EP0337846A1 - Acier inoxydable austéno-ferritique - Google Patents

Acier inoxydable austéno-ferritique Download PDF

Info

Publication number
EP0337846A1
EP0337846A1 EP89400888A EP89400888A EP0337846A1 EP 0337846 A1 EP0337846 A1 EP 0337846A1 EP 89400888 A EP89400888 A EP 89400888A EP 89400888 A EP89400888 A EP 89400888A EP 0337846 A1 EP0337846 A1 EP 0337846A1
Authority
EP
European Patent Office
Prior art keywords
alloy
stainless steel
heat treatment
steel alloy
austeno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89400888A
Other languages
German (de)
English (en)
Other versions
EP0337846B1 (fr
Inventor
Jacques Charles
Pierre Soulignac
Daniel Catelin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creusot Loire SA
Creusot Loire Industrie SA
Original Assignee
Creusot Loire SA
Creusot Loire Industrie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9365363&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0337846(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Creusot Loire SA, Creusot Loire Industrie SA filed Critical Creusot Loire SA
Priority to AT89400888T priority Critical patent/ATE89874T1/de
Publication of EP0337846A1 publication Critical patent/EP0337846A1/fr
Application granted granted Critical
Publication of EP0337846B1 publication Critical patent/EP0337846B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present invention relates to an austenitic-ferritic stainless steel.
  • Austeno-ferritic stainless steels are known having good mechanical properties, good corrosion resistance and good weldability.
  • Such alloys include, in addition to the iron which constitutes the balance, - chromium and molybdenum so as to improve the corrosion resistance properties; - nickel and nitrogen so as to improve the stability of the austenitic phase; - carbon in low percentage because it affects corrosion resistance due to its low solubility in ferrite; - silicon; - manganese.
  • Patent application EP 0.156.778 thus describes an austenitic-ferritic stainless steel alloy whose austenitic phase remains stable allowing cold deformation between 10 and 30%, good weldability and good corrosion resistance.
  • composition of such an alloy is as follows: C ⁇ 0.06 in weight If ⁇ 1.5 Mn ⁇ 4.0 21 ⁇ Cr ⁇ 24.5 2 ⁇ Ni ⁇ 5.5 0.01 ⁇ Mo ⁇ 1.0 0.05 ⁇ N ⁇ 0.3 0.01 ⁇ Cu ⁇ 1.0 the balance being Fe, the above compounds must also meet the following conditions: - percentage of ferrite ⁇ between 35 and 65 - percentage of ferrite ⁇ ⁇ 0.20 (% Cr /% N) + 23 - (% Cr +% Mn) /% N> 120. - 22.4 x% Cr + 30 x% Mn + 22 x% Mo + 26 x% Cu + 110 x% N> 540. -% Mo +% Cu> 0.15 with% Cu of at least 0.005%.
  • Such alloys have a stable austenitic phase which does not tend to transform into martensite but they are difficult to machine and their mechanical properties remain weak.
  • the object of the present invention is to produce an austenitic-ferritic alloy whose corrosion resistance is improved compared to existing alloys and which has a high machinability index.
  • Such an alloy has a low percentage of molybdenum but a high copper content, the latter being dissolved by heat treatment above 900 ° C., the composition of this alloy being as follows, expressed as a percentage by weight. C ⁇ 0.06 If ⁇ 1.2 Mn ⁇ 3 21 ⁇ Cr ⁇ 25 3 ⁇ Ni ⁇ 6 0.06 ⁇ N ⁇ 0.30 ⁇ Mo ⁇ 1 1 ⁇ Cu ⁇ 3.5 the balance being Fe. The composition is balanced to obtain between 38 and 70% of ferrite at 300 ° K.
  • compositions have been summarized as elements of addition to Fe for the alloys A and B according to the invention and the known alloys.
  • the alloys of the invention are produced by melting to a minimum of 1600 ° C. and reheated to approximately 1180 ° C. after solidification. They undergo sheet metal rolling. Samples are taken in order to determine the structural stability as a function of the heat treatments and more particularly the hardening, the mechanical and physical characteristics, the corrosion resistance as well as the aptitude for machinability.
  • Carbon is reduced to lower lower contents to 0.06% in order to reduce the risks of carbide formation during heat treatments which would be detrimental to the resistance to certain forms of corrosion.
  • the silicon is reduced to low contents lower than 1.2% in order to reduce the risks of formation of intermetallic compounds which weaken the alloy.
  • Manganese makes it possible to increase the solid dissolution of nitrogen in the alloy but its content must be limited to 3% so as not to become detrimental to the resistance to generalized and localized corrosion in certain cases.
  • the chromium is controlled so that the volume fractions of the ferritic and austenitic phases are close. Too low a content does not allow a sufficient volume fraction of ferrite to be obtained.
  • Too high a content may require significant additions of nickel and nitrogen, which, given the price of nickel, should be avoided.
  • the alloy has an increased tendency to precipitate embrittling intermetallic phases during heat treatments.
  • chromium contents between 21 and 25% are used, more precisely a content of 23.5%. At such a percentage, the alloy has excellent corrosion resistance.
  • Such a chromium content associated with a low nickel and molybdenum content makes it possible to avoid, even for heat treatments of a few hours, the formation of an ⁇ ′ phase, by demixing of the ⁇ phase, hardening and embrittling.
  • the formation of such a phase ⁇ ′ occurs during treatments thermal between 300 and 500 ° C.
  • Nickel is an element which stabilizes the austenitic phase so as to optimize the austenite / ferrite balance. Given its price, its addition is limited to 3 to 6%, in particular 4.2%. Nitrogen is involved in maintaining the austenite / ferrite balance and, moreover, such an addition makes it possible to increase the mechanical characteristics and the resistance to pitting corrosion. The addition of nitrogen is limited to 0.30 and often close to 0.13%.
  • Molybdenum is limited to a percentage of 1% maximum so as to reduce the manufacturing costs of the alloy and limit the formation of intermetallic phases. Molybdenum improves the corrosion resistance of the alloy.
  • Copper unlike known alloys, is present in relatively large percentages between 1 and 3.5%. This element is generally present in small quantities in known alloys because its solubility in austeno-ferritic alloys during cooling is limited.
  • This hardening is proportional for a heat treatment given to the copper content.
  • Hardness HV5 Traction characteristics Re 0.2% MPa Re 1% MPa Rm MPa AT % Z% AISI 304 148 205 260 520 51 75 Alloy A 223 449 514 660 30.5 50.6 Alloy B 270 566 639 735 17.5 48.7 Hardened alloy B 350 647 788 900 18.5 39
  • hardened alloy B it is alloy B which has been subjected to a heat treatment of 5 h at 400 ° C.
  • the alloys according to the invention have improved mechanical properties, in particular the values of the conventional elastic limit (Re 0.2%) and the elastic limit at 1% (Re 1%) while retaining a resilience value on a V-notch test piece (KCV) and sufficient ductility (Elongation A).
  • the machinability index of the alloys according to the invention is significantly improved compared to known alloys and in particular to the alloy of patent application EP 0.156.778.
  • the three parameters studied are Brinnel hardness (HB), the machinability index for a cutting speed of 0.5 m / min and a drilling test in number of holes corresponding to a cumulative length of 500mm (0.5 m).
  • the known alloys have hardness values which frame the hardness value of sample A of the alloy according to the invention and all of the two machinability tests show performances which do not alloy A.
  • the starting potential is -600 mV with respect to a saturated calomel electrode (DHW) and for a scanning speed of 0.25 mV / sec.
  • the return was made for a current of 100 ⁇ A up to -1100 mV / DHW.
  • the passivation current Ip is reduced while the breaking potential is increased, which makes it possible to extend the field of use of the alloy according to the invention in terms of redox potential.
  • the alloy according to the invention solves the problem posed, by improving the mechanical characteristics, the machinability without these improvements being detrimental to the qualities of corrosion resistance.
  • the Cu content must be limited to 3.5% in order to avoid the major risks of tearing of products during processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Compositions (AREA)

Abstract

Alliage d'acier inoxydable austéno-ferriti­que ayant une bonne tenue à la corrosion et un indice d'usinabilité comportant une faible teneur en molybdè­ne et une forte teneur en cuivre mis en solution par traitement thermique de l'alliage au-dessus de 900°C, la composition étant la suivante : C < 0,06 % en poids Si < 1,2 Mn < 3 21 < Cr < 25 3 < Ni < 6 0,06 < N < 0,3 Mo < 1 1 <Cu < 3,5
le solde étant du fer dont. La composition est équili­brée pour obtenir entre 30 et 70 % de ferrite à l'aus­ténite.

Description

  • La présente invention a pour objet un acier inoxydable austéno-ferritique.
  • On connaît des aciers inoxydables austéno-­ferritiques ayant de bonnes propriétés mécaniques, une bonne résistance à la corrosion et une bonne soudabi­lité.
  • De tels alliages comprennent, outre le fer qui constitue le solde, du
    - chrome et du molybdène de façon à améliorer les propriétés résistance à la corrosion ;
    - nickel et azote de façon à améliorer la stabilité de la phase austénitique ;
    - carbone en faible pourcentage car il affecte la ré­sistance à la corrosion compte tenu de sa faible solu­bilité dans la ferrite ;
    - silicium ;
    - manganèse.
  • La demande de brevet EP 0.156.778 décrit ainsi un alliage d'acier inoxydable austéno-ferritique dont la phase austénitique reste stable autorisant des déformations à froid entre 10 et 30 %, une bonne sou­dabilité et une bonne résistance à la corrosion.
  • La composition d'un tel alliage est la sui­vante :
    C < 0,06 en poids
    Si < 1,5
    Mn < 4,0
    21 < Cr < 24,5
    2 < Ni < 5,5
    0,01 < Mo < 1,0
    0,05 < N < 0,3
    0,01 <Cu < 1,0
    le solde étant du Fe, les composés ci-dessus devant répondre par ailleurs aux conditions suivantes :
    - pourcentage de ferrite α entre 35 et 65
    - pourcentage de ferrite α < 0,20 (% Cr/% N) + 23
    - (% Cr + % Mn)/% N > 120.
    - 22,4 x % Cr + 30 x % Mn + 22 x % Mo + 26 x % Cu + 110 x % N > 540.
    - % Mo + % Cu > 0,15 avec % Cu d'au moins 0,005 %.
  • De tels alliages ont une phase austénitique stable qui n'a pas tendance à se transformer en mar­tensite mais ils sont difficilement usinables et leurs propriétés mécaniques restent faibles.
  • La présente invention a pour but la réalisa­tion d'un alliage austéno-ferritique dont la tenue à la corrosion est ameliorée par rapport aux alliages existants et qui présente un indice élevé d'usinabi­lité.
  • Un tel alliage possède un faible pourcentage de molybdène mais une forte teneur en cuivre, ce der­nier étant mis en solution par traitement thermique au-dessus de 900°C, la composition de cet alliage étant la suivante, exprimée en pourcentage en poids.
    C < 0,06
    Si < 1,2
    Mn < 3
    21 < Cr < 25
    3 < Ni < 6
    0,06 < N < 0,30
    < Mo < 1
    1 <Cu < 3,5
    le solde étant du Fe. La composition est équilibrée pour obtenir entre 38 et 70 % de ferrite à 300° K.
  • D'autres avantages et caractéristiques ap­paraîtront à la lecture de la description qui va sui­vre de modes de réalisation particuliers de l'alliage selon l'invention, la figure unique annexée représen­tant les domaines de durcissement de l'alliage dans un diagramme temps, température.
  • Deux alliages particuliers A et B sont ana­lysés comparativement à des alliages de composition connue, notamment l'UNS 32304 correspondant à l'allia­ge décrit dans la demande de brevet EP 0.156.778.
    C Si Mn Ni Cr Mo Cu N
    A 0,02 0,6 1,9 4,1 23,5 0,13 1,60 0,1
    B 0,02 0,5 2 3,9 24,3 0,14 2,8 0,09
    AISI 304L 0,02 0,6 1,3 10 18,2 0,03 0,02 0,05
    AISI 316 0,025 0,5 1,5 11,5 17,5 2,3 0,03 0,05
    UNS 32304 0,02 0,5 1,8 4,2 23 0,13 0,127 0,123
    UNS 31803 0,02 0,5 1,7 5,7 21,9 2,75 0,135 0,120
  • Dans le tableau ci-dessus, on a récapitulé les compositions en éléments d'addition au Fe pour les alliages A et B selon l'invention et les alliages connus.
  • Les alliages de l'invention sont réalisés par fusion jusqu'à 1600°C minimum et réchauffés à 1180°C environ après solidification. Ils subissent un lami­nage en tôles. Des prélèvements sont effectués afin de déterminer la stabilité structurale en fonction des traitements thermiques et plus particulièrement le durcissement, les caractéristiques mécaniques et physiques, la résistance à la corrosion ainsi que l'aptitude à l'usinabilité.
  • Au préalable, il est nécessaire d'étudier l'influence des différents éléments d'addition.
    Le carbone est réduit à de faibles teneurs inférieures à 0,06 % afin de réduire les risques de formation de carbures au cours des traitements thermiques ce qui serait préjudiciable à la résistance à certaines for­mes de corrosion.
    Le silicium est réduit à de faibles teneurs inférieu­res à 1,2 % afin de réduire les risques de formation de composés intermétalliques qui fragilisent l'allia­ge.
    Le manganèse permet d'augmenter la mise en solution solide de l'azote dans l'alliage mais sa teneur doit être limitée à 3 % pour ne pas devenir préjudiciable à la tenue à la corrosion généralisée et localisée dans certains cas.
    Le chrome est contrôlé de façon à ce que les fractions volumiques des phases ferritiques et austénitiques soient voisines. Une teneur trop faible ne permet pas d'obtenir une fraction volumique de ferrite suffisan­te.
  • Une teneur trop élevée peut nécessiter des additions importantes de nickel et d'azote, ce qui, compte tenu du prix du nickel, doit être évité. De plus, l'alliage a une tendance accrue à la précipita­tion de phases intermétalliques fragilisantes lors des traitements thermiques.
  • Aussi de façon classique on utilise on utilise des te­neurs en chrome comprises entre 21 et 25 %, plus exac­tement une teneur de 23,5 %. A un tel pourcentage, l'alliage a une excellente résistance à la corrosion.
  • Une telle teneur en chrome associée à une faible teneur en nickel et molybdène permet d'éviter, même pour des traitements thermiques de quelques heu­res, la formation d'une phase α′, par démixtion de la phase α, durcissante et fragilisante. La formation d'une telle phase α′ intervient lors de traitements thermiques entre 300 et 500°C.
    Le nickel est un élément qui stabilise la phase austé­nitique de façon à optimiser l'équilibre austénite/­ferrite. Compte tenu de son prix on limite son addi­tion entre 3 et 6 % plus particulièrement 4,2 %.
    L'azote intervient pour maintenir l'équilibre austéni­te/ferrite et de plus une telle addition permet d'ac­croître les caractéristiques mécaniques et la tenue à la corrosion par piqûres. L'addition de l'azote est limitée à 0,30 et souvent voisine de 0,13 %.
  • Le molybdène est limité à un pourcentage de 1 % maximum de façon à réduire les coûts de fabrication de l'alliage et à limiter la formation de phases intermétalliques. Le molybdène améliore la tenue à la corrosion de l'alliage.
  • Le cuivre, contrairement aux alliages connus, est présent dans des pourcentages relativement importants entre 1 et 3,5 %. Cet élément est générale­ment présent en faible quantité dans les alliages connus car sa solubilité dans les alliages austéno-­ferritiques lors du refroidssement est limitée.
  • Par contre, selon l'invention, une mise en solution par traitement thermique à haute température à des températures supérieures à 950°C est possible. Cette étape doit être suivie d'un refroidissement rapide à l'ambiante de façon à ce que la structure austénite/ferrite soit exempte de précipitation et reste sursaturée en cuivre. Le cuivre : - augmente la tenue de l'alliage vis-à-vis de certains milieux acides notamment les milieux sulfuriques.
    - améliore l'aptitude à l'usinabilité.
  • On a étudié la stabilité structurale de l'alliage B en fonction du temps et de la température ainsi que représenté à la figure en annexe.
  • Dans l'intervalle 300-600°C, un durcissement important de l'alliage se produit par précipitation de particules enrichies en cuivre dans la phase ferriti­que de l'alliage.
  • Ce durcissement est proportionnel pour un traitement thermique donné à la teneur en cuivre.
  • Par contre il y a un retard à la précipi­tation pour les maintiens à 700°-900°C dû à la stabilité de la phase ferritique vis-à-vis de la phase intermétallique, conférée par la très faible teneur en molybdène.
  • Les propriétés mécaniques sont récapitulées dans le tableau ci-dessous
    Dureté HV5 Caractérstiques de traction
    Re 0,2% MPa Re 1% MPa Rm MPa A % Z %
    AISI 304 148 205 260 520 51 75
    Alliage A 223 449 514 660 30,5 50,6
    Alliage B 270 566 639 735 17,5 48,7
    Alliage B durci 350 647 788 900 18,5 39
  • Quant à l'alliage B durci, il s'agit de l'alliage B auquel on a fait subir un traitement ther­mique de 5 h à 400°C.
  • Les alliages selon l'invention possèdent des propriétés mécaniques améliorées notamment les valeurs de la limite d'élasticité conventionnelle (Re 0,2 %) et de la limite d'élasticité à 1 % (Re 1 %) tout en conservant une valeur de la résilience sur éprouvette à entaille en V (KCV) et une ductilité (Allongement A) suffisantes.
  • Quant à la dureté, elle augmente sensible­ment notamment après traitement thermique.
  • L'indice d'usinabilité des alliages selon l'invention est amélioré de façon notable comparé aux alliages connus et notamment à l'alliage de la demande de brevet EP 0.156.778.
  • Les résultats sont récapitulés dans le ta­bleau suivant :
    HB V 0,500 m/min Nbr trous pour 500 mm
    Alliage A 223 26 72
    AISI 304L 148 8 33
    UNS 31803 241 16 56
    UNS 32304 234 11 33
  • Les trois paramètres étudiés sont la dureté Brinnel (HB), l'indice d'usinabilité pour une vitesse de coupe de 0,5 m/mn et un essai de perçage en nombre de trous correspondant à une longueur cumulée de 500mm (0,5 m).
  • Les alliages connus ont des valeurs de dure­té qui encadrent la valeur de dureté de l'échantillon A de l'alliage selon l'invention et l'ensemble des deux tests d'usinabilité montre des performances ne­ tement supérieures de l'alliage A.
  • Les essais de corrosion montrent que les avantages acquis ne le sont pas au détriment de la re­sistance à la corrosion.
  • Les mesures récapitulées dans le tableau ci-­dessous ont été obtenues en milieux acides (H₂SO₄ à 50°C).
    E corrosion mV/ecs I a µA/cm² I p µA/cm² E rupture mV/ecs
    UNS 32304 -430 1250 14 250
    Alliage A -460 1270 3 480
    Alliage B -460 2000 3,8 400
  • Pour l'obtention des courbes de polarisation qui ont conduit à ces résultats, le potential de dé­part est de -600 mV par rapport à une électrode au calomel saturé (ecs) et pour une vitesse de balayage de 0,25 mV/sec. Le retour a été réalisé pour un cou­rant de 100 µA jusqu'à -1100 mV/ecs.
  • Le courant de passivation Ip est réduit tandis que le potentiel de rupture est augmenté ce qui permet d'étendre le domaine d'emploi de l'alliage selon l'invention en matière de potentiel d'oxydo ré­duction.
  • Ceci est également dû au cuivre ce qui est confirmé par la résistance de l'alliage B après trai­tement thermique dans un milieu acide en présence de particules abrasives de diamètre 0,5 ; 1,19 et 2,38 mm (cf tableau ci-dessous) :
    Résultat de perte de poids (mg) 8 h H₂SO₄ (2N)
    UNS 32304 ALLIAGE B DURCI AISI 304
    essai Statique 25 4 28
    essai dynamique sans particule 8 0 8
    essai dynamique particules 0,5 mm 34 35 58
    essai dynamique particules 1,19 mm 97 73 110
    essai dynamique particules 2,38 mm 130 99 136
  • L'alliage selon l'invention résoud le pro­blème posé, en améliorant les caractéristiques mécani­ques, l'usinabilité sans que ces améliorations soient préjudiciables aux qualités de résistance à la corro­sion.
  • Les améliorations des qualités de cet allia­ge lui sont conférées par l'augmentation du pourcenta­ge en cuivre et la solubilisation ou la précipitation partielle de ce dernier.
  • Ces résultats sont remarquables compte-tenu du fait que les alliages connus notamment UNS 32304 préconisent des pourcentages Cu + Mo = 1 % dans un mode de réalisation préféré.
  • Néanmoins, dans l'alliage selon l'invention, la teneur en Cu doit être limitée à 3,5 % afin d'évi­ter les risques majeurs de déchirures de produits lors de la mise en oeuvre.
  • Dans cette fourchette de 1 à 3,5 %, l'homme de l'art adaptera le pourcentage en fonction de l'uti­lisation de l'alliage.
  • De même des additions complémentaires connues permettent d'augmenter l'usinabilité telles que soufre, bismuth.

Claims (6)

1.- Alliage d'acier inoxydable austéno-­ferritique ayant une très bonne tenue à la corrosion et un bon indice d'usinabilité comportant une faible teneur en molybdène et une forte teneur en cuivre mis en solution par traitement thermique de l'alliage au-­dessus de 900°C, la composition étant la suivante : C < 0,06 % en poids Si < 1,2 Mn < 3 21 < Cr < 25 3 < Ni < 6 0,06 < N < 0,3 < Mo < 1 1 <Cu < 3,5
le solde étant du fer.
2.- Alliage d'acier inoxydable selon la re­vendication 1, caractérisé en ce qu'il a la composi­tion suivante : C = 0,02 % en poids Si = 0,6 Mn = 1,9 Ni = 4,1 Cr = 23,5 Mo = 0,13 N = 0,1 Cu = 1,6.
3.- Alliage d'acier inoxydable selon la re­vendication 1, caractérisé en ce qu'il a la composi­tion suivante : C = 0,02 Si = 0,5 Mn = 2 Ni = 3,9 Cr = 24,3 Mo = 0,14 N = 0,09 Cu = 2,8.
4.- Alliage d'acier inoxydable selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le cuivre est solubilisé par un traitement thermi­que à 1600°C minimum suivi d'un retraitement à 1180°C après solidification.
5.- Alliage d'acier selon la revendication 4, caractérisé en ce que, de façon à précipiter par­tiellement le cuivre solubilisé, l'alliage subit un traitement thermique entre 300 et 500°C.
6.- Alliage d'acier inoxydable selon la re­vendication 5, caractérisé en ce que le traitement thermique est de 5 heures à 400°C.
EP89400888A 1988-04-15 1989-03-30 Acier inoxydable austéno-ferritique Expired - Lifetime EP0337846B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89400888T ATE89874T1 (de) 1988-04-15 1989-03-30 Austenitisch-ferritischer rostfreier stahl.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8805045 1988-04-15
FR8805045A FR2630132B1 (fr) 1988-04-15 1988-04-15 Acier inoxydable austeno-ferritique

Publications (2)

Publication Number Publication Date
EP0337846A1 true EP0337846A1 (fr) 1989-10-18
EP0337846B1 EP0337846B1 (fr) 1993-05-26

Family

ID=9365363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400888A Expired - Lifetime EP0337846B1 (fr) 1988-04-15 1989-03-30 Acier inoxydable austéno-ferritique

Country Status (6)

Country Link
EP (1) EP0337846B1 (fr)
AT (1) ATE89874T1 (fr)
CA (1) CA1340030C (fr)
DE (1) DE68906708T2 (fr)
FI (1) FI93126C (fr)
FR (1) FR2630132B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750053A1 (fr) * 1994-12-16 1996-12-27 Sumitomo Metal Industries, Ltd. Acier inoxydable duplex presentant une remarquable resistance a la corrosion
EP1061151A1 (fr) * 1999-06-15 2000-12-20 Kubota Corporation Acier inoxidable ferritique-austenitique à deux phases
EP1715073A1 (fr) * 2004-01-29 2006-10-25 JFE Steel Corporation Acier inoxydable ferritique et austenitique
WO2009048137A1 (fr) 2007-10-10 2009-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Matériau pour fil d'acier inoxydable duplex, fil d'acier, boulon et procédé de production du boulon
US8540933B2 (en) 2009-01-30 2013-09-24 Sandvik Intellectual Property Ab Stainless austenitic low Ni steel alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158614A (en) * 1967-03-16 1969-07-16 Langley Alloys Ltd Improvement in Stainless Steels
GB1456634A (en) * 1972-09-13 1976-11-24 Langley Alloys Ltd High strength stainless steel having a high resistance to corro sive and abrasive wear in corrosive environments particularly chloride environments
EP0151487A2 (fr) * 1984-02-07 1985-08-14 Kubota Ltd. Acier ferritique-austémitique inoxydable à deux phases
EP0156778A2 (fr) * 1984-03-30 1985-10-02 Santrade Ltd. Acier inoxydable de type ferritique-austénitique
US4612069A (en) * 1984-08-06 1986-09-16 Sandusky Foundry & Machine Company Pitting resistant duplex stainless steel alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158614A (en) * 1967-03-16 1969-07-16 Langley Alloys Ltd Improvement in Stainless Steels
GB1456634A (en) * 1972-09-13 1976-11-24 Langley Alloys Ltd High strength stainless steel having a high resistance to corro sive and abrasive wear in corrosive environments particularly chloride environments
EP0151487A2 (fr) * 1984-02-07 1985-08-14 Kubota Ltd. Acier ferritique-austémitique inoxydable à deux phases
EP0156778A2 (fr) * 1984-03-30 1985-10-02 Santrade Ltd. Acier inoxydable de type ferritique-austénitique
US4612069A (en) * 1984-08-06 1986-09-16 Sandusky Foundry & Machine Company Pitting resistant duplex stainless steel alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750053A1 (fr) * 1994-12-16 1996-12-27 Sumitomo Metal Industries, Ltd. Acier inoxydable duplex presentant une remarquable resistance a la corrosion
US5672215A (en) * 1994-12-16 1997-09-30 Sumitomo Metal Industries, Ltd. Duplex stainless steel excellent in corrosion resistance
EP0750053A4 (fr) * 1994-12-16 1998-04-01 Sumitomo Metal Ind Acier inoxydable duplex presentant une remarquable resistance a la corrosion
EP1061151A1 (fr) * 1999-06-15 2000-12-20 Kubota Corporation Acier inoxidable ferritique-austenitique à deux phases
US6344094B1 (en) 1999-06-15 2002-02-05 Kubota Corporation Ferritic-austenitic two-phase stainless steel
EP1715073A1 (fr) * 2004-01-29 2006-10-25 JFE Steel Corporation Acier inoxydable ferritique et austenitique
EP1715073A4 (fr) * 2004-01-29 2007-09-26 Jfe Steel Corp Acier inoxydable ferritique et austenitique
WO2009048137A1 (fr) 2007-10-10 2009-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Matériau pour fil d'acier inoxydable duplex, fil d'acier, boulon et procédé de production du boulon
EP2199421A4 (fr) * 2007-10-10 2016-07-20 Nippon Steel & Sumikin Sst Matériau pour fil d'acier inoxydable duplex, fil d'acier, boulon et procédé de production du boulon
US8540933B2 (en) 2009-01-30 2013-09-24 Sandvik Intellectual Property Ab Stainless austenitic low Ni steel alloy

Also Published As

Publication number Publication date
CA1340030C (fr) 1998-09-08
FI93126C (fi) 1995-02-27
FI891783A (fi) 1989-10-16
FR2630132A1 (fr) 1989-10-20
FI891783A0 (fi) 1989-04-14
ATE89874T1 (de) 1993-06-15
EP0337846B1 (fr) 1993-05-26
FR2630132B1 (fr) 1990-08-24
DE68906708T2 (de) 1993-09-16
FI93126B (fi) 1994-11-15
DE68906708D1 (de) 1993-07-01

Similar Documents

Publication Publication Date Title
EP1966407B1 (fr) Acier a ressorts, et procede de fabrication d&#39;un ressort utilisant cet acier, et ressort realise en un tel acier.
EP1563103B1 (fr) Procede pour fabriquer une tole en acier resistant a l&#39;abrasion et tole obtenue
EP0792944B1 (fr) Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique
EP2038445B1 (fr) Acier inoxydable duplex
EP0896072B1 (fr) Acier inoxydable austénitique comportant une très faible teneur en nickel
CA2506349C (fr) Procede pour fabriquer une tole en acier resistant a l&#39;abrasion et tole obtenue
EP1896624B1 (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
FR2490680A1 (fr) Acier inoxydable ferritique ayant une tenacite et une soudabilite ameliorees
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
EP0889145A1 (fr) Acier inoxydable austénoferritique à très bas nickel et présentant un fort allongement en traction
FR2823226A1 (fr) Acier et tube en acier pour usage a haute temperature
FR2761699A1 (fr) Acier et procede pour la fabrication d&#39;une piece pour roulement
FR2516942A1 (fr)
EP0337846B1 (fr) Acier inoxydable austéno-ferritique
EP0388283B1 (fr) Acier inoxydable ferritique et procédé pour l&#39;élaboration d&#39;un tel acier
FR2763961A1 (fr) Acier inoxydable de tenacite elevee, article le comportant et procede d&#39;augmentation de tenacite
FR2746114A1 (fr) Procede d&#39;elaboration d&#39;un acier inoxydable ferritique presentant une resistance a la corrosion amelioree, et notamment une resistance a la corrosion intergranulaire et par piqure
EP0172776B1 (fr) Procédé d&#39;amélioration de la forgeabilité d&#39;un acier inoxydable austenoferritique
EP0181791B1 (fr) Acier faiblement allié au manganèse pour tubes de cycles, tube de cycle correspondant et son procédé de fabrication
JPH0432144B2 (fr)
WO2022253912A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
WO2020152498A1 (fr) Alliage fer-manganèse à soudabilité améliorée
BE442648A (fr)
BE737336A (en) Metastable austenitic stainless steels with improved - hot machining properties
BE518828A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE IT SE

17P Request for examination filed

Effective date: 19890902

17Q First examination report despatched

Effective date: 19910830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE IT SE

REF Corresponds to:

Ref document number: 89874

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68906708

Country of ref document: DE

Date of ref document: 19930701

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SANDVIK AB

Effective date: 19940208

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

EAL Se: european patent in force in sweden

Ref document number: 89400888.7

27C Opposition proceedings terminated

Effective date: 19941007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070219

Year of fee payment: 19

Ref country code: SE

Payment date: 20070219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070312

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070607

Year of fee payment: 19

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080330