EP0334007A1 - Method for reducing the consumption of graphite electrodes - Google Patents

Method for reducing the consumption of graphite electrodes Download PDF

Info

Publication number
EP0334007A1
EP0334007A1 EP89102063A EP89102063A EP0334007A1 EP 0334007 A1 EP0334007 A1 EP 0334007A1 EP 89102063 A EP89102063 A EP 89102063A EP 89102063 A EP89102063 A EP 89102063A EP 0334007 A1 EP0334007 A1 EP 0334007A1
Authority
EP
European Patent Office
Prior art keywords
electrode
lateral surface
electrodes
coating
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89102063A
Other languages
German (de)
French (fr)
Other versions
EP0334007B1 (en
Inventor
Hubert Dipl.-Chem. Dr. Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigri GmbH
Original Assignee
Sigri GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigri GmbH filed Critical Sigri GmbH
Publication of EP0334007A1 publication Critical patent/EP0334007A1/en
Application granted granted Critical
Publication of EP0334007B1 publication Critical patent/EP0334007B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/12Arrangements for cooling, sealing or protecting electrodes

Definitions

  • the invention relates to a method for reducing the burn-up of graphite electrodes in their use in an electric arc furnace by coating the lateral surface with an oxidation-resistant protective layer.
  • the graphite electrodes used in arc furnaces, particularly for the production of steel, suspended above the furnace lid on a supporting device, are heated to temperatures at which carbon with the oxygen of the surrounding air is heated by the heat energy generated in the arc and the development of Joule heat inside the electrodes Carbon oxides reacts.
  • the reactions which are referred to simply as burn-up, are not limited to the lateral surface of the cylindrical electrode, but extend below about 1000 ° C. almost over the entire volume of the electrode accessible through the pore system.
  • the burning of the lateral surface causes a reduction in the diameter of the electrode, the burning in the interior of the electrode also a substantial disruption of the structure, whereby smaller structural elements are loosened and splintered.
  • Electrode consumption could be reduced by up to 15% through the cooling process in some furnaces, in other furnaces the consumption reduction was much lower, in some cases even the amount of mantle erosion increased.
  • causes of the different results are probably instabilities of the water films and steam mantles, triggered for example by thermal convection currents, and the adsorption of water in the pore system of the graphite electrode. The adsorbed water reacts with the carbon at higher temperatures and produces the sponge-like soft zones typical of wet electrodes.
  • the invention has for its object to produce on the lateral surface of graphite electrodes by simple technical means an oxidation-resistant protective layer, which protects the electrode under all loads in the electric arc furnace effectively against the attack of atmospheric oxygen.
  • the object is achieved by a method of the type mentioned above in that the aqueous solution of at least one, at elevated temperature glassy films forming salt is sprayed onto the lateral surface of the electrode below the contact jaws.
  • Graphite electrodes are at room temperature in the solution immersed one or more salts or the solution is applied by brushing or spraying on the lateral surface. The electrodes are then dried and heated to about 500 to 600 ° C, the heating rate is about 60 to 600 K / h. This forms a water-insoluble, firmly anchored in the pores oxidation resistant film.
  • the coating solution to the lateral surface, it is expedient to use one or more nozzle rings, which are fastened to the electrode holder underneath the contact jaws and enclose the electrode strand. After each of the above-described displacement of the electrode strand in the axial direction, the free portion of the electrode is sprayed between the contact shoe and furnace cover with the coating solution, wherein the duration of the coating depends on the growth of the protective layer.
  • Suitable coating agents are in principle all salts which are soluble in water and, after evaporation of the solvent at elevated temperatures, form closed films which are resistant to oxidation and impermeable to fluids.
  • suitable salts are the abovementioned phosphates, borates and silicates.
  • the aqueous coating solution should contain about 15 to 25% monoaluminum phosphate, and to form a closed, graphite electrode protective layer it is desirable to use 300 to 500 g / m2 of monoaluminum phosphate, which corresponds to about 1 to 3 liters / m2 of coating solution.
  • the method enables the coating of graphite electrodes with simple means, as used in the water cooling of the electrode sheath, and the production of layers, which have a much better protective effect than the "water layers".
  • the application of the method is not limited to graphite electrodes, but also extends to carbon electrodes, which are mainly used in thermal reduction furnaces.
  • the sprayed amount of monoaluminum phosphate was about 400 g / m2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Heating (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Graphite electrodes are consumed when used in electric arc furnaces in contact with atmospheric oxygen. The consumption can be reduced by coating the electrodes with thermally resistant films which are not permeable to the oxidising agent. The new method is intended to reduce the cost of producing protective films. While they are being used in electric arc furnaces, the aqueous solution of a film-forming salt, in particular monoaluminium phosphate, is sprayed onto the lateral surface of the electrodes. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Verringerung des Abbrands von Graphitelektroden bei ihrer Verwendung in einem Lichtbogenofen durch Beschichten der Mantel­fläche mit einer oxidationsbeständigen Schutzschicht.The invention relates to a method for reducing the burn-up of graphite electrodes in their use in an electric arc furnace by coating the lateral surface with an oxidation-resistant protective layer.

Die in Lichtbogenöfen, besonders zur Erzeugung von Stahl, eingesetzten, oberhalb des Ofendeckels an einer Trage­vorrichtung aufgehängten Graphitelektroden, werden durch die im Lichtbogen erzeugte Wärmeenergie und die Ent­wicklung Joulscher Wärme innerhalb der Elektroden auf Temperaturen erhitzt, bei denen Kohlenstoff mit dem Sauerstoff der umgebenden Luft zu Kohlenoxiden reagiert. Die kurz als Abbrand bezeichneten Reaktionen sind nicht auf die Mantelfläche der zylindrischen Elektrode beschränkt, sondern erstrecken sich unterhalb etwa 1000 °C fast über das ganze,durch das Porensystem zugängliche Volumen der Elektrode. Der Abbrand der Mantelfläche bewirkt eine Verringerung des Elektrodendurchmessers, der Abbrand im Inneren der Elektrode auch eine weitgehende Zerrüttung des Gefüges, wodurch kleinere Gefügeelemente gelockert und abgesplittert werden. Insgesamt beträgt der unmittel­bare und mittelbare Abbrandverlust rund 50 % des auf den erzeugten Stahl bezogenen spezifischen Elektroden­verbrauchs von etwa 3 bis 6 kg/t Stahl. Bereits kurze Zeit nach Aufnahme der Elektrostahlerzeugung versuchte man den Mantelabbrand durch Überziehen des Elektroden­mantels mit oxidationsbeständigen Schutzschichten wenigstens zu verringern. Durch die US-PS 1 000 761 ist es beispielsweise bekannt, die Mantelfläche mit Substanzen zu beschichten, die beim Erhitzen der Elektrode einen dichten glasartigen Film bilden. Zur Herstellung des Films wurden Alkali- und Erdalkali­salze in Verbindung mit Flußmitteln, wie Borax, ver­wendet. Ein wesentlicher Nachteil dieser Filme ist ihr großer elektrischer Widerstand. Sie eignen sich daher nicht für Elektroden, z.B. für Lichtbogen-, Schmelz- oder Reduktionsöfen, bei denen der elektrische Strom über Kontaktbacken zugeführt wird, die am Elektrodenmantel anliegen. Für diese Elektroden sind deshalb metallische Schutzschichten vorgeschlagen worden, die den elektrischen Strom gut leiten, deren Temperaturbeständigkeit aber häufig nicht ausreicht. Eine bessere thermische Be­ständigkeit erreicht man durch Einarbeiten keramischer Füllstoffe in eine metallische Matrix (DE-PS 12 71 007) oder auch durch Verwendung von Silicium als Beschichtungs­material, das durch Plasmaspritzen im Vakuum aufgebracht wird (DE-OS 34 46 286). Metallische Schutzschichten haben den Nachteil, daß sie leicht mit den aus Kupfer bestehenden gekühlten Kontaktbacken verschweißen oder fritten und die Kontakte beschädigt oder zerstört werden. Zur Vermeidung der Schäden sind besondere graphithaltige Schlichten vorgeschlagen worden, die man auf die Kontakt­backen oder die metallisierte Mantelfläche der Elektrode aufträgt (DE-OS 30 28 348, DE-OS 32 15 831).The graphite electrodes used in arc furnaces, particularly for the production of steel, suspended above the furnace lid on a supporting device, are heated to temperatures at which carbon with the oxygen of the surrounding air is heated by the heat energy generated in the arc and the development of Joule heat inside the electrodes Carbon oxides reacts. The reactions, which are referred to simply as burn-up, are not limited to the lateral surface of the cylindrical electrode, but extend below about 1000 ° C. almost over the entire volume of the electrode accessible through the pore system. The burning of the lateral surface causes a reduction in the diameter of the electrode, the burning in the interior of the electrode also a substantial disruption of the structure, whereby smaller structural elements are loosened and splintered. Overall, the direct and indirect erosion loss is around 50% of the total produced steel specific electrode consumption of about 3 to 6 kg / t steel. Already a short time after the electrical steel production was started, it was attempted to at least reduce the jacket erosion by coating the electrode jacket with oxidation-resistant protective layers. It is known, for example, from US Pat. No. 1,006,761 to coat the lateral surface with substances which form a dense vitreous film when the electrode is heated. To prepare the film, alkali and alkaline earth salts were used in conjunction with fluxes such as borax. A major disadvantage of these films is their high electrical resistance. They are therefore not suitable for use with electrodes, for example for arc furnaces, melting furnaces or reduction furnaces, in which the electric current is supplied via contact jaws which rest against the electrode jacket. Therefore metallic protective layers have been proposed for these electrodes, which conduct the electric current well, but their temperature resistance is often insufficient. A better thermal resistance can be achieved by incorporating ceramic fillers in a metallic matrix (DE-PS 12 71 007) or by using silicon as a coating material which is applied by plasma spraying in a vacuum (DE-OS 34 46 286). Metallic protective layers have the disadvantage that they are easily welded or fritted with the cooled contact pads made of copper and the contacts are damaged or destroyed. To avoid the damage, special graphite-containing sizes have been proposed, which are applied to the contact jaws or the metallized lateral surface of the electrode (DE-OS 30 28 348, DE-OS 32 15 831).

Es ist schließlich auch bekannt, glasartige, keramische Schichten ausschließlich unterhalb der Kontaktbacken auf den Elektrodenmantel aufzutragen. Die aus mehreren miteinander verschraubten Abschnitten bestehende Graphit­elektrode wird beim Betrieb des Lichtbogenofens ver­braucht, außer durch Mantelabbrand vor allem durch Spitzenverluste, die eine Verkürzung des Elektroden­strangs bewirken. Zum Ausgleich der Verkürzung werden periodisch neue Elektrodenabschnitte auf den Elektroden­strang aufgeschraubt und die Tragvorrichtungen mit den Kontaktbacken um diesen Betrag in axialer Richtung versetzt. Auf die unbeschichtete Mantelfläche der Elektrode unterhalb der Kontaktbacken kann dann eine feuerfeste, oxidationsbeständige Beschichtung auf­getragen werden, die ein elektrischer Isolator sein kann (DE-PS 576 938, EP-OS 0 070 100). Diese Art der Beschichtung wird durch die hohen Temperaturen am Ofen erheblich erschwert, so daß es zur Erzeugung einer geschlossenen Schicht mit ausreichender Haftfestigkeit eines großen technischen Aufwands bedarf (EP-OS 0 200 983). Es ist schließlich vorgeschlagen worden, die Oberfläche der Elektrode zwischen Kontaktbacke und Ofendeckel direkt mit Wasser zu kühlen (Metal Bulletin Monthly, Nr. 204, Dez. 1987, S. 56). Bei diesem Verfahren wird der Elektroden­mantel mit Wasser berieselt, das über einen am Elektroden­halter befestigten Düsenring zugeführt wird. Die Schutz­wirkung beruht auf Kühlung der Elektrodenoberfläche unter der kritischen Reaktionstemperatur und der Bildung eines den Luftzutritt behindernden Dampfmantels. Der Elektroden­verbrauch konnte durch das Kühlverfahren in einigen Öfen um bis zu 15 % vermindert werden, in anderen Öfen war die Verbrauchsminderung wesentlich geringer, z.T. nahm der Mantelabbrand sogar zu. Ursachen der unterschiedlichen Ergebnisse sind vermutlich Instabilitäten des Wasser­ films und Dampfmantels, ausgelöst etwa durch thermische Konvektionsströmungen, und die Adsorption von Wasser im Porensystem der Graphitelektrode. Das adsorbierte Wasser reagiert bei höheren Temperaturen mit dem Kohlenstoff und es entstehen die für feuchte Elektroden typischen schwammartigen weichen Zonen.Finally, it is also known to apply vitreous, ceramic layers exclusively underneath the contact jaws onto the electrode jacket. The graphite electrode consisting of several screwed-together sections is consumed during operation of the arc furnace, except by Mantelabbrand especially by peak losses, which cause a shortening of the electrode strand. To compensate for the shortening new electrode sections are periodically screwed onto the electrode strand and offset the support devices with the contact jaws by this amount in the axial direction. On the uncoated surface of the electrode below the contact pads then a refractory, oxidation-resistant coating can be applied, which may be an electrical insulator (DE-PS 576 938, EP-OS 0 070 100). This type of coating is considerably complicated by the high temperatures at the furnace, so that it requires a large technical effort to produce a closed layer with sufficient adhesive strength (EP-OS 0 200 983). Finally, it has been proposed to directly cool the surface of the electrode between contact pad and furnace cover with water (Metal Bulletin Monthly, No. 204, Dec. 1987, p. 56). In this method, the electrode jacket is sprinkled with water, which is supplied via a nozzle ring attached to the electrode holder. The protective effect is based on cooling of the electrode surface under the critical reaction temperature and the formation of a steam jacket obstructing the air access. Electrode consumption could be reduced by up to 15% through the cooling process in some furnaces, in other furnaces the consumption reduction was much lower, in some cases even the amount of mantle erosion increased. Causes of the different results are probably instabilities of the water films and steam mantles, triggered for example by thermal convection currents, and the adsorption of water in the pore system of the graphite electrode. The adsorbed water reacts with the carbon at higher temperatures and produces the sponge-like soft zones typical of wet electrodes.

Der Erfindung liegt die Aufgabe zugrunde, auf der Mantelfläche von Graphitelektroden mit einfachen technischen Mitteln eine oxidationsbeständige Schutz­schicht herzustellen, die die Elektrode bei allen Belastungen im Lichtbogenofen wirksam gegen den Angriff von Luftsauerstoff schützt.The invention has for its object to produce on the lateral surface of graphite electrodes by simple technical means an oxidation-resistant protective layer, which protects the electrode under all loads in the electric arc furnace effectively against the attack of atmospheric oxygen.

Die Aufgabe wird mit einem Verfahren der eingangs genannten Art dadurch gelöst, daß auf die Mantelfläche der Elektrode unterhalb der Kontaktbacken die wässerige Lösung wenigstens eines, bei erhöhter Temperatur glas­artige Filme bildenden Salzes gesprüht wird.The object is achieved by a method of the type mentioned above in that the aqueous solution of at least one, at elevated temperature glassy films forming salt is sprayed onto the lateral surface of the electrode below the contact jaws.

Das Beschichten von Kohlenstoff- und Graphitkörpern mit filmbildenden wässerigen Salzlösungen und das Tempern der Schichten zur Entwicklung von oxidationsbeständigen Filmen sind an sich bekannt. Eine gute Schutzwirkung haben beispielsweise aus Aluminiumphosphat-Lösungen hergestellte Schutzschichten oder Filme (US-PS 2 685 539). Auch andere lösliche Phosphate, wie Zinkphosphat, Magnesiumphosphat, Eisenphosphat, Kupferphosphat, Kaliumphosphat und Manganphosphat bilden allein oder in Gemischen auf Kohlenstoff- und Graphitkörpern oxidationsbeständige Schutzschichten (EP-OS 0 223 205). Es ist auch bekannt, Borat- oder Silicat-haltige wässerige Lösungen für diesen Zweck zu verwenden (US-PS 1 000 761). Graphitelektroden werden bei Raumtemperatur in die Lösung eines oder mehrerer Salze getaucht oder die Lösung wird durch Bürsten oder Spritzen auf die Mantelfläche auf­gebracht. Die Elektroden werden dann getrocknet und auf etwa 500 bis 600 °C erhitzt, wobei die Erhitzungs­geschwindigkeit ca. 60 bis 600 K/h beträgt. Dabei bildet sich ein wasserunlöslicher, fest in den Poren verankerter oxidationsbeständiger Film.The coating of carbon and graphite bodies with film-forming aqueous salt solutions and the annealing of the layers for the development of oxidation-resistant films are known per se. For example, protective layers or films made from aluminum phosphate solutions have a good protective effect (US Pat. No. 2,685,539). Other soluble phosphates, such as zinc phosphate, magnesium phosphate, iron phosphate, copper phosphate, potassium phosphate and manganese phosphate form oxidation-resistant protective coatings alone or in mixtures on carbon and graphite bodies (EP-OS 0,223,205). It is also known to use borate or silicate-containing aqueous solutions for this purpose (US Pat. No. 1,006,761). Graphite electrodes are at room temperature in the solution immersed one or more salts or the solution is applied by brushing or spraying on the lateral surface. The electrodes are then dried and heated to about 500 to 600 ° C, the heating rate is about 60 to 600 K / h. This forms a water-insoluble, firmly anchored in the pores oxidation resistant film.

Als wichtige Voraussetzung für die Bildung eines fest­haftenden glasartigen Films galt bisher das sorgfältige Tempern oder "Härten" der aufgetragenen Beschichtungs­lösung. Es wurde nun überraschend gefunden, daß sich stabile Schutzschichten auch bei sehr großer Erhitzungs­geschwindigkeit bilden und auch dann, wenn die wässerige Beschichtungslösung auf die heiße Mantelfläche der Elektrode aufgebracht wird. Die Manteltemperatur beträgt in Abhängigkeit von den Betriebsbedingungen des Licht­bogenofens unterhalb der Kontaktbacken und oberhalb des Ofendeckels etwa 400 bis 700 °C, so daß das Lösemittel der Beschichtungslösung beim Auftreffen auf den Mantel innerhalb einiger Sekunden verdampft. Trotz der schnellen Verdampfung des Lösemittels bildet sich eine geschlossene, auf der Mantelfläche der Elektrode festhaftende Schicht aus.An important prerequisite for the formation of a firmly adhering glassy film so far was the careful tempering or "hardening" of the applied coating solution. It has now surprisingly been found that stable protective layers form even at very high heating rates and even when the aqueous coating solution is applied to the hot surface of the electrode. The jacket temperature is depending on the operating conditions of the arc furnace below the contact jaws and above the furnace cover about 400 to 700 ° C, so that the solvent of the coating solution evaporates when hitting the jacket within a few seconds. Despite the rapid evaporation of the solvent, a closed, adherent to the outer surface of the electrode layer forms.

Zum Aufbringen der Beschichtungslösung auf die Mantel­fläche verwendet man zweckmäßig einen oder mehrere Düsen­ringe, die unterhalb der Kontaktbacken am Elektroden­halter befestigt sind und den Elektrodenstrang umschließen. Nach jeder der oben beschriebenen Versetzung des Elektroden­strangs in axialer Richtung wird der freie Abschnitt der Elektrode zwischen Kontaktbacke und Ofendeckel mit der Beschichtungslösung besprüht, wobei die Dauer der Beschichtung vom Aufwachsen der Schutzschicht abhängt.To apply the coating solution to the lateral surface, it is expedient to use one or more nozzle rings, which are fastened to the electrode holder underneath the contact jaws and enclose the electrode strand. After each of the above-described displacement of the electrode strand in the axial direction, the free portion of the electrode is sprayed between the contact shoe and furnace cover with the coating solution, wherein the duration of the coating depends on the growth of the protective layer.

Wichtige Parameter, die man zweckmäßig durch einfache Vorversuche bestimmt, sind Manteltemperatur, Porosität der Elektrode, Salzkonzentration in der Lösung und der Massestrom. Es ist auch möglich, die Beschichtungs­lösung über die gesamte Verweilzeit des Elektroden­abschnitts auf den Mantel aufzutragen. Eine größere, die Wechselfestigkeit der Schicht möglicherweise beeinträchtigende Schichtdicke vermeidet man dabei durch Verwendung von Lösungen mit geringerer Salz­konzentration. Als Beschichtungsmittel sind grund­sätzlich alle Salze geeignet, die in Wasser löslich sind und nach Verdampfen des Lösemittels bei höheren Temperaturen geschlossene Filme bilden, die oxidations­beständig und für Fluide undurchlässig sind. Beispiele geeigneter Salze sind die obengenannten Phosphate, Borate und Silicate. Besonders vorteilhaft ist wegen der einfachen Handhabung und der Qualität der gebildeten Schutzschicht Monoaluminiumphosphat - Al(H₂PO₄)₃. Die wässerige Beschichtungslösung sollte etwa 15 bis 25 % Monoaluminiumphosphat enthalten und zur Ausbildung einer geschlossenen, die Graphitelektrode schützende Schicht braucht man zweckmäßig 300 bis 500 g/m² Monoaluminium­phosphat, was etwa 1 bis 3 l/m² Beschichtungslösung entspricht.Important parameters that are suitably determined by simple preliminary tests are jacket temperature, porosity of the electrode, salt concentration in the solution and the mass flow. It is also possible to apply the coating solution to the shell over the entire residence time of the electrode section. A larger layer thickness, possibly impairing the alternating strength of the layer, is thereby avoided by using solutions with a lower salt concentration. Suitable coating agents are in principle all salts which are soluble in water and, after evaporation of the solvent at elevated temperatures, form closed films which are resistant to oxidation and impermeable to fluids. Examples of suitable salts are the abovementioned phosphates, borates and silicates. Particularly advantageous is because of the ease of handling and the quality of the protective layer formed monoaluminum phosphate - Al (H₂PO₄) ₃. The aqueous coating solution should contain about 15 to 25% monoaluminum phosphate, and to form a closed, graphite electrode protective layer it is desirable to use 300 to 500 g / m2 of monoaluminum phosphate, which corresponds to about 1 to 3 liters / m² of coating solution.

Das Verfahren ermöglicht die Beschichtung von Graphit­elektroden mit einfachen Mitteln, wie sie bei der Wasserkühlung des Elektrodenmantels gebraucht werden, und die Erzeugung von Schichten, die eine sehr viel bessere Schutzwirkung als die "Wasserschichten" haben. Die Anwendung des Verfahrens ist nicht auf Graphit­elektroden beschränkt, sondern erstreckt sich auch auf Kohlenstoffelektroden, die vor allem in thermischen Reduktionsöfen verwendet werden.The method enables the coating of graphite electrodes with simple means, as used in the water cooling of the electrode sheath, and the production of layers, which have a much better protective effect than the "water layers". The application of the method is not limited to graphite electrodes, but also extends to carbon electrodes, which are mainly used in thermal reduction furnaces.

Die Erfindung wird im folgenden anhand eines Beipiels und einer Zeichnung erläutert.The invention will be explained below with reference to an example and a drawing.

Ein Graphitzylinder, Durchmesser 40 mm, Höhe 100 mm, wurde auf 700 °C erhitzt und auf die heiße Mantelfläche eine 20 %ige wässerige Lösung von Monoaluminiumphosphat aufgesprüht. Es bildete sich sofort eine dünne weißliche Schicht, die fest auf der Mantelfläche haftete. Die aufgesprühte Menge Monoaluminiumphosphat betrug etwa 400 g/m².A graphite cylinder, diameter 40 mm, height 100 mm, was heated to 700 ° C and sprayed onto the hot surface, a 20% aqueous solution of monoaluminum phosphate. Immediately a thin whitish layer formed, which firmly adhered to the outer surface. The sprayed amount of monoaluminum phosphate was about 400 g / m².

Unter Beibehaltung der Temperatur von 700 °C wurde der Zylinder und zum Vergleich ein nichtbeschichteter Graphitzylinder in einem Laborofen oxidiert, die Beauf­schlagung betrug 100 l-Luft/h. Die Ergebnisse des Ab­brandtestes sind in der Fig. 1 dargestellt. Nach 2 h hat die beschichtete Probe (ausgefüllte Kreise) etwa 5 % des Ausgangsgewichts von ca. 200 g durch Abbrand verloren, die Vergleichsprobe fast 30 % (leere Kreise).Maintaining the temperature of 700 ° C, the cylinder and, for comparison, an uncoated graphite cylinder were oxidized in a laboratory furnace, the loading was 100 l-air / h. The results of the burn-up test are shown in FIG. After 2 hours, the coated sample (filled circles) lost about 5% of the initial weight of about 200 g by burnup, the control sample nearly 30% (open circles).

Claims (4)

1. Verfahren zur Verringerung des Abbrands von Graphit­elektroden bei ihrer Verwendung in einem Lichtbogen­ofen durch Beschichten der Mantelfläche mit einer oxidationsbeständigen Schutzschicht,
dadurch gekennzeichnet,
daß auf die Mantelfläche unterhalb der Kontaktbacken die wässerige Lösung wenigstens eines, bei erhöhter Temperatur glasartige Filme bildenden Salzes gesprüht wird.
A method of reducing the burn-up of graphite electrodes when used in an electric arc furnace by coating the shell surface with an oxidation-resistant protective layer,
characterized,
in that the aqueous solution of at least one glassy film forming at elevated temperature is sprayed onto the lateral surface underneath the contact jaws.
2. Verfahren nach Patentanspruch 1,
dadurch gekennzeichnet,
daß auf die Mantelfläche eine wässerige Lösung von Monoaluminiumphosphat gesprüht wird.
2. Method according to claim 1,
characterized,
in that an aqueous solution of monoaluminum phosphate is sprayed onto the lateral surface.
3. Verfahren nach den Patentansprüchen 1 und 2,
dadurch gekennzeichnet,

daß auf die Mantelfläche eine 15 bis 20 %ige wässerige Aluminiummonophosphatlösung gesprüht wird.
3. Method according to claims 1 and 2,
characterized,

that on the lateral surface of a 15 to 20% aqueous aluminum monophosphate solution is sprayed.
4. Verfahren nach den Patentansprüchen 1 bis 3, dadurch gekennzeichnet,
daß die Mantelfläche mit 300 bis 500 g/m² Aluminium­monophosphat beschichtet wird.
4. Method according to claims 1 to 3, characterized
that the lateral surface is coated with 300 to 500 g / m² of aluminum monophosphate.
EP89102063A 1988-03-19 1989-02-07 Method for reducing the consumption of graphite electrodes Expired - Lifetime EP0334007B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3809361 1988-03-19
DE3809361A DE3809361A1 (en) 1988-03-19 1988-03-19 METHOD FOR REDUCING THE COMBUSTION OF GRAPHITE ELECTRODES

Publications (2)

Publication Number Publication Date
EP0334007A1 true EP0334007A1 (en) 1989-09-27
EP0334007B1 EP0334007B1 (en) 1991-04-10

Family

ID=6350232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102063A Expired - Lifetime EP0334007B1 (en) 1988-03-19 1989-02-07 Method for reducing the consumption of graphite electrodes

Country Status (2)

Country Link
EP (1) EP0334007B1 (en)
DE (2) DE3809361A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407290A (en) * 1992-06-18 1995-04-18 Societe Des Electrodes Et Connecting joint for electric furnace electrodes
WO2020081155A1 (en) 2018-10-15 2020-04-23 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US11979968B2 (en) 2018-10-15 2024-05-07 Chemtreat, Inc. Spray cooling furnace electrodes with a cooling liquid that contains surfactants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB891273A (en) * 1960-05-30 1962-03-14 United Steel Companies Ltd Improvements relating to electric arc furnaces
DE3315975A1 (en) * 1982-06-07 1983-12-08 VEB Elektrokohle Lichtenberg, DDR 1130 Berlin Process for producing graphite electrodes having a protective coating
FR2531301A1 (en) * 1982-08-02 1984-02-03 Nalco Chemical Co ELECTRICALLY CONDUCTIVE CONSUMABLE ELECTRODE, COMPOSITION USEFUL FOR FORMING A DIELECTRIC COATING ON CARBON AND GRAPHITE ELECTRODES AND METHOD FOR PROTECTING CARBON AND GRAPHITE ELECTRODES
JPS5951496A (en) * 1982-09-18 1984-03-24 松下電器産業株式会社 Method of producing cartridge heater
EP0223205A1 (en) * 1985-11-13 1987-05-27 Union Carbide Corporation Oxidation retarded graphite or carbon electrode and method for producing the electrode
WO1988007315A1 (en) * 1987-03-17 1988-09-22 Nippon Carbon Co., Ltd. Method of melting and refining metals, and an apparatus for cooling electrodes used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB891273A (en) * 1960-05-30 1962-03-14 United Steel Companies Ltd Improvements relating to electric arc furnaces
DE3315975A1 (en) * 1982-06-07 1983-12-08 VEB Elektrokohle Lichtenberg, DDR 1130 Berlin Process for producing graphite electrodes having a protective coating
FR2531301A1 (en) * 1982-08-02 1984-02-03 Nalco Chemical Co ELECTRICALLY CONDUCTIVE CONSUMABLE ELECTRODE, COMPOSITION USEFUL FOR FORMING A DIELECTRIC COATING ON CARBON AND GRAPHITE ELECTRODES AND METHOD FOR PROTECTING CARBON AND GRAPHITE ELECTRODES
JPS5951496A (en) * 1982-09-18 1984-03-24 松下電器産業株式会社 Method of producing cartridge heater
EP0223205A1 (en) * 1985-11-13 1987-05-27 Union Carbide Corporation Oxidation retarded graphite or carbon electrode and method for producing the electrode
WO1988007315A1 (en) * 1987-03-17 1988-09-22 Nippon Carbon Co., Ltd. Method of melting and refining metals, and an apparatus for cooling electrodes used therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407290A (en) * 1992-06-18 1995-04-18 Societe Des Electrodes Et Connecting joint for electric furnace electrodes
WO2020081155A1 (en) 2018-10-15 2020-04-23 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US20200196404A1 (en) * 2018-10-15 2020-06-18 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US10694592B1 (en) * 2018-10-15 2020-06-23 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US11140755B2 (en) 2018-10-15 2021-10-05 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
EP3815465A4 (en) * 2018-10-15 2022-01-05 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US11653426B2 (en) 2018-10-15 2023-05-16 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
EP4216672A1 (en) 2018-10-15 2023-07-26 Chemtreat, Inc. Methods of protecting furnace electrodes with cooling liquid that contains an additive
US11979968B2 (en) 2018-10-15 2024-05-07 Chemtreat, Inc. Spray cooling furnace electrodes with a cooling liquid that contains surfactants

Also Published As

Publication number Publication date
DE58900079D1 (en) 1991-05-16
DE3809361A1 (en) 1989-09-28
EP0334007B1 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
DE3725615C2 (en) Immersion pyrometer for measuring high temperatures
DE3725614C2 (en)
DE4020297C2 (en) Process for forming a porous refractory mass
US4487804A (en) Coating to prevent the oxidation of electrodes during electric furnace steel making
JPH0565582B2 (en)
WO2010086151A1 (en) Zinc diffusion coating method
DE1266201B (en) Carbon or graphite bodies with an antioxidant protective layer applied to them, as well as processes for their production
DE19714432C2 (en) Carrier body with a protective coating and use of the coated carrier body
US3252827A (en) Refractory carbide bodies and method of making them
EP0334007A1 (en) Method for reducing the consumption of graphite electrodes
US3390013A (en) High-temperature resistant structural body
DE2257863A1 (en) COATING MATERIAL TO PROTECT GRAPHITE ELECTRODES
JPH05279155A (en) Method for tempering surface of body
US4588700A (en) Coating to prevent the oxidation of electrodes during electric furnace steel making
AT219166B (en) Process for the production of an impregnated cathode for electric discharge tubes
DE69735585T2 (en) START-UP OF ELECTRIC CELLS TO OBTAIN ALUMINUM
DE3147755A1 (en) Process for coating a metal with a different metal
DE2947919C2 (en)
JPS6131309A (en) Antioxidizing agent of graphite electrode for steel making
DE2722438C2 (en) Protective layer for carbon and graphite arc electrodes and processes for their manufacture
DD205428A1 (en) PROCESS FOR PREPARING PROTECTED GRAPHITE ELECTRODES
DE625072C (en) Ceramic body with metal cover
DE3403378C2 (en) Method for the surface treatment of a quartz glass substrate and its application
DE3838828C2 (en)
DE1271007B (en) Process for protecting carbon materials from oxidation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19891012

17Q First examination report despatched

Effective date: 19900730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58900079

Country of ref document: DE

Date of ref document: 19910516

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920115

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940203

Year of fee payment: 6

EUG Se: european patent has lapsed

Ref document number: 89102063.8

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950228

BERE Be: lapsed

Owner name: SIGRI G.M.B.H.

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050207