EP0323772A1 - Centreur embrayable en rotation notamment pour garniture de forage - Google Patents

Centreur embrayable en rotation notamment pour garniture de forage Download PDF

Info

Publication number
EP0323772A1
EP0323772A1 EP88403113A EP88403113A EP0323772A1 EP 0323772 A1 EP0323772 A1 EP 0323772A1 EP 88403113 A EP88403113 A EP 88403113A EP 88403113 A EP88403113 A EP 88403113A EP 0323772 A1 EP0323772 A1 EP 0323772A1
Authority
EP
European Patent Office
Prior art keywords
clutch
rotation
discs
centering
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88403113A
Other languages
German (de)
English (en)
Other versions
EP0323772B1 (fr
Inventor
Benoît Amaudric du Chaffaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0323772A1 publication Critical patent/EP0323772A1/fr
Application granted granted Critical
Publication of EP0323772B1 publication Critical patent/EP0323772B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1057Centralising devices with rollers or with a relatively rotating sleeve
    • E21B17/1064Pipes or rods with a relatively rotating sleeve

Definitions

  • the present invention relates to a centering device which can be used in particular for centering in a well a drill string consisting of a drill bit and drill collars which surmount it.
  • the transverse force applied to the rods is in principle zero, if one neglects that due to the buckling of the drill collars, as well as the dynamic effects due to the eccentricities, even weak. In general there is no preferred direction for these possible lateral forces and it can be considered that they cancel out overall, at least for their effect on the deflection.
  • the body of the rod bores its own housing in which the larger diameter equipment located below (stabilizers, tool, etc.) cannot pass during the ascent operation.
  • the keyhole designated by the term “key-seat” which also occurs in the upper part of the lining where these are the connector connectors, or in term “tool” -joints ", which jam.
  • the blades are generally constituted by rubber pads secured to a jacket of the same material in which the lining can rotate freely. Lubrication is ensured by mud (and spoil ).
  • the longitudinal translation of the liner on the body is possible between two annular stops, the lower stop being provided with teeth intended to block the rotation if necessary (over-drilling or jamming during the ascent).
  • it seems that the use of these tools is not very widespread, probably because of their short lifespan.
  • Such a device supposes the complete stop of rotation before engaging the teeth, failing which, it is subjected to strong mechanical stresses which are always harmful.
  • the present invention provides a centering device which does not generally rotate with the rods, therefore capable of ensuring effective centering, and which nevertheless spares the possibility of reaming, by driving the blades in rotation, but limiting it to the only circumstances where this is really necessary, that is to say the jamming of the drill string in the longitudinal direction.
  • the device according to the invention avoids the drawbacks mentioned above.
  • the present invention relates to a device comprising at least one centering member relative to which said lining can rotate around its axis.
  • This device is characterized in particular in that it comprises means for driving said member in rotation, these means comprising a friction clutch.
  • This clutch may in particular be a disc, cone or drum clutch.
  • This clutch may include several discs or cones, some of which will be integral in rotation with said centering member and others with said lining, these discs or cones being nested one inside the other.
  • the device according to the invention may include elastic means for positioning the different discs relative to one another.
  • the device according to the invention may include dog clutch means.
  • the device according to the invention may include means for controlling the progressive drive means in rotation, these control means being actuated from a certain value, threshold of the difference between the axial force to which said subject is subjected. lining and the one to which said member is subjected.
  • control means may include return means such as springs.
  • the control means of said drive means may be assisted by a pressurized fluid.
  • control means can be mixed hydraulic and mechanical.
  • FIG. 4 illustrates an embodiment of a device according to the invention.
  • the centering device 1 comprises a certain number of straight blades 2, that is to say parallel to the axis 3 of the rods, or helical blades 4 (cf. fig. 2), similar to those which equip conventional stabilizers and which are inscribed in a volume of revolution whose maximum diameter is equal to or slightly less than that of the borehole.
  • Their ends 5 are profiled in the form of pads, or bevelled, so as to facilitate their longitudinal sliding on the walls of the well.
  • These blades 2 are mounted on a cylindrical jacket 6 inside which the tubular body 7 of the device can rotate freely, at least as long as the longitudinal friction of the blades against the walls 8 (cf. fig. 2) of the hole remains limited.
  • the rotation of the tubular body 7 in the jacket 6 carrying the blades, or centralizing members, is facilitated by the presence of bearings 9, 10 and stops 11, 12 with rollers, rollers, needles or balls, lubricated by a suitable fluid (oil or grease) contained in a sealed manner in the space 13 between the jacket 6 and the body 7.
  • bearings and stops are designed to allow the translation of the jacket on the body without preventing rotation.
  • a device for balancing the pressures between the lubricant and the drilling fluid present outside the jacket 6 completes the seal by limiting the pressure differences at the joints and by allowing variations in the volume of the lubricant with the temperature. .
  • Such a device can be a membrane or piston, as shown in FIG. 10 under the reference 14.
  • This device 14 comprises a piston 15 which slides in a cylinder 16. The stroke of the piston is limited by two stops 17 and 18.
  • One face 19 of the piston 15 is in contact with the drilling fluid, the other face 20 is in contact with the lubrication fluid.
  • This pressure balancing device can be modified by inserting between the piston 15 and the stopper 18 a helical spring in compression which will maintain a slight overpressure between the lubricant and the mud outside, so as to protect the seals from sealing against any invasion of mud.
  • the rotary drive of the blades occurs as soon as their longitudinal friction against the walls of the hole, in one direction or the other, causes by relative axial displacement of the tubular body 7 in the jacket 6 a sufficient compression of one of the two return springs 21 or 22 ( Figure 4). Due to the approximation of the clutch stop 25 secured to the tubular body 7 and the clutch stop 26 or 27 respectively secured to the jacket 6, the associated series of brake discs 23 and 24 respectively is then tightened, gradually causing the rotation of the blades 2. This rotation of the blades will be done initially with sliding of the clutch discs. If during this phase the blades have released the obstruction which is at the origin of the longitudinal friction, then this ceases and the system returns to its equilibrium position due to the action of the return springs 21 and 22 .
  • the references 28 and 29 in FIG. 4 respectively designate support stops or more simply the supports of the springs 21 and 22, these supports being integral with the tubular body 7.
  • the other supports are integral with the cylindrical jacket 6.
  • the supports are made on rotating support stops referenced 11 and 12 respectively in FIG. 4.
  • the progressiveness of the transmission of the torque by the discs can be favored by the presence of a lubricating fluid
  • FIG. 5 represents a centering device equipped with dogs.
  • references 30 and 31 designate two series of dog dogs which cooperate with one another to form a first pair of dog dogs.
  • References 32 and 33 denote two other series of dog dogs which cooperate with each other to form a second pair of dog dogs.
  • Each of the other series 31 and 33 respectively of each of the pairs of dogs is secured to a support stop (stops 34 and 35 respectively) which is itself secured in rotation to the jacket 6.
  • the stops carrying dogs and which are integral in rotation with the shirt 6 can move in the direction of the axis of the shirt.
  • Return springs 36 and 37 control the pressure exerted on the clutch discs and do not allow clutching unless a predetermined value of this pressure is exceeded.
  • the different discs can be isolated from each other by leaf springs, such as those shown in FIG. 6 and which carry the references 38 and 39.
  • the leaf springs 38 separate the discs 40 integral in rotation with the tubular body 41 and the leaf springs 39 separate the discs 42 integral in rotation with the jacket 43.
  • the discs 40 and 42 are respectively integral in rotation with the tubular body 41 and the jacket 43 by grooves 44 and 45 respectively.
  • the sealed space 13 may be limited by seals 49 fixed relative to the tubular body and which cooperate with cylindrical seats 50 integral with the jacket. Of course the size of the seats is sufficient to allow the shirt to perform extreme strokes without interrupting the sealing function.
  • the purpose of the braking discs is to synchronize the respective rotational speeds of the body, which can rotate for example at 150 revolutions / minute, and of the blades 2, which are in principle stationary, before the dogs 30, 31 or 32 engage. , 33. They are movable in axial translation and secured in rotation with the body or the jacket, by means of lugs 51 which are positioned in grooves 45 hollowed out for this purpose (cf. FIG. 6).
  • This function can be performed by any other suitable device, friction cones for example, provided however that the transmission of the torque to the blades is sufficiently progressive and that it does not produce excessive wear or overheating.
  • the aim is to drive the blades if necessary with a sufficiently slow rotation to be able to free the centering device with the minimum erosion of the wall of the hole.
  • FIG. 7 represents a device according to the invention which comprises a set of clutch discs 53 and a clutch system or pair of clutch dogs 54.
  • the clutch of the rotation is produced, for example, when the lining 52 rises, in the event of jamming in traction by landslide 56 of the walls above the centralizer (case of FIG. 9), or else when descending, if the hole 57 has narrowed, for example due to significant filtration deposits 58, or even in drilling if the blades 2 penetrate deeply into excessively soft walls (case of FIG. 8).
  • the centering device then temporarily turns into a reamer and is quickly released by rotation to resume its primary function (see fig. 4, 5, 7 or 10).
  • the jacket 6 carrying the blades 2 is held in the middle position by the two return springs 21 and 22 with sufficient clearance in each of the two directions to avoid inadvertent engagement of the rotation by possible vibrations. packing.
  • the stiffness of the springs will be adapted to the composition of the drill string. In particular, it will be important to avoid that all the centralizers employed can support too much of the weight on the tool without starting to rotate, which would happen with springs that are too stiff. Conversely, too soft springs would imply permanent boring and centering would quickly be ineffective.
  • the entire device is sized to withstand the forces and to axial and lateral shocks normally applied to the drill string where it is inserted.
  • the tool body may have the same mechanical characteristics as the rods or drill collars between which it is placed. Its internal diameter, if it must be different from that of neighboring rods, will not create excessive pressure drop in the flow of drilling fluid.
  • the connection with the neighboring rods can be ensured by suitable threads and sealing surfaces.
  • FIG. 10 represents a particularly interesting embodiment, according to which there are two pairs of dogs 59 and 60 intended respectively for the two directions of axial friction of the centering device in the well.
  • the sealing of the space 62 delimited by the outer wall of the tubular body 63 and the jacket 6 is done by seals 65 which cooperate directly with a seat 66 constituted by the outer surface of a cylinder secured to the tubular body, while in the embodiment of FIG. 5 the seal 49 cooperates with the outer surface of a cylinder secured to the jacket 6.
  • the springs 67 control the compression pressure on the discs, while the springs 68 position the jacket relative to the tubular body in the absence of axial friction force.
  • the hooks 69 limit the travel of the stops 70 integral in rotation with the jacket.
  • the plug 71 makes it possible to empty or fill the space 62 with a lubricating fluid the bearings 72 and 73 and the discs 61.
  • the engagement centralizer achieves a progressive rotation of the blades and triggered only by a longitudinal friction of the device on the wall of the hole. This friction being ill-defined, it is conceivable that under particular operating conditions, the machine remains for significant periods in an intermediate position where the clutch of the rotation is not yet achieved, but where the friction surfaces undergo already friction generating heat and wear, which can be harmful in the long run.
  • the rotation of the body 74 in the jacket 75 carrying the blades 76 is used to actuate, by means of a gear speed multiplier 77, an oil micro-pump 78 integral with the tubular body 74.
  • This micro-pump fills a chamber 79 at high pressure and with variable volume of oil.
  • the pressure in this chamber is maintained at a predetermined value by a non-return device 80 and by a calibrated valve 81 which bypasses the flow rate of the pump once the selected pressure is reached.
  • the longitudinal displacement of the jacket 75 relative to the body 74 is always controlled by return springs 82 and 83 which cooperate with axial stops 84, 85 and 86 some of which may be rotating, this is the case of the stops 85 and 86 .
  • a threshold value of the abovementioned longitudinal displacement is fixed by the geometrical characteristics of a hydraulic open-close system with free tilting, or slide valve 87, which, once reached the displacement threshold, abruptly puts the chamber 79 at high pressure into communication with a set of jacks 88 pressing the clutch surfaces 89 and 90.
  • a drum clutch In the case of FIG. 11, a drum clutch.
  • the clutch surface 90 is integral in rotation with the jacket 75, but movable in axial translation. This is obtained by the use of a sleeve 96 comprising grooves 97 which cooperate with grooves 98 arranged in the jacket 75. Springs 99 and 100 make it possible to maintain the sleeve 96 in an intermediate position in the absence of clutch .
  • the slide valve 87 is controlled by an arm 91 comprising a roller wheel 92 which cooperates with a groove 93.
  • a displacement axial of the jacket 75 relative to the body 74 from the equilibrium position shown in FIG. 11 causes the arm 91 to retract into the slide valve 87 and causes the actuators 88 to be activated.
  • the duration of the clutch slip period 89, 90 is thus reduced to a minimum which only depends on the filling time of the cylinders 88.
  • the contact pressure of the clutch surfaces 89 and 90 is fixed and depends only on of the valve 80 calibration.
  • the slide valve 87 opens the clutch cylinders 88 on the annular space 94, thus allowing disengagement, and closes the high pressure chamber 79 which can therefore be recharged by the rotation of the body in the jacket for a next sequence.
  • the fluid supply to the pump 78 takes place from the annular space 94.
  • FIG. 12 schematically shows a device comprising a cone clutch 95.
  • the centering device proposed in the present invention can be considered as a "self-supporting" rotation bearing by the lining 52, its role is to cancel the tangential component of the contact reactions of the rods and the wall of the hole, whatever the speed of rotation of the gasket, which makes it possible to considerably reduce the losses in torque and the violent transverse oscillations.
  • the longitudinal friction remains limited, it is likely that the arrangement of a few of these centralizers, just above the drill bit and in the last lengths of the lining, will provide a smooth drilling, therefore more efficient, a better calibrated hole and a more regular trajectory than with conventional stabilizers.
  • the rotating clutch of the centering device will gradually bring the lining and the centering device back to the conventional bore configuration.
  • the blades are spiraled to the right, so, on the one hand, that the support on the wall is distributed over a greater part of the circumference, and, on the other hand, that all beginning of rotation of the blades during drilling makes them advance by slow screwing before starting to erode the wall.
  • the profile of the blades will preferably be as they are written in a sphere or an ovoid, so that the angular difference between the axis of the well and the axis rods, introduced for example by an elbow, is produced without parasitic bending moment. This is the case of the blades 55 shown in FIG. 3.
  • the blades will be inscribed in a relatively long cylinder, producing an embedding which will limit the bending, as is the case of the blades 4 of FIG. 2.
  • the centering device therefore naturally finds its place in the bottom assembly used for inclined drilling, where one needs to create punctual supports of the drill-rods on the wall to maintain or modify the trajectory, without these supports causing excessive losses in torque or repeated shocks which translate with conventional stabilizers by uncontrollable parasitic enlargements and deviations, poor advancement and abnormal wear of the equipment. In vertical drilling, it will limit losses of rotational power and undesirable deviations, by achieving a real stabilization of the bottom assembly.
  • the drill mounts would then be lighter but more numerous, and ultimately would disappear completely in favor of simple stems.
  • the advantage of this arrangement is to limit the weight of the drill string, therefore to achieve a saving in lifting power, and to reduce the diameters at the bottom of the hole, which among other advantages would allow greater speed of maneuver vis- opposite pistoning.
  • the centralizers can also be used in the upper parts (stressed in tension) of a drilling rig for limit the friction of the rods on the walls, which is particularly important in the curved parts of the well (build-up), to avoid the formation of "key-seats", and in the tubed parts, sensitive to abrasion of rod seals (tool-seals).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

La présente invention concerne un dispositif centreur (1) de garniture, notamment de forage, comportant au moins un organe centreur (6,2) relativement auquel ladite garniture peut tourner. Ce dispositif se caractérise en ce qu'il comporte des moyens progressifs d'entrainement en rotation (23, 24) de cet organe (6,2) avec ladite garniture.

Description

  • La présente invention concerne un dispositif centreur utilisable notamment pour centrer dans un puits une garniture de forage constituée d'un trépan et des masses-tiges qui le surmontent.
  • Le problème du centrage des garnitures de forage a été résolu jusqu'à présent en disposant dans l'assemblage de fond un certain nombre de "stabilisateurs", ou centreurs, à lames droites ou hélicoïdales qui assurent effectivement un certain centrage des tiges de forage, mais au prix d'un frottement permanent contre la paroi du trou, puisqu'ils sont solidaires en rotation de la garniture. Ce frottement se traduit en terrain tendre par un élargissement du trou, au niveau des stabilisateurs, et cet élargissement annule plus ou moins rapidement la fonction de centrage recherchée. En effet, quand un stabilisateur a creusé son logement, rien n'empèche plus les tiges de venir frotter contre la paroi non encore élargie (voir fig. 1). En forage vertical l'élargissement peut ne pas être très important. En effet l'effort transversal appliqué aux tiges est en principe nul, si l'on néglige celui dû au flambage des masse-tiges, ainsi que les effets dynamiques dus aux excentrements, même faibles. Il n'y a pas en général de direction privilégiée pour ces efforts latéraux éventuels et on peut considérer qu'il s'annulent globalement, du moins pour leur effet sur la déviation.
  • En forage dévié l'élargissement ne peut plus être négligé, puisque le terrain supporte une partie du poids de la garniture et même la totalité dans un puits horizontal. Il en résulte une ovalisation systématique du trou, une tendance à dévier, en général à droite, compte tenu du sens habituel de rotation du train de tiges, à cause de la réaction au roulement de la garniture sur la paroi, et une usure des tiges qui peut être assez rapide en terrain abrasif.
  • En cas de courbure suffisamment sévère, le corps de la tige alèse son propre logement dans lequel ne pourront pas passer les équipements de diamètre plus important situés en dessous (stabilisateurs, outil,...) lors de la manoeuvre de remontée. C'est le phénomène dit "du trou de serrure" désigné par le terme anglo-saxon "key-seat" qui survient également dans la partie supérieure de la garniture où ce sont les connecteurs de liaison, ou en terme anglo-saxon "tool-joints", qui coincent.
  • On voit donc à la description de ces phénomènes bien connus des foreurs que les frottements du train de tiges sur les parois du trou sont difficiles à contrôler, et souvent à l'origine d'incidents coûteux. Ils consomment une part importante de la puissance mécanique transmise au train de tiges par la table de rotation (de l'ordre de 75 % à 2000 m dans un trou de diamètre 12"1/4 soit 31 cm incliné de 20 degrés par rapport à la verticale) et ils rendent extrèmement délicat le maintien de la trajectoire souhaitée.
  • Les réponses contradictoires apportées à ce problème par les constructeurs de matériel de forage traduisent d'ailleurs bien les difficultés rencontrées : d'un coté, on préconise la multiplication des stabilisateurs, et on recommande également l'emploi d'aléseurs, comme s'il fallait éroder rapidement les parois du trou pour atteindre plus vite un certain "profil d'équilibre", et de l'autre, on polit les lames des stabilisateurs pour ne pas trop élargir le trou et diminuer la perte de couple.
  • Une solution originale est le stabilisateur ne tournant pas avec les tiges. Les lames sont généralement constituées par des patins de caoutchouc solidaires d'une chemise du même matériau dans laquelle la garniture peut tourner librement. La lubrification est assurée par la boue (et les déblais...). La translation longitudinale de la chemise sur le corps est possible entre deux butées annulaires, la butée inférieure étant munie de dents destinées à bloquer la rotation en cas de besoin (surforage ou coincement à la remontée). Il semble cependant que l'usage de ces outils ne soit pas très répandu, probablement à cause de leur faible durée de vie.
  • Le même principe est utilisé pour certains aléseurs de "key-seat" où la chemise est métallique et munie de lames agressives, en général hélicoïdales. La butée supérieure est alors munie d'une came permettant d'effectuer un battage longitudinal.
  • Le brevet US-A-2.815.930 décrit un aléseur de "Key-seat" qui est rendu solidaire en rotation du train de tiges dans le cas d'un déplacement axial entre les lames de l'aléseur et le train de tiges du fait d'une obstruction. Cet entraînement est réalisé par l'engagement mutuel de dents solidaires en rotation des lames de l'aléseur et de dents solidaires en rotation du train de tiges.
  • Un tel dispositif suppose l'arrêt complet de la rotation avant d'engager les dents, faute de quoi, il est soumis à de fortes sollicitations mécaniques toujours néfastes.
  • La présente invention propose un centreur ne tournant pas en général avec les tiges, donc à même d'assurer un centrage efficace, et qui ménage cependant la possibilité d'alésage, par entrainement des lames en rotation, mais en la limitant aux seules circonstances où cela est vraiment nécessaire, c'est-à-dire aux coincements de la garniture de forage dans le sens longitudinal. Le dispositif selon l'invention évite les inconvénients mentionnés précédemment.
  • Ainsi la présente invention concerne un dispositif comportant au moins un organe centreur relativement auquel ladite garniture peut tourner autour de son axe. Ce dispositif se caractérise notamment en ce qu'il comporte des moyens d'entraînement en rotation dudit organe, ces moyens comportant un embrayage à friction.
  • Cet embrayage pourra notamment être un embrayage à disques, à cones, ou à tambour.
  • Cet embrayage pourra comporter plusieurs disques ou cônes, dont certains seront solidaires en rotation dudit organe centreur et d'autres de ladite garniture, ces disques ou cônes étant imbriqués les uns dans les autres.
  • Le dispositif selon l'invention pourra comporter des moyens élastiques de positionnement des différents disques les uns relativement aux autres.
  • Le dispositif selon l'invention pourra comporter des moyens de crabotage.
  • De même le dispositif selon l'invention pourra comporter des moyens de commande des moyens d'entraînement progressif en rotation, ces moyens de commande étant actionnés à partir d'une certaine valeur, seuil de la différence entre l'effort axial auquel est soumis ladite garniture et celui auquel est soumis ledit organe.
  • Ces moyens de commande pourront comporter des moyens de rappel tels des ressorts.
  • Les moyens de commande desdits moyens d'entraînement pourront être assisté par un fluide sous pression.
  • Ces moyens de commande pourront être mixtes hydrauliques, et mécaniques.
  • La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'exemples particuliers illustrés par les figures ci-jointes, parmi lesquelles :
    • - la figure 1, déjà mentionnée, illustre les problèmes des centreurs solidaires en rotation du train de tiges,
    • - la figure 2 montre un exemple d'utilisation de centreurs selon la présente invention, où les tiges sont entrainées en rotation depuis la surface
    • - La figure 3 montre un exemple d'utilisation de centreurs selon la présente invention, où l'assemblage de fond comporte un raccord coudé et un moteur de fond, et où seules les tiges situées sous le moteur de fond sont entrainées en rotation (cas des forages déviés).
    • - la figure 4 montre un mode de réalisation d'un centreur comportant deux systèmes d'embrayage,
    • - la figure 5 illustre le cas d'un centreur comportant deux systèmes d'embrayage et deux systèmes de crabotage,
    • - la figure 6 montre un détail de réalisation permettant le positionnement de différents disques d'embrayage,
    • - les figures 7 à 9 illustrent un autre mode de réalisation d'un centreur ainsi que son fonctionnement,
    • - la figure 10 montre un autre mode de réalisation comportant un embrayage à double effet.
    • - la figure 11 représente schématiquement un autre mode de réalisation dans lequel le système de commande de l'embrayage comporte un fluide sous pression, et
    • - la figure 12 représente schématiquement l'utilisation de cônes d'embrayage.
  • La figure 4 illustre un mode de réalisation d'un dispositif selon l'invention. Sur cette figure le centreur 1 comporte un certain nombre de lames droites 2, c'est-à-dire parallèles à l'axe 3 des tiges, ou hélicoïdales 4 (cf. fig. 2), semblables à celles qui équipent les stabilisateurs classiques et qui sont inscrites dans un volume de révolution dont le diamètre maximum est égal ou légèrement inférieur à celui du forage. Leurs extrémités 5 sont profilées en forme de patins, ou biseautées, de manière à faciliter leur glissement longitudinal sur les parois du puits. Ces lames 2 sont montées sur une chemise cylindrique 6 à l'intérieur de laquelle le corps tubulaire 7 de l'appareil peut tourner librement, du moins tant que le frottement longitudinal des lames contre les parois 8 (cf. fig. 2) du trou reste limité.
  • La rotation du corps tubulaire 7 dans la chemise 6 portant les lames, ou organes centreurs, est facilitée par la présence de paliers 9, 10 et butées 11, 12 à galets, rouleaux, aiguilles ou billes, lubrifiés par un fluide adéquat (huile ou graisse) contenu de manière étanche dans l'espace 13 compris entre la chemise 6 et le corps 7. Ces paliers et butées sont conçus pour permettre la translation de la chemise sur le corps sans empêcher la rotation. Un dispositif d'équilibrage des pressions entre le lubrifiant et le fluide de forage présent à l'extérieur de la chemise 6 complète l'étanchéité en limitant les écarts de pression au niveau des joints et en autorisant les variations de volume du lubrifiant avec la température. Un tel dispositif peut être à membrane ou à piston, comme représenté sur la figure 10 sous la référence 14. Ce dispositif 14 comporte un piston 15 qui coulisse dans un cylindre 16. La course du piston est limitée par deux butées 17 et 18. Une face 19 du piston 15 est en contact avec le fluide de forage, l'autre face 20 est en contact avec le fluide de lubrification.
  • Ce dispositif d'équilibrage des pressions pourra être modifié en intercalant entre le piston 15 et la butée 18 un ressort hélicoïdal en compression qui permettra de maintenir une légère surpression entre le lubrifiant et la boue à l'extérieur, de manière à protéger les joints d'étanchéité contre toute invasion de boue.
  • L'entraînement en rotation des lames survient dés que leur frottement longitudinal contre les parois du trou, dans un sens ou dans l'autre, provoque par déplacement axial relatif du corps tubulaire 7 dans la chemise 6 une compression suffisante de l'un des deux ressorts de rappel 21 ou 22 (figure 4). Du fait du rapprochement de la butée d'embrayage 25 solidaire du corps tubulaire 7 et de la butée d'embrayage 26 ou 27 respectivement solidaires de la chemise 6, la série associée de disques de freinage 23 et 24 respectivement est alors resserrée, entraînant progressivement la rotation des lames 2. Cette rotation des lames se fera dans un premier temps avec glissement des disques d'embrayage. Si au cours de cette phase les lames ont dégagé l'obstruction qui est à l'origine du frottement longitudinal, alors celui-ci cesse et le système retrouve sa position d'équilibre du fait de l'action des ressorts de rappel 21 et 22.
  • Si l'obstruction persiste et présente une forte résistance à l'avancement du centreur, malgré la mise en rotation des lames 2, alors on obtient un serrage plus intime des disques et ainsi un couple plus important est transmis à travers les disques. Pour assurer un passage de couple plus important que celui autorisé par les disques, il est possible de prévoir des crabots, comme cela est représenté dans le mode de réalisation de la figure 5.
  • Les références 28 et 29 sur la figure 4 désignent respectivement des butées d'appui ou plus simplement les appuis des ressorts 21 et 22, ces appuis étant solidaires du corps tubulaire 7.
  • Ces ressorts servent à maintenir la chemise cylindrique 6 dans une position centrale où les disques ne sont pas sollicités.
  • Les autres appuis sont solidaires de la chemise cylindrique 6. Dans le cas représenté à la figure 4 les appuis se font sur des butées d'appui tournantes référencées respectivement 11 et 12 sur la figure 4.
  • La progressivité de la transmission du couple par les disques pourra être favorisée par la présence d'un fluide lubrifiant
  • La figure 5 représente un centreur équipé de crabots.
  • A la partie supérieure de cette figure 5 les références 30 et 31 désignent deux séries de crabots qui coopèrent entre elles pour former une première paire de crabots.
  • Les références 32 et 33 désignent deux autres séries de crabots qui coopèrent entre elles pour former une deuxième paire de crabots.
  • Pour chacune de ces paires de crabots il y a une série de crabots (séries 30 et 32 respectivement) qui est solidaire d'une butée d'appui (butées 28 et 29 respectivement) qui est elle-même solidaire en rotation du corps tubulaire 7.
  • Chacune des autres séries 31 et 33 respectivement de chacune des paires de crabots est solidaire d'une butée d'appui (butées 34 et 35 respectivement) elle-même solidaire en rotation de la chemise 6.
  • Afin que le crabotage ait lieu après que les disques d'embrayage soient en contact intime, les butées portant des crabots et qui sont solidaires en rotation de la chemise 6 peuvent se déplacer selon la direction de l'axe de la chemise.
  • Ceci peut être réalisé par un système de cannelures. Des ressorts de rappels 36 et 37 contrôlent la pression exercée sur les disques d'embrayage et n'autorisent le crabotage que lorsqu'une valeur prédéterminée de cette pression est dépassée.
  • Il est bien évident que la distance qui sépare les deux séries de crabots d'une même paire 30, 31 ou 32, 33 est supérieure à la somme des jeux qui séparent les différents disques d'une même série de disques 23 et 24 respectivement.
  • Afin que les disques ne frottent pas les uns les autres en l'absence d'effort axial sur les lames, les différents disques peuvent être isolés les uns des autres par des ressorts à lames, tels ceux représentés à la figure 6 et qui portent les références 38 et 39.
  • Les ressorts à lames 38 écartent les disques 40 solidaires en rotation du corps tubulaire 41 et les ressorts à lames 39 écartent les disques 42 solidaires en rotation de la chemise 43.
  • Les disques 40 et 42 sont respectivement solidaires en rotation avec le corps tubulaire 41 et la chemise 43 par des cannelures 44 et 45 respectivement.
  • Bien entendu, l'ensemble des disques solidaires en rotation du corps tubulaire et de ceux solidaires en rotation de la chemise et qui sont intercalés les uns par rapport aux autres, peuvent être maintenus avec un jeu entre eux grâce aux ressorts à lames 38 et 39, ainsi qu'à des ressorts à lames supplémentaires qui permettent d'obtenir une position de référence. Dans le cas représenté à la figure 5, ces ressorts à lames supplémentaires peuvent être placés d'une part entre la butée centrale 25 et les disques les plus proches de cette butée et qui sont solidaires en rotation du corps tubulaire 7 et d'autre part entre les butées 28 et 29 et les disques solidaires en rotation du corps tubulaire 7 qui sont respectivement les plus proches de chacune de ces butées. Les disques d'extrémité solidaires en rotation de la chemise peuvent être positionnés par des ressorts à lames placés entre ces disques et les butées 34 et 35 respectivement solidaires de la chemise. Au centre, au voisinage de la butée centrale les disques 46 et 47 solidaires en rotation de la chemise 6 peuvent être maintenus par des ressorts à lames fixés à la chemise 6 elle-même.
  • L'espace étanche 13 peut être limité par des joints d'étanchéité 49 fixés par rapport au corps tubulaire et qui coopèrent avec des sièges cylindriques 50 solidaires de la chemise. Bien entendu la taille des sièges est suffisante pour permettre à la chemise d'effectuer des courses extrêmes sans pour autant interrompre la fonction d'étanchéité.
  • Les disques de freinage ont pour rôle de synchroniser les vitesses de rotation respectives du corps, qui peut tourner par exemple à 150 tours/minute, et des lames 2, qui sont en principe immobiles, avant l'enclenchement des crabots 30, 31 ou 32, 33. Ils sont mobiles en translation axiale et solidarisés en rotation avec le corps ou la chemise, au moyen d'ergots 51 venant se positionner dans des rainures 45 creusées à cet effet (cf. fig. 6). Cette fonction pourra être réalisée par tout autre dispositif approprié, cônes de friction par exemple, à la condition cependant que la transmission du couple de rotation aux lames soit suffisamment progressive et qu'elle ne produise pas d'usure ou d'échauffement excessifs. Le but poursuivi est d'entraîner les lames en cas de besoin avec une rotation suffisamment lente pour pouvoir dégager le centreur avec le minimum d'érosion de la paroi du trou.
  • Dans le cas de la figure 5 la synchronisation et l'enclenchement des crabots constituent un embrayage mécanique.
  • La figure 7 représente un dispositif selon l'invention qui comporte un ensemble de disques d'embrayage 53 et un système de crabotage ou paire de crabots 54.
  • Le mode de réalisation représenté à la figure 7 est tel que lorsque les butées 54a et 34a serrent les disques 53 les uns contre les autres, entraînant la rotation de la chemise 6, les deux séries de crabots des systèmes de crabotage 54 s'éloignent l'une de l'autre, et inversement, lorsque les deux séries de crabots s'approchent l'une de l'autre, les disques 53 ne sont plus serrés les uns contre les autres.
  • L'embrayage de la rotation est réalisé, par exemple, à la remontée de la garniture 52, en cas de coincement en traction par éboulement 56 des parois au-dessus du centreur (cas de la figure 9), ou bien à la descente, si le trou 57 s'est rétréci, par exemple du fait de dépôts importants de filtration 58, ou encore en forage si les lames 2 pénètrent profondément dans des parois trop tendres (cas de la figure 8). Le centreur se transforme alors momentanément en aléseur et se dégage rapidement par rotation pour reprendre sa fonction première (cf. fig. 4, 5, 7 ou 10).
  • En fonctionnement normal (forage), la chemise 6 portant les lames 2 est maintenue en position médiane par les deux ressorts de rappel 21 et 22 avec une garde suffisante dans chacune des deux directions pour éviter l'enclenchement intempestif de la rotation par les éventuelles vibrations axiales de la garniture. La raideur des ressorts sera adaptée à la composition du train de tiges. En particulier, il sera important d'éviter que l'ensemble des centreurs employés puisse supporter une part trop importante du poids sur l'outil sans se mettre en rotation, ce qui se produirait avec des ressorts trop raides. A l'inverse, des ressorts trop mous impliqueraient un alésage permanent et le centrage serait rapidement inefficace.
  • L'ensemble de l'appareil est dimensionné pour résister aux efforts et aux chocs axiaux et latéraux normalement appliqués à la garniture de forage à l'endroit où il est inséré.
  • Le corps de l'outil pourra avoir les mêmes caractéristiques mécaniques que les tiges ou masse-tiges entre lesquelles il est placé. Son diamètre intérieur, s'il doit être différent de celui des tiges voisines, ne créera pas de perte de charge excessive dans l'écoulement du fluide de forage. La connexion avec les tiges voisines pourra être assurée par des filetages et des portées d'étanchéité adaptés.
  • La figure 10 représente un mode de réalisation particulièrement intéressant, selon lequel il y a deux paires de crabots 59 et 60 destinées respectivement aux deux sens de frottement axial du centreur dans le puits.
  • Selon ce mode de réalisation il n'est nécessaire de disposer que d'un seul ensemble de disques d'embrayage qui est sollicité dans les deux sens de frottement axiaux du centreur dans le puits.
  • Ceci résulte essentiellement de la suppression de la butée centrale 25 (figure 5), qui peut être remplacée par un disque d'embrayage solidaire en rotation du corps tubulaire 7 et par le report des fonctions de cette butée de part et d'autre des disques d'embrayage sur les butées 25a et 25b (figure 10) solidaires en rotation du corps tubulaire 63, la disposition des paires de crabots et alors inversée.
  • Il est bien entendu que le mode de réalisation de la figure 10 ne permet pas d'avoir des embrayages de caractéristiques différentes selon le sens de l'effort de frottement axial, alors que cela est permis dans le mode de réalisation représenté à la figure 5.
  • Par ailleurs, dans le mode de réalisation de la figure 10, l'étanchéité de l'espace 62 délimité par la paroi extérieure du corps tubulaire 63 et la chemise 6 se fait par des joints d'étanchéité 65 qui coopèrent directement avec un siège 66 constitué par la surface extérieure d'un cylindre solidaire du corps tubulaire, alors que dans le mode de réalisation de la figure 5 le joint 49 coopère avec la surface extérieure d'un cylindre solidaire de la chemise 6.
  • Les ressorts 67 contrôlent la pression de compression sur les disques, alors que les ressorts 68 positionnent la chemise relativement au corps tubulaire en l'absence d'effort de frottement axial.
  • Les crochets 69 limitent la course des butées 70 solidaires en rotation de la chemise.
  • Le bouchon 71 permet de vider ou de remplir l'espace 62 d'un fluide lubrifiant les roulements 72 et 73 et les disques 61.
  • Le centreur embrayable, décrit dans les modes de réalisation précédents, réalise un entraînement de la rotation des lames progressif et déclenché uniquement par un frottement longitudinal de l'appareil sur la paroi du trou. Ce frottement étant mal défini, il est envisageable que dans des conditions opératoires particulières, l'engin reste pendant des périodes non négligeables dans une position intermédiaire où l'embrayage de la rotation n'est pas encore réalisé, mais où les surfaces de friction subissent déjà un frottement générateur d'échauffement et d'usure, qui peut être dommageable à la longue.
  • Il semble donc important de minimiser la durée de cette position intermédiaire, pour pouvoir garantir suffisamment longtemps le bon fonctionnement de l'appareil.
  • Ceci peut être réalisé par exemple en remplaçant la commande purement mécanique de l'embrayage par une commande mixte, hydraulique et mécanique, telle que décrite dans la figure 11.
  • Dans cette nouvelle configuration, la rotation du corps 74 dans la chemise 75 portant les lames 76 est utilisée pour actionner, par l'intermédiaire d'un multiplicateur de vitesse à engrenage 77, une micro-pompe à huile 78 solidaire du corps tubulaire 74. Cette micro-­pompe remplit d'huile une chambre 79 à haute pression et à volume variable. La pression dans cette chambre est maintenue à une valeur prédéterminée par un dispositif anti-retour 80 et par une soupape tarée 81 qui dérive le débit de la pompe une fois atteinte la pression choisie.
  • Le déplacement longitudinal de la chemise 75 par rapport au corps 74 est toujours contrôlé par des ressorts de rappel 82 et 83 qui coopèrent avec des butées axiales 84, 85 et 86 dont certaines peuvent être tournantes, c'est le cas des butées 85 et 86.
  • Dans ce mode de réalisation, aucune approche des surfaces de friction constituant l'embrayage n'est possible avant d'avoir atteint une valeur seuil du déplacement longitudinal précité. Cette valeur seuil est fixée par les caractéristiques géométriques d'un système d'ouverture-fermeture hydraulique à bascule franche, ou vanne tiroir 87, qui, une fois atteint le seuil de déplacement, met brusquement en communication la chambre 79 à haute pression avec un ensemble de vérins 88 pressant les surfaces d'embrayage 89 et 90. Il s'agit dans le cas de la figure 11 d'un embrayage à tambour.
  • La surface d'embrayage 90 est solidaire en rotation de la chemise 75, mais mobile en translation axiale. Ceci est obtenu par l'utilisation d'un manchon 96 comportant des cannelures 97 qui coopèrent avec des rainures 98 aménagées dans la chemise 75. Des ressorts 99 et 100 permettent de maintenir le manchon 96 dans une position intermédiaire en l'absence d'embrayage.
  • La commande de la vanne à tiroir 87 se fait par un bras 91 comportant une roue à galet 92 qui coopère avec une gorge 93. Un déplacement axial de la chemise 75 relative au corps 74 à partir de la position d'équilibre représentée à la figure 11 provoque la rentrée du bras 91 dans la vanne à tiroir 87 et entraîne l'activation des vérins 88.
  • La durée de la période de glissement de l'embrayage 89, 90 est ainsi réduite à un minimum qui ne dépend que du temps de remplissage des vérins 88. La pression de contact des surfaces d'embrayage 89 et 90 est fixe et ne dépend que du tarage de la soupape 80.
  • Quand disparait le frottement longitudinal des lames 76 qui a provoqué l'embrayage, les ressorts de rappel 82 et 83 ramènent la chemise 75 à sa position centrale qui est représentée à la figure 11, la vanne tiroir 87 ouvre les vérins d'embrayage 88 sur l'espace annulaire 94, permettant ainsi le débrayage, et referme la chambre à haute pression 79 qui peut donc être rechargée par la rotation du corps dans la chemise pour une prochaine séquence.
  • L'alimentation en fluide de la pompe 78 se fait à partir de l'espace annulaire 94.
  • On ne sortira pas du cadre de la présente invention en inversant l'implantation du multiplicateur 77, de la pompe 78, de la chambre à haute pression 79 du tiroir 87 de la gorge 93 et des vérins 88 et des surfaces d'appuis 89 et 90 de l'embrayage entre le corps 74 et la chemise 75.
  • La figure 12 montre schématiquement un dispositif comportant un embrayage à cônes 95.
  • Le fonctionnement de ce dernier est le même que celui des embrayages à disque.
  • Le centreur proposé dans la présente invention peut être considéré comme un palier de rotation "autoporté" par la garniture 52, son rôle est d'annuler la composante tangentielle des réactions de contact des tiges et de la paroi du trou, quelle que soit la vitesse de rotation de la garniture, ce qui permet de réduire considérablement les pertes en couple et les violentes oscillations transversales. Dans la mesure où les frottements longitudinaux restent limités, il est vraisemblable que la disposition de quelques uns de ces centreurs, juste au-dessus du trépan et dans les dernières longueurs de la garniture, procurera un forage sans à-coups, donc plus performant, un trou mieux calibré et une trajectoire plus régulière qu'avec des stabilisateurs classiques. Si les frottements longitudinaux sont importants, par exemple en terrain trop tendre où les lames pénètreront profondément dans les parois, ou si le le dépot de solides (désigné en terme anglo-saxon par 'cake') sur les parois, dû à la filtration de la boue dans le terrain, est épais, l'embrayage en rotation du centreur ramènera progressivement la garniture et le centreur à la configuration classique d'alésage. D'une manière générale, il sera préférable que les lames soient spiralées à droite, afin, d'une part, que l'appui sur la paroi soit réparti sur une plus grande partie de circonférence, et, d'autre part, que tout début de rotation des lames en cours de forage les fasse avancer par vissage lent avant de commencer à éroder la paroi.
  • Si la trajectoire doit être courbée comme représenté à la figure 3, le profil des lames sera de préférence tel qu'elles soient inscrites dans une sphère ou un ovoïde, de manière que l'écart angulaire entre l'axe du puits et l'axe des tiges, introduit par exemple par un raccord coudé, soit réalisé sans moment fléchissant parasite. Ceci est le cas des lames 55 représentée à la figure 3.
  • Pour une trajectoire rectiligne, au contraire, les lames seront inscrites dans un cylindre relativement long, réalisant un encastrement qui limitera la flexion, comme c'est le cas des lames 4 de la figure 2.
  • Le centreur trouve donc naturellement sa place dans l'assemblage de fond utilisé pour des forages inclinés, où l'on a besoin de créer des appuis ponctuels des masse-tiges sur la paroi pour maintenir ou modifier la trajectoire, sans que ces appuis ne provoquent des pertes excessives en couple ou des chocs répétés qui se traduisent avec les stabilisateurs classiques par des élargissements et des déviations parasites incontrôlables, un avancement faible et une usure anormale des équipements. Dans les forages verticaux, il limitera les pertes de puissance de rotation et les déviations indésirables, en réalisant une véritable stabilisation de l'assemblage de fond.
  • D'autre part, si les formations traversées s'y prètent (terrains durs), l'utilisation d'un grand nombre de ces centreurs devrait autoriser la mise en compression d'une longueur de garniture beaucoup plus importante que celle utilisée habituellement pour appliquer du poids sur l'outil.
  • Les masses-tiges seraient alors plus légères mais plus nombreuses, et à la limite disparaîtraient complètement au profit des simples tiges. L'intérêt de cette disposition est de limiter le poids du train de tiges, donc de réaliser une économie de puissance de levage, et de réduire les diamètres en fond de trou, ce qui entre autres avantages autoriserait une plus grande vitesse de manoeuvre vis-à-vis du pistonnage.
  • Enfin la réduction des pertes de couple et des chocs dans la garniture permettra d'employer plus efficacement les nouveaux outils dits "de coupe" comme ceux généralement désignés par les initiales P.D.C. (Polycristalline Diamond Cutters) qui nécessitent plus de couple pour un même poids que les tricônes classiques, mais dont l'utilisation est actuellement freinée par leur fragilité aux chocs.
  • Les centreurs pourront également être employés dans les parties supérieures (sollicitées en traction) d'une garniture le forage pour limiter le frottement des tiges sur les parois, ce qui est particulièrement important dans les parties courbées du puits (build-up), pour éviter la formation de "key-seats'', et dans les parties tubées, sensibles à l'abrasion des joints de tiges (tool-joints).

Claims (12)

1. - Dispositif centreur, utilisable notamment pour le centrage d'une garniture de forage, comportant au moins un organe centreur relativement auquel ladite garniture peut tourner, caracterisé en ce qu'il comporte des moyens d'entraînement en rotation (23, 24, 53, 61) dudit organe (6), ces moyens comportant un embrayage (23, 24, 53, 61) à friction.
2. - Dispositif selon la revendication 1, caractérisé en ce que ledit embrayage est un embrayage à disque (23, 24, 53, 61) à cône ou à tambour.
3. - Dispositif selon la revendication 2, caractérisé en ce que ledit embrayage comporte plusieurs disques (23, 24, 53, 61) ou cônes, dont certains sont solidaires en rotation dudit organe centreur (6) et d'autres sont solidaires en rotation de ladite garniture, ces disques ou cônes étant imbriqués les uns dans les autres.
4. - Dispositif selon la revendication 3, caractérisé en ce qu'il comporte des moyen élastiques (38, 39) de positionnement des différents disques les uns relativement aus autres.
5. - Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte des moyens de crabotage (30, 31, 32, 33, 54, 59, 60).
6. - Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens (21, 22, 68) de commande desdits moyens d'entrainement en rotation, lesdits moyens de commande étant actionnés à partir d'un certain seuil de valeur de la différence entre l'effort axial auquel est soumis ladite garniture (52) et celui auquel est soumis ledit organe (6).
7. - Dispositif selon la revendication 6, caractérisé en ce que lesdits moyens de commande comportent des moyens de rappel élastiques (21, 22, 68).
8. - Dispositif suivant la revendication 1, caractérisé en ce qu'il comporte des paliers et butées à galets, rouleaux, aiguilles ou billes.
9. - Dispositif suivant la revendication 8, caractérisé en ce que les dits paliers et butées sont lubrifiés par un fluide contenu de manière étanche entre ledit organe centreur et ladite garniture.
10. - Dispositif selon la revendication 3, caractérisé en ce que lesdits disques baignent dans un fluide lubrifiant qui facilité la progressivité dudit embrayage.
11. - Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens de commande desdits moyens d'entraînement en rotation, lesdits moyens de commande étant mixtes, hydrauliques et mécaniques.
12. - Dispositif selon la revendication 11, caractérisé en ce que lesdits moyens de commande mixtes comportent une pompe hydraulique (78), un multiplicateur (77), une chambre haute pression (79), une vanne tiroir (87) et des vérins (88).
EP88403113A 1987-12-23 1988-12-08 Centreur embrayable en rotation notamment pour garniture de forage Expired - Lifetime EP0323772B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8718088A FR2625253A1 (fr) 1987-12-23 1987-12-23 Centreur embrayable en rotation notamment pour garniture de forage
FR8718088 1987-12-23

Publications (2)

Publication Number Publication Date
EP0323772A1 true EP0323772A1 (fr) 1989-07-12
EP0323772B1 EP0323772B1 (fr) 1992-03-18

Family

ID=9358258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88403113A Expired - Lifetime EP0323772B1 (fr) 1987-12-23 1988-12-08 Centreur embrayable en rotation notamment pour garniture de forage

Country Status (5)

Country Link
US (1) US4989679A (fr)
EP (1) EP0323772B1 (fr)
DE (1) DE3869373D1 (fr)
FR (1) FR2625253A1 (fr)
NO (1) NO885690L (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8914882D0 (en) * 1989-06-29 1989-08-23 Red Baron Oil Tools Rental Drill string component
US5226493A (en) * 1992-06-05 1993-07-13 Dril-Quip, Inc. Well apparatus
GB0006218D0 (en) * 2000-03-16 2000-05-03 Rastegar Gholam H Torque reducing drillstring component
WO2001071149A2 (fr) * 2000-03-22 2001-09-27 Rotary Drilling Technology, Llc. Stabilisateur de trepan
US6622803B2 (en) 2000-03-22 2003-09-23 Rotary Drilling Technology, Llc Stabilizer for use in a drill string
CA2413539C (fr) * 2000-06-21 2009-01-13 Derek Frederick Herrera Centreur
FR2812338B1 (fr) * 2000-07-25 2002-11-08 Total Fina Elf S A Procede et dispositif de forage rotary d'un puits
CA2351978C (fr) * 2001-06-28 2006-03-14 Halliburton Energy Services, Inc. Controleur d'orientation de percage
FR2843418B1 (fr) * 2002-08-08 2005-12-16 Smf Internat Dispositif stabilisateur d'un train de tiges de forage rotatif a frottement reduit
GB0227630D0 (en) * 2002-11-27 2003-01-08 Smart Stabilizer Systems Ltd Steerable drill bit arrangement
NO346112B1 (en) 2008-08-29 2022-02-28 Statoil Petroleum As Drill pipe protector assembly
US8774697B2 (en) 2011-07-29 2014-07-08 Eastman Kodak Company Electrophotographic printer and transitional cleaning system
US20130319769A1 (en) * 2012-06-04 2013-12-05 Edward D. Scott Wellbore reaming tool having locking clutch for drill out after running wellbore tubulars
US9399894B2 (en) * 2013-03-14 2016-07-26 Premier Advanced Solution Technologies, Llc Friction reducing downhole assemblies
US10669788B2 (en) * 2015-01-12 2020-06-02 Schlumberger Technology Corporation Active stabilization
EP3279426A1 (fr) * 2016-08-05 2018-02-07 Shell Internationale Research Maatschappij B.V. Procédé et système pour inhiber des oscillations de torsion dans un ensemble de forage
US11512540B2 (en) * 2019-10-31 2022-11-29 Schlumberger Technology Corporation Methods for mitigating whirl

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815930A (en) * 1954-02-23 1957-12-10 Lynn W Storm Drill pipe stabilizer and guide bushing
US4083612A (en) * 1976-10-15 1978-04-11 Smith International, Inc. Non-rotating stabilizer for earth boring and bearing therefor
GB2088440A (en) * 1980-11-28 1982-06-09 Mobil Oil Corp Rotary drilling drill string stabilizer-cuttings grinder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1937234A (en) * 1931-04-28 1933-11-28 Raymond P Lansing Driving mechanism
US2072320A (en) * 1934-12-19 1937-03-02 Charles E Thomas Bit guide
US3370657A (en) * 1965-10-24 1968-02-27 Trudril Inc Stabilizer and deflecting tool
US3656565A (en) * 1970-09-23 1972-04-18 Fred K Fox Rotary drilling tool
US3746137A (en) * 1972-07-07 1973-07-17 Bell & Howell Co Multiple-torque slip clutch
DE2305133B2 (de) * 1973-02-02 1980-11-20 Peddinghaus, Werner, 4322 Sprockhoevel Bohrvorrichtung
DE2551303C3 (de) * 1975-11-14 1981-04-02 Institut gornogo dela Sibirskogo otdelenija Akademii Nauk SSSR, Novosibirsk Druckluftbetriebene Tiefloch-Schlagbohrmaschine
SU1028829A1 (ru) * 1981-09-01 1983-07-15 Makeeva Tamara A Отклонитель дл направленного бурени скважин
EP0233881B1 (fr) * 1984-10-24 1989-04-26 ZF FRIEDRICHSHAFEN Aktiengesellschaft Embrayage lamellaire avec embrayage a griffes
JPS62500877A (ja) * 1984-11-06 1987-04-09 ツア−ンラトフアブリク フリ−トリツヒシヤフエン アクチエンゲゼルシヤフト 自動車の差動歯装置の為の電磁つめクラッチ
US4606417A (en) * 1985-04-08 1986-08-19 Webb Derrel D Pressure equalized stabilizer apparatus for drill string

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815930A (en) * 1954-02-23 1957-12-10 Lynn W Storm Drill pipe stabilizer and guide bushing
US4083612A (en) * 1976-10-15 1978-04-11 Smith International, Inc. Non-rotating stabilizer for earth boring and bearing therefor
GB2088440A (en) * 1980-11-28 1982-06-09 Mobil Oil Corp Rotary drilling drill string stabilizer-cuttings grinder

Also Published As

Publication number Publication date
US4989679A (en) 1991-02-05
NO885690D0 (no) 1988-12-21
NO885690L (no) 1989-06-26
FR2625253A1 (fr) 1989-06-30
EP0323772B1 (fr) 1992-03-18
DE3869373D1 (de) 1992-04-23

Similar Documents

Publication Publication Date Title
EP0323772B1 (fr) Centreur embrayable en rotation notamment pour garniture de forage
BE1012824A5 (fr) Dispositif limiteur du couple d'un trepan.
BE1012191A5 (fr) Couronne de trepan pivotante/inclinable pour forages dans le sol.
JP2533730B2 (ja) オイル/ガス井のトップホ―ル部分用ホ―ルオ―プナ
FR2647870A1 (fr) Appareil de percussion hydraulique avec dispositif d'amortissement des ondes de choc en retour
FR2641315A1 (fr) Garniture de forage a trajectoire controlee comportant un stabilisateur a geometrie variable et utilisation de cette garniture
EP3480458B1 (fr) Machine hydraulique comprenant un système de freinage amélioré
FR2641317A1 (fr) Equipement pour garniture de forage comportant un element a actionner, un moteur et des moyens de commande
FR2479892A1 (fr) Dispositif d'entrainement direct pour trepan de forage
CA2006927C (fr) Garniture de forage a trajectoire controlee comportant un element coude a angle variable et utilisation de cette garniture
FR3018541A1 (fr) Ancre de couple de blocage en rotation d'une colonne de production d'un puits, systeme de pompage et de blocage en rotation et installation de pompage equipee d'une telle ancre de couple
FR3009737A1 (fr) Ancre de couple de blocage en rotation d'une colonne de production d'un puits et installation de pompage equipee d'une telle ancre de couple
FR2607183A1 (fr) Appareil de forage, notamment elargisseur, et bras de coupe pour un tel appareil
FR2490300A1 (fr) Joint d'articulation
EP0143709B1 (fr) Système de freinage comprenant au moins un disque de frein coulissant
FR2930010A1 (fr) Boite de vitesses pour vehicule
EP0433192B1 (fr) Dispositif permettant d'effectuer le rodage par vissage-dévissage de jonctions filetées pour assemblage de tubes
EP3234359B1 (fr) Appareil hydraulique a pistons radiaux comprenant au moins un roulement a billes
FR2530285A1 (fr) Accelerateur de coulisse de repechage
FR3043713A1 (fr) Machine a pistons radiaux comportant des moyens de freinage bloques en rotation
CA2822038C (fr) Installation de pompage pour puits profond
CA2384281C (fr) Procede et dispositif de forage rotary d'un puits
WO2017108995A1 (fr) Machine hydraulique à pistons radiaux comprenant un ressort d'activation d'embrayage
FR2573838A1 (fr) Dispositif d'etancheite pour arbre rotatif
FR2472706A1 (fr) Joint d'etancheite pour appareil de forage en fond de puits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910507

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3869373

Country of ref document: DE

Date of ref document: 19920423

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921008

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921124

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930205

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208