant, essentiellement par l'intermédiaire de cette masse, du froid au gaz haute pression contenu dans le serpentin 6, et le gaz haute pression s'évacue à l'atmosphère à travers l'ouverture 9. Ainsi, la température diminue rapidement dans la chambre 12, jusqu'à formation dans celle-ci de liquide à la température qui correspond à la pression qui y règne, laquelle est définie par la perte de charge du circuit basse pression à travers la masse 7.
  • On a pu ainsi obtenir un temps de mise en froid à 100 K inférieur à une seconde, ainsi qu'une autonomie à 100 K supérieure à deux minutes, avec un refroidisseur de diamètre extérieur de l'ordre de 3 mm et en utilisant 50 cm³ d'argon stocké sous 700 bars.
  • La perte de charge du circuit basse pression formé par la masse poreuse 7 est faible, car les ponts thermiques entre billes constituées par la fusion de l'étain sont petits et n'obstruent pas les espaces interbilles. De plus, cette perte de charge est très bien reproductible. On peut ainsi produire en série des refroidisseurs ayant une température basse précise et très proche du point d'ébullition normal du gaz détendu.
  • Le cryostat représenté à la figure 2 à la même constitution générale que celui décrit en regard de la figure 8 du FR-A-2 602 316 précité. Il comprend également un refroidisseur Joule-Thomson 1A de structure analogue à celui de la figure 1, disposé dans une enceinte sous vide 2A, mais la configuration générale est plane et circulaire et supposée d'axe vertical.
  • Le serpentin capillaire 6A en acier inoxydable est enroulé en une spirale plane à spires jointives ; l'extrémité extérieure de ce tube est pourvue d'un filtre (non représenté), tandis que son extrémité intérieure est obturée et présente un orifice de détente calibré 11A orienté axialement.
  • L'enceinte sous vide 2A est constituée par deux plaques planes 4A, 4B ayant une bonne résistance aux contraintes mécaniques et thermiques, notamment en acier inoxydable. Ces plaques 4A, 4B ont le même diamètre extérieur que la spirale 6A et comportent un rebord périphérique cylindrique 16 dirigé à l'opposé de la spirale. Un rondelle 17 est fixée par brasage, soudage ou collage sur chaque rebord 16, après mise sous vide, de façon à constituer de chaque côté du refroidisseur une chambre sous vide scellée. L'élément 8 à refroidir est fixé au centre de la plaque 4A vers laquelle est orienté l'orifice de détente 11A, dans la chambre sous vide correspondante.
  • La masse poreuse 7A est de nouveau la seule différence entre ce refroidisseur et celui de la figure 8 du FR-A précité. Le serpentin est disposé dans un plan horizontal situé à égale distance des deux plaques 4A, 4B et espacé de celles-ci, et la masse 7A emplit tout l'espace restant libre entre ces deux plaques, à l'exception d'une région centrale formant chambre de détente 12A, dans laquelle débouche l'orifice 11A. Comme précédemment, la masse 7A est constituée de billes de bronze étamées liées les unes aux autres, au serpentin 6A et aux plaques 4A, 4B par fusion de l'étain.
  • Comme on le comprend, le refroidisseur suivant l'invention peut posséder d'autres configurations, par exemple une configuration conique intermédiaire entre celles des figures 1 et 2. Par ailleurs, suivant les applications, d'autres couples de matériaux peuvent être envisagés pour constituer des billes et leur revêtement fusible, les billes pouvant être par exemple en une matière céramique.

Claims (10)

  1. Refroidisseur Joule-Thomson (1; 1A), du type comprenant une enveloppe (3 ; 4A, 4B) présentant un emplacement à refroidir (5), un serpentin (6 ; 6A) destiné à véhiculer du gaz sous haute pression, disposé dans l'enveloppe et présentant un orifice de détente (11; 11A) au voisinage de l'emplacement, et une masse poreuse (7 ; 7A) emplissant la région de l'enveloppe qui contient le serpentin mais laissant libre une chambre de détente (12 ; 12A) dans laquelle débouche ledit orifice de détente et formant, dans l'enveloppe, un trajet de retour pour le gaz détendu dans la chambre de détente, la masse poreuse (7 ; 7A) étant constituée de particules granuleuses revêtues d'une couche d'un matériau ayant un point de fusion inférieur à celui de la matière dont sont constituées les particules, ces dernières étant liées les unes aux autres par fusion dudit matériau, caractérisé en ce que les particules sont constituées de billes ayant un diamètre uniforme du même ordre de grandeur que le diamètre extérieur du tube constituant le serpentin (6 ; 6A).
  2. Refroidisseur selon la revendication 1, caractérisé en ce que les billes sont métalliques et ledit matériau est un métal à bas point de fusion.
  3. Refroidisseur selon la revendication 2, caractérisé en ce que la masse poreuse (7 ; 7A) est constituée de billes de bronze étamées.
  4. Refroidisseur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la masse poreuse (7 ; 7A) est également liée à l'enveloppe (3 ; 4A, 4B) et au serpentin (6 ; 6A) par fusion dudit matériau.
  5. Refroidisseur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le rapport du diamètre des billes à l'épaisseur de la couche dudit matériau est de l'ordre de 100.
  6. Refroidisseur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le serpentin (6 ; 6A) est un capillaire.
  7. Refroidisseur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'enveloppe (3) est cylindrique et le serpentin (6) bobiné en hélice.
  8. Refroidisseur selon la revendication 7, caractérisé en ce que la masse poreuse (7) emplit l'espace intérieur de l'hélice.
  9. Refroidisseur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'enveloppe (4A, 4B) est plate et le serpentin (6A) bobiné en spirale.
  10. Refroidisseur selon l'une quelconque des revendications 6 à 9, caractérisé en ce qu'il est disposé dans une enceinte sous vide (2, 2A).
EP89401083A 1988-04-20 1989-04-19 Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse Expired - Lifetime EP0338920B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8805205 1988-04-20
FR8805205A FR2630535B1 (fr) 1988-04-20 1988-04-20 Masse poreuse pour echangeur de chaleur et son application a un refroidisseur joule-thomson

Publications (3)

Publication Number Publication Date
EP0338920A2 EP0338920A2 (fr) 1989-10-25
EP0338920A3 EP0338920A3 (en) 1990-11-14
EP0338920B1 true EP0338920B1 (fr) 1992-12-02

Family

ID=9365475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401083A Expired - Lifetime EP0338920B1 (fr) 1988-04-20 1989-04-19 Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse

Country Status (3)

Country Link
EP (1) EP0338920B1 (fr)
DE (1) DE68903667T2 (fr)
FR (1) FR2630535B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910535A (en) * 1996-05-03 1999-06-08 Decora, Incorporated Water based coating composition having sacrificial layer for stain removal
FR3022991B1 (fr) 2014-06-30 2016-07-01 Air Liquide Dispositif refroidisseur joule-thomson et appareil de photo-detection comprenant un tel dispositif

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313183A (fr) * 1961-11-13 1962-12-28 Babcock & Wilcox France Perfectionnements aux échangeurs de chaleur
FR2429988A1 (fr) * 1978-06-28 1980-01-25 Commissariat Energie Atomique Echangeur de chaleur a structure poreuse anisotrope
GB2027357A (en) * 1978-08-08 1980-02-20 Shell Oil Co Catalyst for Hydrazine Decomposition and Method for Preparing such Catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1044695A (fr) * 1970-03-02 1978-12-19 American Standard Inc. Echangeur de chaleur pour chaudiere compacte et materiel analogue
US3800552A (en) * 1972-03-29 1974-04-02 Bendix Corp Cryogenic surgical instrument
SE437614C (sv) * 1978-07-25 1986-06-03 Hisaka Works Ltd Forangare av plattyp
JPS5563397A (en) * 1978-10-31 1980-05-13 Mitsubishi Electric Corp Manufacture of bolling heat transmission surface
FR2538527B1 (fr) * 1982-12-24 1987-06-19 Creusot Loire Element d'echange de chaleur et procede de realisation dudit element
FR2602316B1 (fr) * 1986-07-31 1988-08-26 Air Liquide Refroidisseur joule-thomson, procede de fabrication et cryostat comprenant ce refroidisseur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313183A (fr) * 1961-11-13 1962-12-28 Babcock & Wilcox France Perfectionnements aux échangeurs de chaleur
FR2429988A1 (fr) * 1978-06-28 1980-01-25 Commissariat Energie Atomique Echangeur de chaleur a structure poreuse anisotrope
GB2027357A (en) * 1978-08-08 1980-02-20 Shell Oil Co Catalyst for Hydrazine Decomposition and Method for Preparing such Catalyst

Also Published As

Publication number Publication date
DE68903667D1 (de) 1993-01-14
DE68903667T2 (de) 1993-04-01
EP0338920A2 (fr) 1989-10-25
FR2630535A1 (fr) 1989-10-27
FR2630535B1 (fr) 1990-11-02
EP0338920A3 (en) 1990-11-14

Similar Documents

Publication Publication Date Title
FR2591799A1 (fr) Tube a double paroi en verre de silice pour l'execution de processus de la technologie des semi-conducteurs
FR2570174A1 (fr) Recipient a eprouvettes stabilise par un caloduc
FR2662490A1 (fr) Ensemble d'isolation thermique.
FR2846075A1 (fr) Echangeur de chaleur a condensation, a enveloppe plastique
FR2553577A1 (fr) Boitier pour un composant optoelectronique a semi-conducteurs
FR2553578A1 (fr) Dispositif pour un composant electronique fonctionnant a basses temperatures
FR2776762A1 (fr) Dispositif de liaison thermique pour machine cryogenique
FR2576404A1 (fr) Echangeur de chaleur et application a un appareil de rechauffage d'un fluide, notamment accumulateur d'eau chaude sanitaire
EP0338920B1 (fr) Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse
EP3465030B1 (fr) Dispositif cryogenique a echangeur compact
EP0388277B1 (fr) Refroidisseur Joule-Thomson
FR2633465A1 (fr) Oscillateur ultrastable fonctionnant a pression atmospherique et sous vide
EP0258093B1 (fr) Réfroidisseur Joule-Thomson et crystat comprenant ce réfroidisseur
BE1013686A3 (fr) Nez de lance de soufflage.
EP0173599B1 (fr) Sonde de refroidissement par effet Joule-Thomson
EP0117191A1 (fr) Générateur de vapeur pour un réacteur nucléaire refroidi par du métal liquide
EP0155201B1 (fr) Dispositif de refroidissement du fourreau de la tige de commande d'un robinet à joint gelé
FR2813662A1 (fr) Evaporateur capillaire pour boucle de transfert
FR2642510A1 (fr) Regulateur de debit de gaz pour refroidisseur a effet joule-thomson
FR2593649A1 (fr) Laser a gaz scelle.
FR2494036A1 (fr) Ligne a retard pour tube a ondes progressives, a refroidissement par caloducs, et tube a ondes progressives comportant une telle ligne
FR2605718A1 (fr) Appareil a eau chaude a echangeur thermique exterieur
FR2721380A1 (fr) Four électrique de cuisson.
FR2632760A1 (fr) Virole interne d'un reacteur nucleaire a neutrons rapides comportant un dispositif de protection thermique
EP0305257A1 (fr) Procédé et dispositif de refroidissement cryogénique d'un objet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB IT

17Q First examination report despatched

Effective date: 19910711

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19921202

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19921202

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921204

REF Corresponds to:

Ref document number: 68903667

Country of ref document: DE

Date of ref document: 19930114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19930430

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000313

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000324

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST