EP0333784A1 - Debitmetre a force d'inertie convectrice - Google Patents

Debitmetre a force d'inertie convectrice

Info

Publication number
EP0333784A1
EP0333784A1 EP88907463A EP88907463A EP0333784A1 EP 0333784 A1 EP0333784 A1 EP 0333784A1 EP 88907463 A EP88907463 A EP 88907463A EP 88907463 A EP88907463 A EP 88907463A EP 0333784 A1 EP0333784 A1 EP 0333784A1
Authority
EP
European Patent Office
Prior art keywords
conduit
sections
combination
flexural vibrations
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88907463A
Other languages
German (de)
English (en)
Other versions
EP0333784A4 (en
Inventor
Hyok Sang Lew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/078,206 external-priority patent/US4829832A/en
Priority claimed from US07/164,541 external-priority patent/US4938075A/en
Application filed by Individual filed Critical Individual
Publication of EP0333784A1 publication Critical patent/EP0333784A1/fr
Publication of EP0333784A4 publication Critical patent/EP0333784A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8481Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8481Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point
    • G01F1/8486Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits

Definitions

  • the flowmeter of the present invention comprises a conduit providing a flow passage fixed to a rigid frame at the two extremities that includes a loop wherein two halves of the conduit over-lap one another with a spaced relationship.
  • An electromagnetic vibrator disposed at the over-lapping section of the conduit laterally vibrates the two halves of the conduit relative to one another and generates flexural vibration of the conduit with amplitude varying along the length of the conduit, which are zero only at the two fixed extremities of the conduit and at the nodal point located at the midsection of the conduit.
  • the fluid moving through the conduit exerts a convective inertia force resulting from the varying amplitude of the flexural vibration of the conduit, distribution of which along the length of the conduit is symmetric about the midsection of the conduit, that generates flexural vibration of the conduit having symmetric mode about the midsection of the conduit that is superimposed on the flexural vibration of the conduit having antisymmetric mode about the midsection of the conduit that is generated by the electromagnetic vibrator.
  • the mass flowrate of the fluid moving through the conduit is determined by measuring the symmetric component of the flexural vibration of the conduit, which measurement is carried out by measuring the difference in the phase angle of the flexural vibrations between the two halves of the conduit or by measuring the amplitude of the flexural vibrations at the midsection of the conduit.
  • a mass flowmeter operating on the same principles as described herein may comprose a generally U-shaped conduit with two halves thereof vibrated relative to one another, wherein one extremity of each of the two halves of the conduit includes a flexible coupling, or a pair of parallel conduits vibrated relative to one another, wherein one extremity of each of the pair of conduits includes a flexible coupling.
  • the priority of the present invention is based on the United States patent applications S.N. 07/078,206 entitled “Convective inertia force flowmeter” filed on July 27, 1987 and S.N. 07/164,541 entitled “Convective inertia force” filed on March 7, 1988.
  • the acceleration experienced by the moving fluid is classified into two categories; the local acceleration and the convective acceleration.
  • the inertia force assoelated with the convective acceleration is called “convective Inertia force", which is equal to the mass flow flux density times the gradient of the fluid velocity.
  • Every mass flowmeter employing one or more vibrating conduits determines the mass flow rate of the fluid by measuring an effect of the convective inertia force, whether the mass flowmeter is called a "Coriolis force flowmeter" or some other name.
  • the primary object of the present invention is to provide a mass flowmeter that employs the simplest form of vibrating conduits and, yet, has the most pronounced effect of convective inertia force. As a consequence, the mass flowmeter of the present invention has a great turn-down ratio and high sensitivity.
  • Another object is to provide a mass flowmeter comprising a single conduit with two extremities fixed to a rigid frame that includes a generally 360 degree loop, wherein the two sections of the conduit respectively adjacent to the two fixed extremities of the conduit and connected to one another by the 360 degree loop overlap one another in a spaced relationship over a portion thereof,where an electromagnetic vibrator vibrates the two sections of the conduit laterally relative to one another.
  • the mass flow rate is determined from the difference in the flexural vibrations of the two sections of the conduit, which are measured by two motion detectors respectively included in the two sections of the conduit, or from the flexural vibrations at the nodal section coinciding with the midsection of the conduit that is measured by a motion detector disposed at the midsection of the conduit.
  • a further object is to provide a mass flowmeter comprising a single conduit with two extremities fixed to a rigid frame, that includes two 360 degree loops turning in two opposite directions, wherein the two sections of the conduit respectively adjacent to the fixed extremities of the conduit and connected to one another by the two 360 degree loops over-lap one another and sandwich the midsection of the conduit therebetween in a spaced relationship, which two sections are vibrated laterally relative to one another by an elec tromagnetic vibrator.
  • the mass flow rate is determined from the difference In the flexural vibrations of the two sections of the conduit or from the flexural vibrations at the nodal section coinciding with the midsection of the conduit where the flexural vibration is absent when there is no fluid flow through the conduit.
  • Yet another object is to provide a mass f lowmet er comprising a single conduit with two extremities fixed to a rigid frame, that includes two sections of the conduit respectively adjacent to the two fixed extremities and connected to one another by a looped section of the conduit, which two sections are vibrated laterally relative to one another by an electromagnetic vibrator.
  • the mass flow rate is determined from the difference in the flexural vibrations of the two sections of the conduit, which may be measured in the form of the phase angle difference therebetween, or from the flexural vibrations at the nodal section coinciding with the midsection of the conduit where the flexural vibration is absent when there is no fluid flow through the conduit.
  • Yet a further object is to provide a mass flowmeter comprising a single conduit with two extremities fixed to a rigid frame, that includes two sections of the conduit respectively adjacent to the two fixed extremities and connected to one another by a 360 degree loop of the conduit, wherein one portion of the 360 degree loop and one of the two sections of the conduit are symmetric about a section where the two halves of the conduit overlap in a spaced relationship, and the other portion of the 360 degree loop and the other of the two sections of the conduit are also symmetric about the same section where the conduit overlap.
  • An electromagnetic vibrator disposed at the section where the conduits overlap vibrates the two combinations of the conduit sections relative to one another.
  • the mass flow rate is determined from the difference in the flexural vibrations of the conduit sections between the two conduit sections included in one of the two combinations of the conduit sections. Still another object is to provide a mass flowmeter comprising a doubl 360 degree loops of conduit, where- from an inlet and outlet legs disposed in line to one another extend in two opposite directions generally perpendicular to the plane parallel to the 360 degree loops. An electromagnetic vibrator disposed at a section diametrically opposite to a section wherefrom the inlet and outlet legs extend vibrates the two 360 degree loops relative one another. The mass flow rate is determined from the difference in the relative flexural vibrations between two sections respectively measured at two diametrically opposite sections halfway between the section wherefrom the inlet and outlet legs extend and the section where the electromagnetic vibrator is disposed.
  • Still a further object is to provide a mass flowmeter comprising a pair of conduit sections dispoded parallel to one another and connected to one another in series, wherein one extremity of each of the two conduit sections includes a flexible coupling, whereby an electromagnetic vibrator vibrates the two conduit sections relative to one another.
  • the mass flow rate is determined from the difference in the flexural vibrations between the two conduit sections.
  • Yet still another object is to provide a mass flowmeter comprising a pair of parallel conduits connected to a common inlet and outlet legs in parallel arrangement, wherein two extremities of the conduits respectively belonging to the two conduits and disposed at two opposite ends include flexible couplings.
  • Figure 1 illustrates a perspective view of an embodiment of the mass flowmeter of the present invention comprising a single 360 degree loop section of the conduit.
  • Figure 2 illustrates a perspective view of another embodiment of the mass flowmeter of the present invention comprising a single 360 degree loop section of the conduit.
  • Figure 3 illustrates the mode of the first order flexural vibration generated by the electromagnetic vibrator and the mode of the second order flexural vibration generated by the convective inertia force of the fluid moving through the vibrating conduit.
  • Figure 4 illustrates a further embodiment of the mass flowmeter of the present invention comprising a single 360 degree loop section of the conduit.
  • Figure 5 illustrates yet another embodiment of the mass flowmeter of the present invention comprising a single 360 degree loop of the conduit.
  • Figure 6 illustrates an embodiment of the mass flowmeter of the present invention comprising a double 360 degree loop section of the conduit respectively turning in two opposite directions.
  • Figure 7 illustrates another embodiment of the mass flowmeter of the present invention comprising a double 360 degree loop section of the conduit respectively turning in two opposite directions.
  • Figure 8 illustrates a further embodiment of the mass flowmeter of the present invention comprising a double 360 degree loop of the conduit arranged like a coil spring.
  • Figure 9 illustrates an embodiment of the mass flowmeter. of the present invention comprising a single 360 degree loop of the conduit, which are arranged similarly to the embodiment shown in Figure 2.
  • Figure 10 illustrates an embodiment of the mass flowmeter of the present invention comprising two parallei sections of the conduit respectively extending to the inlet and outlet legs, wherein the two parallel sections of the conduit are connected to one another in series by a looped section of the conduit.
  • Figure 11 illustrates another embodiment of the mass flowmeter of the present invention comprising two parallel sections of the conduit respectively extending to the inlet and outlet legs, wherein the two parallel sections of the.
  • Figure 12 illustrates an embodiment of the mass flowmeter of the present invention comprising two sections of the conduit respectively extending to the inlet and outlet legs, wherein the two sections of the conduit are connected to one another by a 360 degree loop of the conduit including two sections thereof respectively disposed in a sysmmetric arrangement to the two sections of the conduit extending to the inlet and outlet legs, respectively.
  • Figure 13 illustrates an embodiment of the mass flowmeter of the present invention comprising a pair of parallel conduits connected to common inlet and outlet legs in a parallel arrangement, wherein the first extremity of the one of the two parallel conduits and the other extremity of the other of the two parallel conduits Include flexible couplings.
  • Figure 14 illustrates another embodiment of the mass flowmeter of the present invention having a construction similar to the embodiment shown in Figure 13.
  • Figure 15 illustrates a further embodiment of the mass flowmeter of the present invention comprising two parallel conduits including flexible coupling in an arrangement similar to the embodiment shown in Figure 13.
  • Figure 16 illustrates an embodiment of the mass flowmeter of the present invention comprising two sections of the conduit disposed in a parallel arrangement and connected to one another at the first extremities and respectively connected to inlet and outlet legs by two flexible couplings, respectively, at the second extremities.
  • Figure 17 illustrates another embodiment of the mass flowmeter of the present invention comprising two sections of the conduit respectively extending from the inlet and outlet legs in a parallel arrangement and connected to one another by a flexible coupling.
  • FIG. 1 there is illustrated a perspective view of an embodiment of the mass flowmeter that comprises a single conduit 1 with two extremities 2 and 3 respectively connected to the inlet leg 4 and outlet leg 5 and affixed to a rigid frame 6, which conduit includes two generally straight sections 7 and 8 respectively extending towards one another in an overhanging arrangement from the fixed extremities 2 and 3, and connected to one another by a looped section 9 of 360 degree or lesser loop angle.
  • An electromagnetic vibrator 10 energized by the vibrator power supply 11, that is disposed on the middle plane between the two fixed extremities 2 and 3 of the conduit 1, vibrates the two generally straight sections of the conduit relative to one another, which flexural vibrations are generated at the resonance frequency of the vibrating system.
  • the motion detectors 12 and 13 respectively included in the two generally straight sections 7 and 8 of the conduit and a third motion detector 14 affixed to the midsection of the looped section 9 of the conduit measure the flexural vibrations of the conduit.
  • the signals generated by the motion detectors 12, 13 and 14 are transmitted to the filter-amplifier 15 by wires, which signals conditioned by the filter-amplifier 15 are then transmitted to the data processor 16 that analyzes the signals and converts them into the information related to the mass flow rate.
  • the filter-amplifier 15 also feeds information on the numerical value of the resonance frequency to the vibrator power supply 11.
  • FIG. 2 there is illustrated another embodiment of the mass flowmeter comprising a single conduit 17 with two extremities 18 and 19 affixed to a rigid frame 20, which conduit includes two generally straight sections 21 and 22 respectively extending from the fixed extremities 18 and 19 of the conduit in a parallel and over-hanging arrangement, and connected to one another by a looped section 23 of the conduit of loop angle greater than 360 degrees and less than 720 degrees.
  • An electromagnetic vibrator 24 disposed on the middle plane between the two generally straight and parallel sections 21 and 22 of the conduit vibrates the two halves of the looped section 23 of the conduit respectively connected to the two parallel sections 21 and 22 of the conduit relative to one another in directions generally perpendicular to a plane including trie looped section 23 of the conduit.
  • Two motion detectors 25 and 26 respectively disposed at the two junctures between the two generally straight sections 21 and 22, and the looped section 23 of the conduit measure the flexural vibrations of the two halves of the conduit 17.
  • the motion detector 27 disposed at the midsection of the conduit 17 also measures the flexural vibrations of the conduit 17.
  • the motion detectors employed in the embodiments shown in Figures 1 and 2 may be position or velocity or acceleration sensors, which can be inductive, capacitive, or strain or stress sensing sensors.
  • the equation governing the flexural vibration of a conduit containing moving fluid can be written in the form
  • Equation (1) where v is the flexural velocity of the conduit, x is the linear coordinate desgnated following the central axis of the conduit, t is the time, E is the modulus of elasticity of the conduit wall, I is the moment of inertia of the cross section of the conduit, m is the linear density of the conduit, is the fluid density, U is the convective velocity of the fluid, and A is the cross section area of the flow passage in the conduit.
  • the equation (1) applies to all sections of the conduit excluding the section where the electromagnetic vibrator exerts the vibratory force.
  • v 0 is the maximum amplitude of the flexural velocity
  • the coordinate x is measured from the secured end of each of the two sections of the conduit A-C and G-E
  • L is the length of the conduit section A-C or G-E
  • the plus or minus sign appearing before the second term on the right hand side of the equation (2) respectively applies to the conduit sections A-C and G-E. It is useful to notice that the positive direction of the coordinate x is the same as the direction of the flow U for the first conduit section A-C, while the two are opposite to one another for the second conduit section G-E.
  • the parameter satisfies the characteristic equation
  • Figure 3 there is illustrated the mode of deflection of the conduit over the entire length thereof, wherein y 0 corresponding to the first term on the right hand side of the equation (2) represents the deflection of the conduit containing stationary fluid, while y 1 corresponding to the second term on the right hand side of the equation (2) represents the additional deflection of the conduit resulting from the convective inertia force of the moving fluid through the conduit.
  • y 0 solely generated by the electromagnetic vibrator is antisymmetric about the midsection or nodal section D of the conduit, while y 1 generated by the convective inertia force of the moving fluid is symmetric about the midsection or nodal section D.
  • the vibrating conduit ineluded in the mass flow meter of the present invention is automatically vibrated at the natural frequency of the second harmonics instead of the first harmonics, which contrasts the existing versions of mass flowmeter using the natural frequency of the first harmonic.
  • the natural frequency of the second harmonics is twice as great as that of the first harmonics.
  • the sensitivity of the mass flowmeter is directly proportional to the natural frequency whereat the conduit is vibrated.
  • the mas s flowmeter of the present inven ⁇ tion provides a drastically higher sensitivity compared with the existing versions of the mass flowmeter.
  • the mass flow rate can also be determined from the amplitude of the outputs from the motion detector 14 shown in Figure 1 or the motion detector 27 shown in Figure 2, as the amplitude of the flexural vibration at the nodal section D is proportional to the mass flow rate. It should also be mentioned that the mass flow rate can be determined from the difference in amplitude between the two flexural vibrations respectively measured by the two motion detectors 12 and 13 shown in Figure 1 or the two motion detectors 25 and 26 shown in Figure 2.
  • the mass flow rate may be determined by combining all three different outputs from three different motion detectors 12, 13 and 14, or 25, 26 and 27.
  • Figure 4 there is illustrated another embodiment of the mass flowmeter having generally the same construction and operating on the same principles as the embodiment shown in Figure 1.
  • the relative flexural vibrations of the two generally straight sections 28 and 29 of the conduit are generated by a pair of electromagnetic vibrators 30 and 31 respectively disposed on two opposite sides of the middle plane between the two fixed extremities of the conduit.
  • the flexural vibrations of the two generally straight sections 28 and 29 of the conduit are respectively measured by the motion detectors 32 and 33, while the flexural vibrations at the nodal section or midsection of the conduit are measured by the motion detector 34.
  • FIG 5 there is illustrated a further embodiment of the mass flowmeter having essentially the same construction as the embodiment shown in Figure 1 with one exception, that is the pair of motion detectors 35 and 36 of accelerometer type which respectively measure the absolute velocities of the flexural vibrations of the two generally straight sections 37 and 38 of the conduit.
  • the motion detectors 12 and 13 shown in Figure 1, the motion detectors 25 and 26 shown in Figure 2, and the motion detectors 32 and 33 shown in Figure 4 measure the velocities of the flexural vibrations of the generally straight sections of the conduit relative to the fixed extremities thereof or relative to the looped section of the conduit.
  • FIG. 6 there is illustrated an embodiment of the mass flowmeter comprising a single conduit 40 with two extremities 41 and 42 affixed to a rigid frame 43, which conduit Includes two generally straight sections 44 and 45 respectively extending from the two fixed extremities 41 and 42 of the conduit in an over-hanging arrangement and connected to one another by a looped section 46 of the conduit that has two loops of loop angle less than 360 degrees respectively turning in two opposite directions. The midsection of the looped.
  • section 44 of the conduit passes through the space between the two generally straight sections 44 and 45 of the conduit.
  • An electromagnetic vibrator 47 disposed on the middle plane between the two fixed extremities 41 and 42 of the conduit vibrates the two generally straight sections 44 and 45 of the conduit.
  • a pair of motion detectors 48 and 49 respectively measure the flexural vibrations of the two generally straight sections 44 and 45.
  • the elements 48 and 49 can be a pair of electromagnetic vibrators instead of the motion detectors, and the element 47 can be a motion detector that measures the flexural vibration of the conduits at the nodal section or midsection of the conduit.
  • FIG. 7 there is illustrated an embodiment of the mass flowmeter comprising a single conduit 50 with two extremities 51 and 52 affixed to a rigid frame, that includes two generally straight sections 53 and 54 respectively extending from the two fixed extremities 51 and 52 of the conduit in an over-hanging arrangement and connected to one another by a looped section 55 of the conduit having two 360 degree loops respectively turning in two opposite directions.
  • An electromagnetic vibrator 56 disposed on the middle plane between the two fixed extremities 51 and 52 vibrates the two generally straight sections 53 and 54 of the. conduit relative to one another.
  • a pair of motion detectors 57 and 58 respectively measure the flexural vibrations of the two generally straight sections 53 and 54 of the conduit 50.
  • the mass flow rate is determined from the difference in the two fle'xural vibrations respectively measured by the two motion detectors 57 and 58, which difference may be the phase angle difference or the difference in the amplitude.
  • the two generally straight sections of the conduit included in the embodiments shown in Figures 1, 4, 5 and 6 are disposed on a plane generally perpendicular to the looped section of the conduit and the ralative flexural vibrations thereof take place on that plane, while the two generally straight sections of the conduit in the embodiment shown in Figure 7 are disposed on a plane generally parallel to the looped section of the conduit and vibrated relative to one another thereon.
  • FIG 8 there is illustrated an embodiment of the mass flowmeter comprising a single conduit 59 with two extremities 60 and 61 disposed in line to one another and affixed to a rigid frame, which conduit includes two 360 degrees loops 62 and 63 coaxially disposed about an axis generally parallel to the inlet and outlet legs 60 and 61 respectively extending from the two coils in an in-line arrangement.
  • An electromagnetic vibrator 64 disposed at a position diametrically opposite to the inlet and outlet legs 60 and 61 vibrates the two 360 degrees loops 62 and 63 of conduit relative to one another.
  • a pair of motion detectors 65 and 66 disposed at the two diametrically opposite positions on a plane generally perpendicular to the plane including the inlet and outlet legs 60 and 61 and the electromagnetic vibrator 64 measure the relative flexural vibrations between the two 360 degrees loops atthe two diametrically opposite positions.
  • a third motion detector 67 disposed at the nodal section or midsection of the conduit 59 measures the flexural vibrations of the conduit at the nodal point.
  • the mass flowmeter shown in Figure 64 operates on the same principles as those described in conjunction with Figures 1, 2 and 3.
  • Figure 9 there is illustrated an embodiment of the mass flowmeter having essentially the same construction and operating on the same principles as the embodiment shown in Figure 2 with one exception.
  • the pair of motion detectors 68 and 69 respectively measuring the flexural vibrations of the two generally straight and parallel sections 70 and 71 of the conduit, as well as the motion detector 72 measuring the flexural vibrations of the conduit at the nodal section are of the accelerometer type instead of the inductive or capacitive type motion detectors 25 and 26 employed in the embodiment shown in Figure 2.
  • Figure 10 there is illustrated an embodiment of the mass flowmeter comprising a single conduit with two extremities 74 and 75 affixed to a rigid frame, which conduit includes two generally straight and parallel sections 76 and 77 respectively extending from the two fixed extremities 74 and 75 of the conduit in an over- hanging arrangement and connected to one another by a looped section 78 of the conduit having a 360 degree loop angle.
  • An electromagnetic vibrator 79 disposed at the over-hanging extremities of the two generally straight sections 76 and 77 of the conduit vibrates those sections of the conduit relative to one another.
  • a pair of motion detectors 80 and 81 respectively measure the flexural vibrations of the two generally straight sections 76 and 77 of the conduit in absolute manner or in a manner relative to the nodal section or midsection of the conduit where the third motion detector 82 is disposed.
  • the motion detector 82 measures the flexural vibrations of the conduit at the nodal section, where the amplitude of the flexural vibration is proportional to the mass flow rate of the fluid moving through the conduit.
  • the pair of generally straight and parallel sections 76 and 77 of the conduit 73 are disposed on a plane generally perpendicular to the looped section 78 of the conduit and vibrated thereon relative to one another.
  • This embodiment of the mass flowmeter operates on the same principles as those described in conjunction with Figures 1, 2 and 3.
  • Figure 11 there is illustrated another embodiment of the mass flowmeter comprising two generally straight parallel sections 83 and 84 of the conduit 85 respectively extending from the two affixed extremities 86 and 87 of the conduit in an over-hanging arrangement, which are connected to one another by a looped section 83 of the conduit having a loop angle close to 360 degrees.
  • a pair of motion detectors 90 and 91 respectively measure the flexural vibrations of the two generally straight sections 83 and 84 in an absolute manner or in a manner relative to the looped section 88 of the conduit. It should be noticed that the two generally straight sections 83 and 84 of the conduit are disposed on a plane generally parallel to the looped section 88 of the conduit, whereon they are vibrated relative to one another.
  • This embodiment of the mass flowmeter operates on the same principles as those described in conjunction with Figures 1, 2 and 3.
  • FIG 12 there is illustrated an embodiment of the mass flowmeter comprising a single conduit with two extremities 92 and 93 affixed to a rigid frame, which conduit includes two generally straight sections 94 and 95 respectively extending from the two fixed extremities of the conduit towards one another in an over-hanging arrangement and connected to one another by a looped section 96 of the conduit.
  • the two halves of the looped section 96 of the conduit include two generally straight sections 97 and 98 which are respectively symmetric to the two generally straight sections 94 and 95 of the conduit about planes including the point of over-lap between the two halves of the conduit.
  • An electromagnetic vibrator 99 disposed at the point of over-lap vibrates the two halves of the conduit relative to one another.
  • the mass flow rate is determined from the difference between the two flexural vibrations respectively measured by any two motion detectors, i.e., 100 and 101, 102 and 103, 101 and 103 or 100 and 102, or by averaging that difference over two or more pairs of the motion detectors.
  • FIG 13 there is illustrated an embodiment of the mass flowmeter comprising a pair of parallel conduits 105 and 106 respectively connected to the inlet and outlet legs 107 and 108 in a parallel connection.
  • the first extremities 109 and 110 of the two donduits 105 and 106 located at opposite ends to one another are fixedly secured to a rigid frame 111, while the second extremities 112 and 113 respectively include loop sections 114 and 115 which enhance flexural deflections of the two conduits at those extremities.
  • An electromagnetic vibrator 116 disposed at the midsections of the two conduits vibrates them relative to one another.
  • the mass flow rate is determined from the difference between the two relative flexural vibrations respectively measured by the two motion detectors 117 and 118, which may be the phase angle difference or the difference in the amplitude of the flexural vibrations.
  • Figure 14 there is illustrated another embodiment of the mass flowmeter having essentially the same construction and operating on the same principles as the embodiment shown in Figure 13 with one exception, which is the S-shaped conduit sections 119 and 120 disposed on a plane perpendicular to the plane including the two parallel conduits replacing the looped sections 114 and 115 in the embodiment shown in Figure 13.
  • FIG. 15 there is illustrated a further embodiment of the mass flowmeter having essentially the same construction and operating on the same principles as the embodiment shown in Figure 13 with one exception being that the bellow couplings or flexible couplings 120 and 121 replace the looped sections 114 and 115 in the embodiment shown in Figure 13.
  • FIG 16 there is illustrated an embodiment of the mass flowmeter comprising a single conduit 123, which conduit includes two generally straight sections 124 and 125 extending respectively from the inlet and outlet legs 126 and 127 in a parallel over-hanging arrangement and connected to one another by a curved section 128 of the conduit.
  • the two generally straight sections 124 and 125 are respectively connected to the inlet and outlet legs 126 and 127 by the bellow couplings or flexible couplings 129 and 130.
  • An electromagnetic vibrator 131 disposed near the extremities of the two generally straight sections 124 and 125 connected to the inlet and outlet legs 126 and 127 vibrates the two generally straight sections 124 and 125 relative to one another.
  • a pair of motion detectors 132 and 133 respectively included in the two generally straight sections 124 and 125 of the conduit measure the flexural vibrations thereof respectively.
  • the mass flow rate is determined from the difference between the two flexural vibrations respectively measured by the two motion detectors 132 and 133 wh ich difference may be the phase angle difference or the difference in the amplitude of the flexural vibrations.
  • FIG 17 there is illustrated another embodiment of the mass flowmeter comprising a single conduit 134 with two extremities 135 and 136 affixed to a rigid frame, which conduit includes two generally straight sections 137 and 138 respectively extending from the two fixed extremities 135 and 136 of the conduit in a parallel over-hanging arrangement and connected to one another by a curved section 139 of the conduit including a bellow coupling or flexible coupling 140 at the midsection thereof.
  • An electromagnetic vibrator 141 disposed near the curved section 139 of the conduit vibrates the two generally straight sections 137 and 138 of the conduit relative to one another.
  • a pair of the motion detectors 142 and 143 respectively included in the two generally straight sections 137 and 138 measure the flexural vibrations thereof, respectively.
  • This embodiment of the mass flowmeter operates on the same principles as those embodiments shown in Figures 10, 11 and 16. It should be mentioned that the flexural vibrations at the nodal section is generated by the convective inertia force of the moving fluid through the vibrating conduit as well as by the noises associated with pipe line vibrations. Therefore, in determining the mass flow rate from the amplitude ratio of the flexural vibration at the nodal section to that at the conduit section Including the electromagnetic vibrator, it is necessary to substract the noises from the total signals detected by the motion detector disposed at the nodal section, which noises can be measured by another motion detector disposed at a strategically selected section of the vibrating conduit.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Débitmètre massique comprenant un conduit (1) unique avec deux extrémités (2 et 3) fixées à un cadre (6) rigide, ledit conduit comporte une première et seconde parties (7 et 8) s'étendant respectivement l'une vers l'autre à partir de deux extrémités fixes du conduit, dans un agencement en surplomb, et connectées l'une à l'autre par une partie à boucle (9) du conduit. Un vibrateur électromagnétique (10) fait vibrer les première et seconde parties du conduit l'une par rapport à l'autre. Une paire des détecteurs (12 et 13) de mouvement mesure respectivement les vibrations de flexion des première et seconde parties du conduit. Le débit d'écoulement massique du fluide se déplaçant à travers le conduit est déterminé à partir de la différence d'angle de phase entre les deux vibrations de flexion, mesurées respectivement par les deux détecteurs de mouvement.
EP19880907463 1987-07-27 1988-07-27 Convective inertia force flowmeter Withdrawn EP0333784A4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78206 1987-07-27
US07/078,206 US4829832A (en) 1987-07-27 1987-07-27 Convective inertia force flowmeter
US07/164,541 US4938075A (en) 1987-02-12 1988-03-07 Convective inertia force flowmeter
US164541 1988-03-07

Publications (2)

Publication Number Publication Date
EP0333784A1 true EP0333784A1 (fr) 1989-09-27
EP0333784A4 EP0333784A4 (en) 1991-07-17

Family

ID=26760232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880907463 Withdrawn EP0333784A4 (en) 1987-07-27 1988-07-27 Convective inertia force flowmeter

Country Status (3)

Country Link
EP (1) EP0333784A4 (fr)
JP (1) JP2557098B2 (fr)
WO (1) WO1989001134A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3923517A1 (de) * 1989-07-15 1991-01-24 Porsche Ag Abgasanlage eines hubkolbenmotors
US4957005A (en) * 1989-10-05 1990-09-18 Fischer & Porter Company Coriolis-type flowmeter
JPH04503256A (ja) * 1989-11-24 1992-06-11 リュー,ヨク・サン 対流加速度流量計
EP0754934B1 (fr) * 1995-07-21 2000-09-06 Endress + Hauser Flowtec AG Débitmètre massique selon le principe de Coriolis comprenant au moins un tube de mesure
DE29609624U1 (de) * 1996-05-30 1997-10-02 Bopp & Reuther Messtechnik GmbH, 68305 Mannheim Meßgerät zur Messung des Masseflusses eines strömenden Mediums
US5814739A (en) * 1997-05-30 1998-09-29 Micro Motion, Incorporated Coriolis flowmeter having corrugated flow tube
JP2951651B1 (ja) * 1998-07-29 1999-09-20 株式会社オーバル コリオリ質量流量計及びその製造方法
HUP0400330A2 (hu) * 2004-02-02 2005-08-29 MMG Flow Méréstechnikai Kft. Áramlási egység Coriolis-típusú tömegárammérőhöz
JP2021174640A (ja) * 2020-04-23 2021-11-01 株式会社オートネットワーク技術研究所 コネクタ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005677A1 (fr) * 1984-06-04 1985-12-19 Exac Corporation Appareil de mesure de la densite et de la vitesse de debit-masse
WO1987007714A1 (fr) * 1986-06-10 1987-12-17 The Foxboro Company Debitmetres massiques de coriolis
WO1989000678A1 (fr) * 1987-07-10 1989-01-26 Lew Hyok S Debitmetre a attenuation par convexion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711132A (en) * 1984-06-04 1987-12-08 Exac Corporation Apparatus for mass flow rate and density measurement
US4622858A (en) * 1985-03-25 1986-11-18 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
US4756198A (en) * 1986-01-24 1988-07-12 Exac Corporation Sensor apparatus for mass flow rate measurement system
US4716771A (en) * 1986-02-11 1988-01-05 K-Flow Division Of Kane Steel Co., Inc. Symmetrical mass flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005677A1 (fr) * 1984-06-04 1985-12-19 Exac Corporation Appareil de mesure de la densite et de la vitesse de debit-masse
WO1987007714A1 (fr) * 1986-06-10 1987-12-17 The Foxboro Company Debitmetres massiques de coriolis
WO1989000678A1 (fr) * 1987-07-10 1989-01-26 Lew Hyok S Debitmetre a attenuation par convexion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8901134A1 *

Also Published As

Publication number Publication date
JP2557098B2 (ja) 1996-11-27
WO1989001134A1 (fr) 1989-02-09
EP0333784A4 (en) 1991-07-17
JPH02501090A (ja) 1990-04-12

Similar Documents

Publication Publication Date Title
US5054326A (en) Density compensator for coriolis-type mass flowmeters
EP0196150B1 (fr) Mesure de l'écoulement d'un fluide
US4628744A (en) S-tube Coriolis force flow meter
US5602344A (en) Inertia force flowmeter
EP0188572B1 (fr) Appareil pour mesurer la densite et la vitesse du debit-masse
AU584903B2 (en) Apparatus for mass flow rate and density measurement
JP2575203B2 (ja) 非対称および粘性減衰の補償により精度を向上した質量流量計
US4756197A (en) Coriolis-type mass flowmeter
US5090253A (en) Coriolis type fluid flowmeter
CA2944987C (fr) Appareil et procede de detection d'ecoulement asymetrique dans des debitmetres vibrants
US4798091A (en) Dual S-tube Coriolis force flowmeter
US5078014A (en) Convective inertia force flowmeter
EP0333784A1 (fr) Debitmetre a force d'inertie convectrice
US5226330A (en) High sensitivity mass flowmeter
US4776220A (en) Dual S-loop single tube coriolis force flowmeter
US4829832A (en) Convective inertia force flowmeter
US4984472A (en) Apparatus for mass flow rate and density measurement
US5060523A (en) Vibrating looped conduit mass flowmeter
US4938075A (en) Convective inertia force flowmeter
US5425277A (en) Inertia force flowmeter with symmetrized looped conduit
US5355737A (en) Single vibrating conduit mass flowmeter
US5131280A (en) Vibrating conduit mass flowmeter
US5241865A (en) Mass flowmeter
US5123287A (en) Vibrating conduit mass flowmeter
US5485755A (en) Mass flowmeter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19910530

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930727