EP0319079B1 - Vitroceramic heating element - Google Patents

Vitroceramic heating element Download PDF

Info

Publication number
EP0319079B1
EP0319079B1 EP88202637A EP88202637A EP0319079B1 EP 0319079 B1 EP0319079 B1 EP 0319079B1 EP 88202637 A EP88202637 A EP 88202637A EP 88202637 A EP88202637 A EP 88202637A EP 0319079 B1 EP0319079 B1 EP 0319079B1
Authority
EP
European Patent Office
Prior art keywords
layer
glass
phase
heating element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88202637A
Other languages
German (de)
French (fr)
Other versions
EP0319079A1 (en
Inventor
Hughes Baudry
Marc Monneraye
Claude Morhaim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0319079A1 publication Critical patent/EP0319079A1/en
Application granted granted Critical
Publication of EP0319079B1 publication Critical patent/EP0319079B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the invention relates to a glass ceramic heating element comprising at least one flat electric heating body applied to one face of a glass ceramic plate, this heating body including from this face a first insulating layer, a second conductive layer for forming power supply lines, and a third resistive layer to form a heating resistor.
  • the invention finds its application in the production of household appliances for which it is sought to associate a glass-ceramic plate appreciated for its ease of maintenance, with a heating stove at high temperature greater than or equal to 650 ° C.
  • the modulus of rupture of the ceramic glass decreases, particularly when these films include metallic constituents in combination with ceramic phases.
  • the cited document teaches that the glass ceramic exhibits a high resistivity even at high temperature, which means that no layer of electrical insulation should be necessary.
  • the present invention simultaneously poses and solves a problem which was hitherto completely unknown in the state of the art and which is as follows: When an electrical resistance is produced by screen printing on a glass ceramic material, then supplied with electricity to produce a heating element by thermal transfer, it appears that, at these high temperatures used in hotplate hearths, the glass ceramic support material becomes conductive electricity while the ceramic material alone retains a high resistivity. It therefore seems that the combination of a screen printed high temperature electrical resistance and a ceramic glass material is impossible to use for the production of a consumer hob, since it does not meet safety standards.
  • the present invention however solves this problem by providing a formulation for an electrically insulating layer at high temperatures and which also has a coefficient of expansion quite suitable for the glass-ceramic support at these high temperatures.
  • the insulating layer a material comprising an excessively large vitreous phase, or a material whose ceramic phase decomposes at high temperature to supply glass, this glass tends to rise in the resistive layer and, coating conductive particles, to cause the temperature coefficient to decrease, possibly even causing this temperature coefficient to become less than O. This would then lead to rapid deterioration of the heating element, leading to breakdown of the resistance.
  • the present invention solves this problem by providing an insulating layer which does not react at high temperatures with the resistive layer.
  • this insulating layer is produced by screen printing from a starting mixture for screen printing ink comprising on the one hand: a glassy phase consisting in molar proportions of: ZnO + MeO 50 to 65% WHERE 10 to 20% Al2O3 0 to 10% If 40 to 5% in which MeO is an oxide chosen from refractory oxides such as: MgO, CaO, and in which MeO is associated with ZnO in the molar proportions 0 to 10% of the whole of the glassy phase such that the proportions ZnO + MeO constitute 50 to 65% in moles of said glassy phase, and comprising d on the other hand an amorphous phase formed of a
  • the heating resistor is perfectly insulated at high temperatures, its temperature coefficient is positive and the entire device supports aging well.
  • a ceramic glass hob comprising an electric heating body arranged in the form of a spiral below the plate as well as a thermostatic probe thermally coupled to the baking plate. inside the cooking surface area. On the marginal zone of the cooking surface is provided an unheated zone for the thermal coupling of the probe, the rest of the surface being covered of the two-wire heating element, the connections of which are located on the periphery of the cooking surface.
  • a cooking plate thus equipped offers several disadvantages.
  • First of all the heating device is always of a high price because it is of a complex assembly. Then it is located at a certain distance from the ceramic hob, which leads to heat losses. Thus, it is subjected to a time constant for cooling and heating mainly due to poor thermal conduction of the air, which makes this kind of hob less flexible to use than hobs with adjustable flames. for example.
  • the present invention provides a heating element which is free from this type of drawback, since the heating resistor is directly in contact with the ceramic hob.
  • the invention presents a new formulation for a high temperature resistive ink. Indeed, it was also necessary that the coefficient of expansion of this ink, at the firing temperature, or at the temperature of use, be as close as possible to that of the glass-ceramic support, which is practically zero. This is difficult to achieve for a resistive material which contains conductive particles. The invention however solves this problem.
  • the glass ceramic heating element comprises a glass ceramic support plate 10 serving to work surface on its upper face 11, and substrate for the heating element 20 on its lower face 12.
  • Such a heating element has the advantage of forming a very smooth work surface and therefore easy to clean, as not showing any crevices, into which solid or liquid food particles can be introduced, for example, from the overflow of culinary containers.
  • This very flatness is an advantage for receiving the culinary containers which always rest in a very stable manner on the work surface, which allows good heat exchange.
  • the underside 12 of the ceramic hob is coated with at least one heating hearth constituted by a heating element as shown seen from above in FIGS. 2.
  • the ceramic glass material has been chosen to date to produce cooktops because of its aesthetic appearance, the practical qualities mentioned above, and above all because of the fact that it has a zero coefficient of expansion which makes it very resistant to thermal shock.
  • it has the disadvantage of being a poor conductor of heat, which means that, if the heating element is at all slightly away from the surface to be heated, there is a considerable temperature gradient in the air.
  • the advantage provided by the present invention which makes it possible to produce a heat source for the heating hearth in direct contact with the ceramic hob, which reduces the thermal resistances.
  • the poor thermal conductivity of the glass-ceramic material is used as an advantage to preserve between the hotplates, outside each heating hearth, non-hot zones, where electrical contacts can be made at leisure with traditional welding materials, therefore cheap.
  • an insulating layer 21 is first deposited directly on the surface 12.
  • This material is developed to first present a coefficient of expansion practically identical to that of the plate 10 and that of the upper layers 23, and that at the highest temperatures.
  • This material is also developed to present excellent electrical insulation at these same high temperatures.
  • This material is finally produced so that it does not diffuse into the resistant layers 23 either at cooking temperatures or at high temperatures, thus avoiding changing the temperature coefficient (CTR) of the resistant layers during aging.
  • CTR temperature coefficient
  • Curve C I in Figure 5a shows the relative linear variations ⁇ l l of the insulating material 21 as a function of the temperature T, and the curve C V of FIG. 5b shows the corresponding variations of the glass-ceramic material 10 at the same temperatures. These curves are both very close to 0.
  • the insulating material 21 is deposited over the entire surface of the zone constituting the heating hearth of the cooking plate.
  • Figures 3 and 4 which are respectively schematic layers of Figures 2 along axes I-I and II-II show that the insulating layer 21 is a uniform layer of thickness 100 microns or more.
  • Two supply lines C1 and C2 for the electrical supply of the heating element are produced in the form of a screen-printed ribbon in a layer of thickness approximately 50 ⁇ m, depending on the applied voltage and the desired temperature, on the surface. of the insulating layer 21. These lines are formed of a conductive compound 22.
  • a resistive compound 23 deposited in a screen-printed layer of thickness approximately 10 to 50 ⁇ m.
  • the resistive material constituting the layer 23 is designed to have a coefficient of expansion as close as possible to that of the glass-ceramic material at high temperatures.
  • Figures 2 show two advantageous diagrams of the arrangement of these resistive ribbons between the supply lines. These diagrams are given purely by way of example, since the method for producing the heating element according to the invention is very flexible to use and makes it possible to carry out absolutely all types of configuration for this kind of circuit.
  • the circuit can thus cover a hearth forming a square area as illustrated in FIG. 2b, rectangular, oval or circular as illustrated in FIG. 2a. It may moreover be free according to the request of the consumer, or customer, to produce a cooking plate provided with several hearths showing a different shape. In addition, all the areas of hearth surface are achievable, and not only the surfaces with the two standard diameters currently marketed.
  • the circuit according to the invention being produced on the lower face 12 of the ceramic hob, the upper face 11 serving as a work surface remains blank.
  • the circuit can also be produced in small dimensions on a ceramic glass support to serve as a plunger heating element; for example to quickly bring a liquid to a given temperature.
  • the circuit can then be coated with an upper insulating layer 24 similar to layer 21.
  • the supply terminals are also fitted with waterproof and insulating sleeves like any conventional heated plunger.
  • the heating element according to the invention can also be used to make a high or low heating plate (floor or ceiling) in a convection or fan-assisted oven, or else in a multi-microwave oven.
  • the lines C1 and C2 are extended sufficiently so that their end is placed in a relatively cold zone.
  • a few centimeters are sufficient to bring the lines C1 and C2 to an area where the temperature will always be low enough for the glass ceramic support material to be absolutely non-conductive of electricity.
  • the insulating layer 21 is interrupted under the layer 22 which constitutes these terminals so that this layer 22 is in direct contact with the glass-ceramic material.
  • the layers 21, 22, 23 and possibly 24 are produced by a screen printing technology by means of compounds whose formulation is given below.
  • the mixture comprises a glassy phase consisting of the molar proportions of the following oxides: If 30 to 55% ZnO 20 to 40% WHERE 0 to 20% Al2O3 0 to 10% SrO, BaO, CaO 5 to 40% CoO 0 to 10% and ceramic phase consisting of ZnO + CoO, the glassy phase accounting for 85 to 60%, and the ceramic phase accounting for 15 to 40% by volume of the mixture.
  • this mixture has a coefficient of expansion at high temperature which is close to that of alumina, that is to say very far from that of the glass-ceramic material itself.
  • a starting mixture for a screen-printing ink capable of producing layer 21, that is to say both insulating at high temperature, with a coefficient of expansion close to that of the glass-ceramic material, and not diffusing into the upper resistive layer will firstly comprise a glassy phase constituted in molar proportions by: ZnO + MeO 50 to 65% WHERE 10 to 20% Al2O3 0 to 10% If 40 to 5% in which MeO is an oxide chosen from refractory oxides such as MgO, CaO, MeO being associated with ZnO in molar proportions 0 to 10% of the entire glass phase and such that the proportions ZnO + MeO constitute 50 to 65 % in moles of said vitreous phase.
  • a glassy phase can be found, made up in molar proportions of: ZnO + MeO 62% WHERE 17% If 21%
  • the starting mixture for such an insulating composition will also comprise an amorphous phase.
  • the glassy phase and the amorphous phase are associated in volume proportions such as: Glassy phase 3 to 13% and preferably 5% Amorphous phase 97 to 87% and preferably 95%.
  • the amorphous phase will consist of amorphous silica chosen for its low coefficient of expansion.
  • a glass is first of all produced, the molar proportions of which correspond to the ranges indicated above or to one of the examples cited.
  • the glass thus obtained is ground.
  • this operation is incorporated to obtain a homogeneous mixture the powder forming the amorphous phase in the chosen volume proportions.
  • This grinding can be carried out in a liquid medium such as water.
  • the result of the grinding is then dried and then dispersed in an organic vehicle.
  • an organic vehicle capable of making this starting mixture screen-printing it is possible to use a solution containing a polymer, for example a solution of ethylcellulose in a terpineol or a mixture based on terpineol.
  • This organic vehicle can represent before cooking 10 to 40% of the weight of the screen-printing ink.
  • the proportions of the organic vehicle relative to the ink are chosen according to the desired rheological behavior.
  • none of the materials chosen to make the heating device on ceramic glass presents the risk of oxidizing in air, the ink is baked in the open air. The organic vehicle is thus consumed using oxygen from the air.
  • Cooking at around 900 ° C. is carried out in a so-called pass-through oven for about 10 minutes.
  • the composition of the glass is not intended to constitute a heating resistance, and more particularly a heating resistance capable of being brought to 650 ° C. by the Joule effect, and of presenting a positive CTR and which remains so in aging.
  • a starting mixture for a screen-printing ink capable of producing the layer 23, endowed with this property and with a coefficient of expansion close to that of the glass-ceramic material will firstly comprise an active phase consisting of volume proportion of the total mixture of: RuO2 ⁇ 15 to 40% and in particular preferably ⁇ 30% CuO ⁇ 0 to 5% and a glassy phase made up of a composition similar to that of melted vitroceram and quenched in volume proportions complementary to the above mixture.
  • the glass melts ensuring the function of binder then during this same cycle recrystallizes from vitroceram.
  • the glass-ceramic thus formed makes it possible to obtain the appropriate coefficient of expansion.
  • the CTR of this resistance when it is carried out with the preferred proportions, is: + 520 ppm ° C ⁇ 1 between 20 and 300 ° C and + 150 ppm ° C ⁇ 1 between 300 and 650 ° C.
  • the glassy phase is ground and the oxides constituting the phase active are incorporated as it was said previously for the production of insulating ink. Following this, the mixture is incorporated into a rheological vehicle already described.
  • a screen-printing ink capable of producing lines C1 and C2 in layer 22 will be formed in one example of a silver powder (Ag) + palladium (Pd) or platinum (Pt), or even in another example of a silver powder (Ag) alone, to which a small proportion of copper oxide (CuO) is added, this powder then being incorporated into a rheological vehicle as described above.
  • a silver powder Ag + palladium (Pd) or platinum (Pt)
  • CuO copper oxide
  • Table II starting mixture for resistive layer 23 Composition of the mixture in volume proportions
  • Preferred example General composition Glassy phase composition similar to vitroceram ⁇ 65% 100% supplement RuO2 ⁇ 30% ⁇ 15 to 40% CuO active phase ⁇ 5% ⁇ 0 to 5% starting mixture for conductive layer 22 Composition of the mixture in volume proportions
  • Example I Example 2 Ag 80 to 100% Ag 80 to 100% CuO 20 at 0% Pd / Pt 20 to 0% CuO in complementary proportions

Description

L'invention concerne un élément chauffant en vitrocéramique comprenant au moins un corps chauffant électrique plat appliqué sur une face d'une plaque en vitrocéramique, ce corps chauffant incluant à partir de cette face, une première couche isolante, une seconde couche conductrice pour former des lignes d'alimentation électrique, et une troisième couche résistive pour constituer une résistance chauffante.The invention relates to a glass ceramic heating element comprising at least one flat electric heating body applied to one face of a glass ceramic plate, this heating body including from this face a first insulating layer, a second conductive layer for forming power supply lines, and a third resistive layer to form a heating resistor.

L'invention trouve son application dans la réalisation d'appareils ménagers pour laquelle il est recherché d'associer une plaque en vitrocéramique appréciée pour sa facilité d'entretien, à un foyer chauffant à haute température supérieure ou égale à 650°C.The invention finds its application in the production of household appliances for which it is sought to associate a glass-ceramic plate appreciated for its ease of maintenance, with a heating stove at high temperature greater than or equal to 650 ° C.

Il est déjà connu de l'état de la technique par le brevet des Etats-Unis n°3 978 316 de réaliser un élément chauffant sur un substrat vitrocéramique. Cet élément chauffant est réalisé au moyen de films conducteurs appliqués directement sur une surface du substrat en vitrocéramique pour former une résistance chauffante.It is already known from the state of the art by United States patent no. 3,978,316 to produce a heating element on a glass-ceramic substrate. This heating element is produced by means of conductive films applied directly to a surface of the glass-ceramic substrate to form a heating resistor.

Ce document cité enseigne avoir découvert deux problèmes liés à l'application directe de couches conductrices sur une surface vitrocéramique pour former un élément chauffant.This cited document teaches having discovered two problems associated with the direct application of conductive layers on a glass-ceramic surface to form a heating element.

D'abord le module de rupture de la vitrocéramique diminue, particulièrement lorsque ces films comprennent des constituants métalliques en combinaison avec des phases céramiques.First, the modulus of rupture of the ceramic glass decreases, particularly when these films include metallic constituents in combination with ceramic phases.

Ensuite, il s'avère difficile d'obtenir une bonne liaison mécanique entre les films métalliques et la surface lisse du matériau vitrocéramique, lorsque le film est dépourvu de phase vitreuse. C'est pourquoi, ce document enseigne que des essais ont d'abord été faits pour résoudre ce problème en appliquant une couche de céramique frittée à la surface de la vitrocéramique avant l'application du film métallique pour fournir une surface d'accrochage suffisamment rugueuse. Mais alors un autre problème est apparu, car cette couche de céramique frittée avait une interaction avec la vitrocéramique et donc tendance à affaiblir les propriétés mécaniques de la plaque.Then, it proves difficult to obtain a good mechanical bond between the metallic films and the surface. smooth of the ceramic glass material, when the film is free of glassy phase. Therefore, this document teaches that attempts were first made to resolve this problem by applying a layer of sintered ceramic to the surface of the glass ceramic before applying the metallic film to provide a sufficiently rough bonding surface. . But then another problem appeared, because this sintered ceramic layer had an interaction with the glass ceramic and therefore tended to weaken the mechanical properties of the plate.

Donc le document cité enseigne à réaliser une couche tampon qui permet l'accrochage de couches métalliques sur une surface vitrocéramique sans toutefois affaiblir les propriétés mécaniques de la plaque.So the cited document teaches to make a buffer layer which allows the attachment of metal layers on a glass ceramic surface without however weakening the mechanical properties of the plate.

Mais avec ou sans cette couche d'accrochage le document cité enseigne que la vitrocéramique montre une résistivité élevée même à haute température ce qui fait qu'aucune couche d'isolation électrique ne devrait être nécessaire. La présente invention pose et résout en même temps un problème qui était jusqu'à ce jour totalement inconnu de l'état de la technique et qui est le suivant :
   Lorsqu'une résistance électrique est réalisée par sérigraphie sur un matériau vitrocéramique, puis alimentée en électricité pour réaliser un élément chauffant par transfert thermique, il apparaît que, à ces hautes températures utilisées dans les foyers de plaques de cuisson, le matériau vitrocéramique support devient conducteur de l'électricité alors que le matériau céramique seul garde une forte résistivité. Il semble donc que l'association d'une résistance électrique haute température sérigraphiée et d'un matériau vitrocéramique soit impossible à utiliser pour la réalisation d'une table de cuisson grand-public, car ne satisfaisant pas aux normes de sécurité. Mais il semble aussi qu'on ne devrait pas pouvoir utiliser une couche isolante sérigraphiée disposée entre la plaque vitrocéramique et la résistance sérigraphiée car il semble que si l'on cherche un matériau isolant de coefficient de dilatation nul, on arrivera à l'évidence à la formulation du matériau vitrocéramique lui-même que l'on a auparavant trouvé non-isolant électriquement à hautes températures.
But with or without this bonding layer, the cited document teaches that the glass ceramic exhibits a high resistivity even at high temperature, which means that no layer of electrical insulation should be necessary. The present invention simultaneously poses and solves a problem which was hitherto completely unknown in the state of the art and which is as follows:
When an electrical resistance is produced by screen printing on a glass ceramic material, then supplied with electricity to produce a heating element by thermal transfer, it appears that, at these high temperatures used in hotplate hearths, the glass ceramic support material becomes conductive electricity while the ceramic material alone retains a high resistivity. It therefore seems that the combination of a screen printed high temperature electrical resistance and a ceramic glass material is impossible to use for the production of a consumer hob, since it does not meet safety standards. But it also seems that one should not be able to use a screen-printed insulating layer placed between the glass-ceramic plate and the screen-printed resistance for it seems that if we are looking for an insulating material with a zero coefficient of expansion, we will obviously arrive at the formulation of the glass-ceramic material itself which has previously been found to be electrically non-insulating at high temperatures.

La présente invention résout cependant ce problème en fournissant une formulation pour une couche isolante électriquement à hautes températures et qui présente en outre un coefficient de dilatation tout à fait adapté au support vitrocéramique à ces hautes températures.The present invention however solves this problem by providing a formulation for an electrically insulating layer at high temperatures and which also has a coefficient of expansion quite suitable for the glass-ceramic support at these high temperatures.

Il est connu des connaissances générales de l'homme du métier que pour réaliser une encre sérigraphiable, on utilise généralement un composé d'une phase vitreuse et d'une phase céramique. Dans la recherche d'un composé capable de constituer la couche isolante, il est apparu un problème supplémentaire. Pour réaliser une couche résistive, le matériau choisi doit présenter un coefficient de température de la résistance (CTR) positif ou nul pour la plage de température considérée. Et ce coefficient de résistance ne doit pas varier au cours du temps, particulièrement lorsque le dispositif vieillit. Or si l'on choisit pour réaliser la couche isolante un matériau comprenant une phase vitreuse trop importante, ou un matériau dont la phase céramique se décompose à haute température pour fournir du verre, ce verre a tendance à remonter dans la couche résistive et, enrobant les particules conductrices, à faire en sorte que le coefficient de température diminue, pouvant même faire en sorte que ce coefficient de température devienne inférieur à O. Ceci conduirait alors à une détérioration rapide de l'élément chauffant, amenant le claquage de la résistance. La présente invention résout ce problème en proposant une couche isolante qui ne réagit pas à hautes températures avec la couche résistive.It is known to the general knowledge of a person skilled in the art that in order to produce a screen-printing ink, a compound of a glassy phase and a ceramic phase is generally used. In the search for a compound capable of constituting the insulating layer, an additional problem appeared. To produce a resistive layer, the material chosen must have a positive or zero resistance temperature coefficient (CTR) for the temperature range considered. And this resistance coefficient should not change over time, especially when the device ages. However, if one chooses to make the insulating layer a material comprising an excessively large vitreous phase, or a material whose ceramic phase decomposes at high temperature to supply glass, this glass tends to rise in the resistive layer and, coating conductive particles, to cause the temperature coefficient to decrease, possibly even causing this temperature coefficient to become less than O. This would then lead to rapid deterioration of the heating element, leading to breakdown of the resistance. The present invention solves this problem by providing an insulating layer which does not react at high temperatures with the resistive layer.

Selon l'invention ces problèmes sont résolus par un élément chauffant tel que décrit dans le préambule et caractérisé en ce que, pour conférer à la première couche isolante des caractéristiques appropriées à empêcher la production de fuites de courant de la résistance chauffante vers la plaque en céramique aux hautes températures, et pour lui conférer en outre des propriétés de compatibilité avec à la fois la plaque vitrocéramique et les autres couches, cette couche isolante est réalisée par sérigraphie à partir d'un mélange de départ pour encre sérigraphiable comprenant d'une part :
une phase vitreuse constituée en proportions molaires de : ZnO + MeO 50 à 65 % B₂O₃ 10 à 20 % Al₂O₃ 0 à 10 % SiO₂ 40 à 5 %
dans lesquelles MeO est un oxyde choisi parmi les oxydes réfractaires tels que :
MgO, CaO, et dans lesquelles MeO est associé à ZnO dans les proportions molaires 0 à 10 % de l'ensemble de la phase vitreuse telles que les proportions ZnO + MeO constituent 50 à 65 % en moles de ladite phase vitreuse, et comprenant d'autre part une phase amorphe formée de silice amorphe, et en ce que la phase vitreuse est associée à la phase amorphe dans les proportions volumique de 3 à 13 % pour la phase vitreuse et de 97 à 87 % pour la phase amorphe.
According to the invention these problems are solved by a heating element as described in the preamble and characterized in that, to give the first layer insulating material having characteristics suitable for preventing the production of current leaks from the heating resistor to the ceramic plate at high temperatures, and in order to additionally give it properties of compatibility with both the glass-ceramic plate and the other layers, this insulating layer is produced by screen printing from a starting mixture for screen printing ink comprising on the one hand:
a glassy phase consisting in molar proportions of: ZnO + MeO 50 to 65% WHERE 10 to 20% Al₂O₃ 0 to 10% If 40 to 5%
in which MeO is an oxide chosen from refractory oxides such as:
MgO, CaO, and in which MeO is associated with ZnO in the molar proportions 0 to 10% of the whole of the glassy phase such that the proportions ZnO + MeO constitute 50 to 65% in moles of said glassy phase, and comprising d on the other hand an amorphous phase formed of amorphous silica, and in that the vitreous phase is associated with the amorphous phase in the volume proportions of 3 to 13% for the vitreous phase and from 97 to 87% for the amorphous phase.

En conséquence, la résistance chauffante est parfaitement isolée à hautes températures, son coefficient de températures est positif et l'ensemble du dispositif supporte bien le vieillissement.Consequently, the heating resistor is perfectly insulated at high temperatures, its temperature coefficient is positive and the entire device supports aging well.

Il est par ailleurs connu du brevet FR-2 410 790, une table de cuisson en vitrocéramique comportant un corps chauffant électrique disposé en forme de spirale en dessous de la plaque ainsi qu'un palpeur thermostatique thermiquement accouplé à la plaque de cuisson à l'intérieur de la zone de la surface de cuisson. Sur la zone marginale de la surface de cuisson est prévue une zone non chauffée pour l'accouplement thermique du palpeur, le reste de la surface étant recouvert du corps chauffant bifilaire dont les raccordements sont situés sur la périphérie de la surface de cuisson.It is also known from patent FR-2 410 790, a ceramic glass hob comprising an electric heating body arranged in the form of a spiral below the plate as well as a thermostatic probe thermally coupled to the baking plate. inside the cooking surface area. On the marginal zone of the cooking surface is provided an unheated zone for the thermal coupling of the probe, the rest of the surface being covered of the two-wire heating element, the connections of which are located on the periphery of the cooking surface.

Mais une plaque de cuisson ainsi équipée offre plusieurs inconvénients. Tout d'abord le dispositif de chauffage est toujours d'un prix élevé car il est d'un montage complexe. Ensuite, il est situé à une certaine distance de la plaque vitrocéramique, ce qui entraîne des pertes thermiques. Ainsi, il est soumis à une constante de temps au refroidissement et au réchauffement principalement due à la mauvaise conduction thermique de l'air, ce qui rend ce genre de plaque de cuisson moins souple à l'utilisation que les plaques de cuisson à flammes réglables par exemple.However, a cooking plate thus equipped offers several disadvantages. First of all the heating device is always of a high price because it is of a complex assembly. Then it is located at a certain distance from the ceramic hob, which leads to heat losses. Thus, it is subjected to a time constant for cooling and heating mainly due to poor thermal conduction of the air, which makes this kind of hob less flexible to use than hobs with adjustable flames. for example.

La présente invention propose un élément chauffant qui est exempt de ce genre d'inconvénients, car la résistance chauffante est directement en contact avec la plaque vitrocéramique.The present invention provides a heating element which is free from this type of drawback, since the heating resistor is directly in contact with the ceramic hob.

A cet effet, l'invention présente une nouvelle formulation pour une encre résistive haute température. En effet il fallait aussi que le coefficient de dilatation de cette encre, à la température de cuisson, ou à la température d'utilisation, soit aussi proche que possible de celle du support vitrocéramique, lequel est pratiquement nul. Ceci est difficile à réaliser pour un matériau résistif qui contient des particules conductrices. L'invention résout cependant ce problème.To this end, the invention presents a new formulation for a high temperature resistive ink. Indeed, it was also necessary that the coefficient of expansion of this ink, at the firing temperature, or at the temperature of use, be as close as possible to that of the glass-ceramic support, which is practically zero. This is difficult to achieve for a resistive material which contains conductive particles. The invention however solves this problem.

L'invention sera mieux comprise au moyen de la description suivante illustrée par les figures annexées dont :

  • la figure 1 qui représente un élément chauffant schématiquement et en coupe ;
  • les figures 2a et 2b qui représentent les schémas de deux exemples de circuit de résistance électrique selon l'invention vus du dessus ;
  • la figure 3 qui représente schématiquement une coupe des figures 2 selon l'axe I-I ;
  • la figure 4 qui représente schématiquement une coupe des figures 2 selon l'axe II-II ;
  • la figure 5a qui représente en fonction de la température T les variations linéaires relatives Δℓ ℓ 
    Figure imgb0001
    du matériau isolant, et la figure 5b qui représente en fonction de la température T les variations linéaires relatives Δℓ ℓ 
    Figure imgb0002
    du matériau vitrocéramique.
The invention will be better understood by means of the following description illustrated by the appended figures, in which:
  • Figure 1 which shows a heating element schematically and in section;
  • Figures 2a and 2b which represent the diagrams of two examples of electrical resistance circuit according to the invention seen from above;
  • Figure 3 which schematically shows a section of Figures 2 along axis II;
  • Figure 4 which schematically shows a section of Figures 2 along the axis II-II;
  • FIG. 5a which represents as a function of the temperature T the relative linear variations Δℓ
    Figure imgb0001
    of the insulating material, and FIG. 5b which represents as a function of the temperature T the relative linear variations Δℓ
    Figure imgb0002
    glass ceramic material.

Tel que représenté en coupe sur la figure 1, l'élément chauffant en vitrocéramique selon l'invention comprend une plaque support en vitrocéramique 10 servant de plan de travail sur sa face supérieure 11, et de substrat pour l'élément chauffant 20 sur sa face inférieure 12.As shown in section in FIG. 1, the glass ceramic heating element according to the invention comprises a glass ceramic support plate 10 serving to work surface on its upper face 11, and substrate for the heating element 20 on its lower face 12.

Un tel élément chauffant présente l'avantage de former un plan de travail très lisse et donc facile à nettoyer, comme ne montrant aucune anfractuosités, où puissent s'introduire par exemple des particules alimentaires solides ou liquides provenant du débordement de récipients culinaires. Cette planéité même est un avantage pour recevoir les récipients culinaires qui reposent toujours d'une façon très stable sur le plan de travail, ce qui permet un bon échange thermique.Such a heating element has the advantage of forming a very smooth work surface and therefore easy to clean, as not showing any crevices, into which solid or liquid food particles can be introduced, for example, from the overflow of culinary containers. This very flatness is an advantage for receiving the culinary containers which always rest in a very stable manner on the work surface, which allows good heat exchange.

La face inférieure 12 de la plaque vitrocéramique est revêtue d'au moins un foyer chauffant constitué par un élément chauffant tel que représenté vu du dessus sur les figures 2.The underside 12 of the ceramic hob is coated with at least one heating hearth constituted by a heating element as shown seen from above in FIGS. 2.

Le matériau vitrocéramique a été choisi jusqu'à ce jour pour réaliser des tables de cuisson en raison de son aspect esthétique, des qualités pratiques citées plus haut, et surtout en raison du fait qu'il présente un coefficient de dilatation nul qui le rend très résistant aux chocs thermiques. Il présente en revanche le désavantage d'être médiocre conducteur de la chaleur, ce qui fait que, si l'élément chauffant est tant soit peu éloigné de la surface à chauffer, il se produit dans l'air un gradient de température considérable. D'où l'avantage apporté par la présente invention qui permet de réaliser pour le foyer chauffant une source de chaleur en contact direct avec la plaque vitrocéramique, ce qui diminue les résistances thermiques.The ceramic glass material has been chosen to date to produce cooktops because of its aesthetic appearance, the practical qualities mentioned above, and above all because of the fact that it has a zero coefficient of expansion which makes it very resistant to thermal shock. On the other hand, it has the disadvantage of being a poor conductor of heat, which means that, if the heating element is at all slightly away from the surface to be heated, there is a considerable temperature gradient in the air. Hence the advantage provided by the present invention which makes it possible to produce a heat source for the heating hearth in direct contact with the ceramic hob, which reduces the thermal resistances.

La mauvaise conductibilité thermique du matériau vitrocéramique est utilisée comme un avantage pour préserver entre les foyers chauffants, à l'extérieur de chaque foyer chauffant, des zones non chaudes, où peuvent être réalisés à loisir des contacts électriques avec des matériaux pour soudure traditionnelle, donc peu onéreux.The poor thermal conductivity of the glass-ceramic material is used as an advantage to preserve between the hotplates, outside each heating hearth, non-hot zones, where electrical contacts can be made at leisure with traditional welding materials, therefore cheap.

Selon l'invention, pour éviter le phénomène de conduction électrique qui apparaît non négligeable aux températures supérieures à 300°C dans le matériau vitrocéramique de la plaque, une couche isolante 21 est d'abord déposée directement sur la surface 12. Ce matériau est élaboré pour présenter d'abord un coefficient de dilatation pratiquement identique à celui de la plaque 10 et à celui des couches supérieures 23, et cela aux plus hautes températures. Ce matériau est élaboré aussi pour présenter une excellente isolation électrique à ces mêmes hautes températures. Ce matériau est élaboré enfin de telle sorte qu'il ne diffuse pas dans les couches résistantes 23 soit aux températures de cuisson soit aux hautes températures, évitant ainsi de changer le coefficient de température (CTR) des couches résistantes lors du vieillissement.According to the invention, to avoid the phenomenon of electrical conduction which appears not insignificant at temperatures above 300 ° C in the glass ceramic material of the plate, an insulating layer 21 is first deposited directly on the surface 12. This material is developed to first present a coefficient of expansion practically identical to that of the plate 10 and that of the upper layers 23, and that at the highest temperatures. This material is also developed to present excellent electrical insulation at these same high temperatures. This material is finally produced so that it does not diffuse into the resistant layers 23 either at cooking temperatures or at high temperatures, thus avoiding changing the temperature coefficient (CTR) of the resistant layers during aging.

La courbe CI de la figure 5a montre les variations linéaires relatives Δℓ ℓ 

Figure imgb0003
du matériau isolant 21 en fonction de la température T, et la courbe CV de la figure 5b montre les variations correspondantes du matériau vitrocéramique 10 aux mêmes températures. Ces courbes sont toutes deux très voisines de 0.Curve C I in Figure 5a shows the relative linear variations Δℓ
Figure imgb0003
of the insulating material 21 as a function of the temperature T, and the curve C V of FIG. 5b shows the corresponding variations of the glass-ceramic material 10 at the same temperatures. These curves are both very close to 0.

Comme montré sur les figures 2, le matériau isolant 21 est déposé sur toute la surface de la zone constituant le foyer chauffant de la plaque de cuisson.As shown in FIGS. 2, the insulating material 21 is deposited over the entire surface of the zone constituting the heating hearth of the cooking plate.

Les figures 3 et 4 qui sont respectivement des couches schématiques des figures 2 selon les axes I-I et II-II montrent que la couche isolante 21 est une couche uniforme d'épaisseur 100 µm ou plus.Figures 3 and 4 which are respectively schematic layers of Figures 2 along axes I-I and II-II show that the insulating layer 21 is a uniform layer of thickness 100 microns or more.

Deux lignes d'alimentation C₁ et C₂ pour l'alimentation électrique de l'élément chauffant sont réalisées sous la forme d'un ruban sérigraphié en couche d'épaisseur environ 50 µm, dépendant de la tension appliquée et de la température désirée, en surface de la couche isolante 21. Ces lignes sont formées d'un composé conducteur 22.Two supply lines C₁ and C₂ for the electrical supply of the heating element are produced in the form of a screen-printed ribbon in a layer of thickness approximately 50 μm, depending on the applied voltage and the desired temperature, on the surface. of the insulating layer 21. These lines are formed of a conductive compound 22.

En surface de la couche 21 et entre les lignes d'alimentation 22, s'étendent des rubans R en un composé résistif 23 déposés en couche sérigraphiée d'épaisseur environ 10 à 50 µm. Le matériau résistif constituant la couche 23 est prévu pour présenter un coefficient de dilatation le plus proche possible de celui du matériau vitrocéramique à hautes températures.On the surface of the layer 21 and between the supply lines 22, extend ribbons R of a resistive compound 23 deposited in a screen-printed layer of thickness approximately 10 to 50 µm. The resistive material constituting the layer 23 is designed to have a coefficient of expansion as close as possible to that of the glass-ceramic material at high temperatures.

Les figures 2 montrent deux schémas avantageux de la disposition de ces rubans R résistifs entre les lignes d'alimentation. Ces schémas sont donnés purement à titre d'exemple, car le procédé de réalisation de l'élément chauffant selon l'invention est d'une utilisation très souple et permet de réaliser absolument tous les types de configuration pour ce genre de circuit.Figures 2 show two advantageous diagrams of the arrangement of these resistive ribbons between the supply lines. These diagrams are given purely by way of example, since the method for producing the heating element according to the invention is very flexible to use and makes it possible to carry out absolutely all types of configuration for this kind of circuit.

Cependant, il sera avantageux pour des raisons de longévité du circuit, d'éviter dans la mesure du possible de prévoir un chemin présentant des angles aigüs pour réaliser les rubans résistifs.However, it will be advantageous for reasons of longevity of the circuit, to avoid as far as possible to provide a path having acute angles for producing the resistive tapes.

Le circuit peut ainsi couvrir un foyer formant une zone carrée comme illustré par la figure 2b, rectangulaire, ovale ou circulaire comme illustré par la figure 2a. Il pourra d'ailleurs être loisible selon la demande du consommateur, ou client, de réaliser une plaque de cuisson munie de plusieurs foyers montrant une forme différente. De plus, toutes les étendues de surface de foyer sont réalisables, et non pas seulement les surfaces aux deux diamètres standards actuellement commercialisées.The circuit can thus cover a hearth forming a square area as illustrated in FIG. 2b, rectangular, oval or circular as illustrated in FIG. 2a. It may moreover be free according to the request of the consumer, or customer, to produce a cooking plate provided with several hearths showing a different shape. In addition, all the areas of hearth surface are achievable, and not only the surfaces with the two standard diameters currently marketed.

Le circuit selon l'invention étant réalisé sur la face inférieure 12 du plan de cuisson en vitrocéramique, la face supérieure 11 servant de plan de travail reste vierge.The circuit according to the invention being produced on the lower face 12 of the ceramic hob, the upper face 11 serving as a work surface remains blank.

Dans une autre application de l'élément chauffant selon l'invention, le circuit peut aussi être réalisé en petite dimension sur support vitrocéramique pour servir d'élément chauffant plongeur ; par exemple pour porter rapidement un liquide à une température donnée. Pour éviter les pertes de courant dans le liquide, le circuit peut alors être revêtu d'une couche supérieure isolante 24 semblable à la couche 21.In another application of the heating element according to the invention, the circuit can also be produced in small dimensions on a ceramic glass support to serve as a plunger heating element; for example to quickly bring a liquid to a given temperature. To avoid current losses in the liquid, the circuit can then be coated with an upper insulating layer 24 similar to layer 21.

Pour cette application à un élément chauffant plongeur, les bornes d'alimentation sont aussi munies de manchons étanches et isolants comme tout plongeur chauffant classique.For this application to a heating element plunger, the supply terminals are also fitted with waterproof and insulating sleeves like any conventional heated plunger.

Dans une autre application, l'élément chauffant selon l'invention peut encore être utilisé pour réaliser une plaque chauffante haute ou basse (sole ou plafond) dans un four à convection ou à chaleur tournante, ou bien dans un four micro-ondes multicuissons.In another application, the heating element according to the invention can also be used to make a high or low heating plate (floor or ceiling) in a convection or fan-assisted oven, or else in a multi-microwave oven.

Afin d'éloigner les soudures de conducteurs électrique de la zone chauffante du foyer, les lignes C₁ et C₂ sont prolongées suffisamment pour que leur extrémité soit placée dans une zone relativement froide. Vu la médiocre conductibilité thermique du matériau vitrocéramique, quelques centimètres suffisent à amener les lignes C₁ et C₂ dans une zone où la température sera toujours suffisamment faible pour que le matériau vitrocéramique support ne soit absolument pas conducteur de l'électricité. Lorsque les lignes C₁ et C₂ ont atteint cette zone dite froide, la couche isolante 21 est interrompue sous la couche 22 qui constitue ces bornes afin que cette couche 22 soit en contact direct avec le matériau vitrocéramique.In order to distance the welds of electrical conductors from the heating zone of the hearth, the lines C₁ and C₂ are extended sufficiently so that their end is placed in a relatively cold zone. In view of the poor thermal conductivity of the glass ceramic material, a few centimeters are sufficient to bring the lines C₁ and C₂ to an area where the temperature will always be low enough for the glass ceramic support material to be absolutely non-conductive of electricity. When the lines C₁ and C₂ have reached this so-called cold zone, the insulating layer 21 is interrupted under the layer 22 which constitutes these terminals so that this layer 22 is in direct contact with the glass-ceramic material.

Cette disposition n'a rien d'obligatoire mais elle est avantageuse pour réaliser des brasures tendres entre l'extrémité des lignes C₁ et C₂ et des conducteurs électriques destinés à amener le courant d'alimentation de la résistance chauffante R. En effet la couche 22 est mieux accrochée, plus résistante mécaniquement, lorsqu'elle est réalisée directement sur le matériau vitrocéramique. Ceci permet alors de réaliser de telles brasures.This arrangement is not obligatory but it is advantageous for producing soft solder between the end of lines C₁ and C₂ and electrical conductors intended to bring the supply current to the heating resistor R. Indeed layer 22 is better attached, more resistant mechanically, when it is carried out directly on the ceramic glass material. This then makes it possible to produce such solderings.

Selon l'invention, les couches 21, 22, 23 et éventuellement 24 sont réalisées par une technologie de sérigraphie au moyen de composés dont la formulation est donnée ci-après.According to the invention, the layers 21, 22, 23 and possibly 24 are produced by a screen printing technology by means of compounds whose formulation is given below.

Un mélange de départ pour une composition isolante apte à former une encre sérigraphiable isolante haute température à cuisson sous azote est connue de l'art antérieur par le brevet EP-0 016 498. Selon ce document, le mélange comprend une phase vitreuse constituée par les proportions molaires des oxydes suivants : SiO₂ 30 à 55 % ZnO 20 à 40 % B₂O₃ 0 à 20 % Al₂O₃ 0 à 10 % SrO, BaO, CaO 5 à 40 % CoO 0 à 10 %
et de phase céramique constituée de ZnO + CoO, la phase vitreuse comptant pour 85 à 60 %, et la phase céramique comptant pour 15 à 40 % en volume du mélange.
A starting mixture for an insulating composition capable of forming a high temperature insulating screen printing ink for cooking under nitrogen is known from the prior art. Patent EP-0 016 498. According to this document, the mixture comprises a glassy phase consisting of the molar proportions of the following oxides: If 30 to 55% ZnO 20 to 40% WHERE 0 to 20% Al₂O₃ 0 to 10% SrO, BaO, CaO 5 to 40% CoO 0 to 10%
and ceramic phase consisting of ZnO + CoO, the glassy phase accounting for 85 to 60%, and the ceramic phase accounting for 15 to 40% by volume of the mixture.

Mais ce mélange présente un coefficient de dilatation à haute température qui est proche de celui de l'alumine, c'est-à-dire très éloigné de celui du matériau vitrocéramique lui-même.However, this mixture has a coefficient of expansion at high temperature which is close to that of alumina, that is to say very far from that of the glass-ceramic material itself.

C'est pourquoi selon l'invention un mélange de départ pour une encre sérigraphiable apte à réaliser la couche 21 c'est-à-dire à la fois isolante à haute température, d'un coefficient de dilatation proche de celui du matériau vitrocéramique, et ne diffusant pas dans la couche résistive supérieure, comprendra d'abord une phase vitreuse constituée en proportions molaires par : ZnO + MeO 50 à 65 % B₂O₃ 10 à 20 % Al₂O₃ 0 à 10 % SiO₂ 40 à 5 %
dans lesquels MeO est un oxyde choisi parmi les oxydes réfractaires tels que MgO, CaO, MeO étant associé à ZnO dans les proportions molaires 0 à 10 % de l'ensemble de la phase vitreuse et telles que les proportions ZnO + MeO constituent 50 à 65 % en moles de ladite phase vitreuse.
This is why, according to the invention, a starting mixture for a screen-printing ink capable of producing layer 21, that is to say both insulating at high temperature, with a coefficient of expansion close to that of the glass-ceramic material, and not diffusing into the upper resistive layer, will firstly comprise a glassy phase constituted in molar proportions by: ZnO + MeO 50 to 65% WHERE 10 to 20% Al₂O₃ 0 to 10% If 40 to 5%
in which MeO is an oxide chosen from refractory oxides such as MgO, CaO, MeO being associated with ZnO in molar proportions 0 to 10% of the entire glass phase and such that the proportions ZnO + MeO constitute 50 to 65 % in moles of said vitreous phase.

Dans un exemple de réalisation on pourra trouver une phase vitreuse constituée en proportions molaires de : ZnO + MeO 62% B₂O₃ 17 % SiO₂ 21 % In an exemplary embodiment, a glassy phase can be found, made up in molar proportions of: ZnO + MeO 62% WHERE 17% If 21%

Dans un autre exemple de réalisation, on pourra trouver une phase vitreuse constituée en proportions molaires de : ZnO + MeO 62 % B₂O₃ 12 % Al₂O₃ 5 % SiO₂ 21 % In another embodiment, we can find a glassy phase consisting in molar proportions of: ZnO + MeO 62% WHERE 12% Al₂O₃ 5% If 21%

Le mélange de départ pour une telle composition isolante comprendra en outre une phase amorphe. La phase vitreuse et la phase amorphe sont associées en proportions volumiques telles que : Phase vitreuse 3 à 13 % et de préférence 5 % Phase amorphe 97 à 87 % et de préférence 95 %. The starting mixture for such an insulating composition will also comprise an amorphous phase. The glassy phase and the amorphous phase are associated in volume proportions such as: Glassy phase 3 to 13% and preferably 5% Amorphous phase 97 to 87% and preferably 95%.

Selon l'invention la phase amorphe sera constituée de silice amorphe choisie pour son faible coefficient de dilatation.According to the invention, the amorphous phase will consist of amorphous silica chosen for its low coefficient of expansion.

Pour mener à bien la réalisation d'une encre sérigraphiable isolante selon l'invention, on élabore tout d'abord un verre dont les proportions molaires correspondent aux fourchettes indiquées plus haut ou à l'un des exemples cités. Le verre ainsi obtenu est broyé. Pendant cette opération est incorporée pour obtenir mélange homogène la poudre formant la phase amorphe dans les proportions volumiques choisies.To carry out the production of an insulating screen-printing ink according to the invention, a glass is first of all produced, the molar proportions of which correspond to the ranges indicated above or to one of the examples cited. The glass thus obtained is ground. During this operation is incorporated to obtain a homogeneous mixture the powder forming the amorphous phase in the chosen volume proportions.

Ce broyage peut être effectué dans un milieu liquide tel que l'eau. Le résultat du broyage est ensuite séché puis dispersé dans un véhicule organique.This grinding can be carried out in a liquid medium such as water. The result of the grinding is then dried and then dispersed in an organic vehicle.

En tant que véhicule organique propre à rendre ce mélange de départ sérigraphiable, on peut utiliser une solution contenant un polymère, par exemple une solution d'éthylcellulose dans un terpinéol ou un mélange à base de terpinéol. Ce véhicule organique peut représenter avant cuisson 10 à 40 % du poids de l'encre sérigraphiable. Les proportions du véhicule organique par rapport à l'encre sont choisies en fonction du comportement rhéologique voulu.
Comme dans le cas présent aucun des matériaux choisis pour réaliser le dispositif de chauffage sur vitrocéramique ne présente le risque de s'oxyder à l'air, la cuisson de l'encre est effectuée à l'air libre. Le véhicule organique est ainsi consumé à l'aide de l'oxygène de l'air. Une cuisson à environ 900°C est réalisée au four dit four à passage, pendant environ 10 mn.
As an organic vehicle capable of making this starting mixture screen-printing, it is possible to use a solution containing a polymer, for example a solution of ethylcellulose in a terpineol or a mixture based on terpineol. This organic vehicle can represent before cooking 10 to 40% of the weight of the screen-printing ink. The proportions of the organic vehicle relative to the ink are chosen according to the desired rheological behavior.
As in the present case, none of the materials chosen to make the heating device on ceramic glass presents the risk of oxidizing in air, the ink is baked in the open air. The organic vehicle is thus consumed using oxygen from the air. Cooking at around 900 ° C. is carried out in a so-called pass-through oven for about 10 minutes.

Il est d'autre part connu du brevet EP- 0 048 063 un mélange de départ pour une composition résistive de CTR de l'ordre de : ±100 10⁻6°C⁻¹. Cette composition comprend une phase active constituée d'un mélange d'hexaborures métalliques bivalents et/ou trivalents, et d'une fritte de verre formée de borate de calcium et éventuellement de silice.On the other hand, it is known from patent EP-0 048 063 a starting mixture for a resistive composition of CTR of the order of: ± 100 10⁻6 ° C⁻¹. This composition comprises an active phase consisting of a mixture of bivalent and / or trivalent metallic hexaborides, and a glass frit formed of calcium borate and optionally of silica.

Mais dans cette encre résistive la composition du verre n'est pas prévue pour constituer une résistance chauffante, et tout particulièrement une résistance chauffante capable d'être portée à 650°C par effet Joule, et de présenter un CTR positif et qui le reste en vieillissant.However, in this resistive ink, the composition of the glass is not intended to constitute a heating resistance, and more particularly a heating resistance capable of being brought to 650 ° C. by the Joule effect, and of presenting a positive CTR and which remains so in aging.

C'est pourquoi selon l'invention, un mélange de départ pour une encre sérigraphiable apte à réaliser la couche 23, dotée de cette propriété et d'un coefficient de dilatation proche de celui du matériau vitrocéramique comprendra d'abord une phase active constituée en proportion volumique du mélange total de :
RuO₂ ≃ 15 à 40 % et notamment de préférence ≃ 30 %
CuO ≃ 0 à 5 %
et une phase vitreuse constituée de composition semblable à celle du vitrocéram fondue et trempée en proportions volumiques complémentaires du mélange ci-dessus. Ainsi grâce à un cycle thermique judicieux, le verre fond assurant la fonction de liant puis au cours de ce même cycle recristallise en vitrocéram. Le vitrocéram ainsi formé permet d'obtenir le coefficient de dilatation approprié.
This is why, according to the invention, a starting mixture for a screen-printing ink capable of producing the layer 23, endowed with this property and with a coefficient of expansion close to that of the glass-ceramic material, will firstly comprise an active phase consisting of volume proportion of the total mixture of:
RuO₂ ≃ 15 to 40% and in particular preferably ≃ 30%
CuO ≃ 0 to 5%
and a glassy phase made up of a composition similar to that of melted vitroceram and quenched in volume proportions complementary to the above mixture. Thus, thanks to a judicious thermal cycle, the glass melts ensuring the function of binder then during this same cycle recrystallizes from vitroceram. The glass-ceramic thus formed makes it possible to obtain the appropriate coefficient of expansion.

D'autre part le CTR de cette résistance,lorsqu'elle est réalisée avec les proportions préférentielles,est de :
+ 520 ppm°C⁻¹ entre 20 et 300°C
et + 150 ppm°C⁻¹ entre 300 et 650°C.
On the other hand, the CTR of this resistance, when it is carried out with the preferred proportions, is:
+ 520 ppm ° C⁻¹ between 20 and 300 ° C
and + 150 ppm ° C⁻¹ between 300 and 650 ° C.

Pour réaliser l'encre sérigraphiable résistive, la phase vitreuse est broyée et les oxydes constituant la phase active sont incorporés comme il a été dit précédemment pour la réalisation de l'encre isolante. A la suite de quoi le mélange est incorporé à un véhicule rhéologique déjà décrit.To make the resistive screen-printing ink, the glassy phase is ground and the oxides constituting the phase active are incorporated as it was said previously for the production of insulating ink. Following this, the mixture is incorporated into a rheological vehicle already described.

Selon l'invention, une encre sérigraphiable apte à réaliser les lignes C₁ et C₂ en couche 22, sera formée dans un exemple d'une poudre d'argent (Ag) + palladium (Pd) ou platine (Pt), ou bien encore dans un autre exemple d'une poudre d'argent (Ag) seule, auxquels on ajoute une faible proportion d'oxyde de cuivre (CuO), cette poudre étant ensuite incorporée à un véhicule rhéologique tel que décrit précédemment.According to the invention, a screen-printing ink capable of producing lines C₁ and C₂ in layer 22, will be formed in one example of a silver powder (Ag) + palladium (Pd) or platinum (Pt), or even in another example of a silver powder (Ag) alone, to which a small proportion of copper oxide (CuO) is added, this powder then being incorporated into a rheological vehicle as described above.

Les tableaux ci-après résument les compositions des mélanges de départ pour les couches 21, 22 et 23.

Figure imgb0004
Tableau II mélange de départ pour la couche 23 résistive Composition du mélange en proportions volumiques Exemple préférentiel Composition générale Phase vitreuse = composition semblable au vitrocéram ≃ 65 % Complément à 100 % RuO₂ ≃ 30 % ≃ 15 à 40 % Phase active CuO ≃ 5 % ≃ 0 à 5 % Tableau III mélange de départ pour la couche 22 conductrice Composition du mélange en proportions volumiques Exemple I Exemple 2 Ag 80 à 100 % Ag 80 à 100 % CuO 20 à 0 % Pd/Pt 20 à 0 % CuO en proportions complémentaires The tables below summarize the compositions of the starting mixtures for layers 21, 22 and 23.
Figure imgb0004
Table II starting mixture for resistive layer 23 Composition of the mixture in volume proportions Preferred example General composition Glassy phase = composition similar to vitroceram ≃ 65% 100% supplement RuO₂ ≃ 30% ≃ 15 to 40% CuO active phase ≃ 5% ≃ 0 to 5% starting mixture for conductive layer 22 Composition of the mixture in volume proportions Example I Example 2 Ag 80 to 100% Ag 80 to 100% CuO 20 at 0% Pd / Pt 20 to 0% CuO in complementary proportions

Claims (6)

  1. A glass-ceramic heating element comprising at least a flat electric heating member provided on one surface of a glass-ceramic plate, said member comprising, starting from said surface, an insulating first layer (21), a conductive second layer (22) for the formation of two electrical supply lines (C₁, C₂), and a resistive third layer (23) for the formation of a heating resistor (R), characterized in that, for giving the insulating first layer (21) appropriate characteristics to preclude leakage of current from the heating resistor to the ceramic plate at high temperatures and, in addition, for giving said first layer properties compatible with both the glass-ceramic plate and the other layers, said insulating layer is formed by a screen-printing process using a starting mixture for screen-printing ink, which mixture comprises, on the one hand: a vitreous phase formed by molar proportions of: ZnO + MeO 50 to 65 % B₂O₃ 10 to 20 % Al₂O₃ 0 to 10% SiO₂ 40 to 5%
    in which MeO is an oxide chosen from refractory oxides such as:
    MgO, CaO, and in which MeO is associated with ZnO in the molar proportions from 0 to 10% of the total of the vitreous phase, such that the quantities of ZnO + MeO constitute 50 to 65% in moles of said vitreous phase, and which comprises, on the other hand, an amorphous phase formed by amorphous silicon dioxide, and the vitreous phase is associated with the amorphous phase in proportions of 3 to 13 % by volume for the vitreous phase and 97 to 87 % for the amorphous phase.
  2. A heating element as claimed in Claim 1, characterized in that in the starting mixture for the formation of the insulating layer (21) the vitreous phase comprises, in molar proportions: ZnO + MeO 62 % SiO₂ 21 % B₂O₃ 17 %
  3. A heating element as claimed in Claim 1, characterized in that in the starting mixture for the formation of the insulating layer (21) the vitreous phase comprises, in molar proportions: ZnO + MeO 62 % SiO₂ 21 % B₂O₃ 12 % Al₂O₃ 5 %
  4. A heating element as claimed in any one of the Claims 1 to 3, characterized in that in the starting mixture for the formation of the insulating layer (21) the vitreous phase is in a proportion of 5% and the amorphous phase in a proportion of 95% by volume of the total mixture.
  5. A heating element as claimed in any one of the Claims 1 to 4, characterized in that, for giving the resistive third layer (23) properties compatible with the glass-ceramic plate and the other layers, said third layer is formed by a screen-printing process using a starting mixture for screen-printing ink, which mixture has an active phase
    which in proportions by volume of the total mixture comprises: RuO₂ 15 to 40 % CuO 0 to 5 %
    and a vitreous phase comprising a composition similar to that of the glass-ceramic in complementary proportions by volume.
  6. A heating element as claimed in any one of the Claims 1 to 5, characterized in that, for giving the conductive second layer (22) properties compatible with the glass-ceramic plate and the other layers, said second layer is formed by a screen-printing process using a starting mixture for screen-printing ink, which starting mixture comprises silver powder (Ag) associated with powder of either copper oxide (CuO) or palladium (Pd) in respective proportions by volume of from 80 to 100 % for the silver (Ag) and from 20 to 0 % for the copper oxide (CuO) or the palladium (Pd).
EP88202637A 1987-11-24 1988-11-23 Vitroceramic heating element Expired - Lifetime EP0319079B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8716255A FR2623684A1 (en) 1987-11-24 1987-11-24 VITROCERAMIC HEATING ELEMENT
FR8716255 1987-11-24

Publications (2)

Publication Number Publication Date
EP0319079A1 EP0319079A1 (en) 1989-06-07
EP0319079B1 true EP0319079B1 (en) 1993-09-29

Family

ID=9357094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88202637A Expired - Lifetime EP0319079B1 (en) 1987-11-24 1988-11-23 Vitroceramic heating element

Country Status (5)

Country Link
US (1) US4973826A (en)
EP (1) EP0319079B1 (en)
JP (1) JP2661994B2 (en)
DE (1) DE3884569T2 (en)
FR (1) FR2623684A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022845A1 (en) * 1990-07-18 1992-01-23 Schott Glaswerke TEMPERATURE SENSOR OR SENSOR ARRANGEMENT MADE OF GLASS CERAMIC AND CONTACTING FILM RESISTORS
US5221829A (en) * 1990-10-15 1993-06-22 Shimon Yahav Domestic cooking apparatus
JPH05198356A (en) * 1991-02-26 1993-08-06 Lapin Demin Gmbh Plane heating element and manufacture thereof
KR0146624B1 (en) * 1994-12-19 1998-09-15 김광호 Credit dealing card and credit dealing apparatus and method thereof
US5657532A (en) * 1996-01-16 1997-08-19 Ferro Corporation Method of making insulated electrical heating element using LTCC tape
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
US5973298A (en) * 1998-04-27 1999-10-26 White Consolidated Industries, Inc. Circular film heater and porcelain enamel cooktop
DK0967838T3 (en) * 1998-06-25 2005-11-28 White Consolidated Ind Inc Thin Film Heating Devices
DE19836148A1 (en) * 1998-08-10 2000-03-02 Manfred Elsaesser Resistance surface heating element
DE19855481A1 (en) * 1998-12-01 2000-06-08 Siceram Gmbh Electric cooktop
US6225608B1 (en) 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
US6534751B2 (en) * 2000-02-28 2003-03-18 Kyocera Corporation Wafer heating apparatus and ceramic heater, and method for producing the same
WO2001078456A1 (en) * 2000-04-07 2001-10-18 Ibiden Co., Ltd. Ceramic heater
WO2001084887A1 (en) * 2000-04-29 2001-11-08 Ibiden Co., Ltd. Ceramic heater
DE10111734A1 (en) * 2001-03-06 2002-09-26 Schott Glas Ceramic cooking system with glass ceramic plate, insulation layer and heating elements
DE10110792B4 (en) * 2001-03-06 2004-09-23 Schott Glas Ceramic cooking system with glass ceramic plate, insulation layer and heating elements
DE10112236C1 (en) * 2001-03-06 2002-10-24 Schott Glas Ceramic hob
WO2002104073A1 (en) * 2001-06-19 2002-12-27 Ibiden Co., Ltd. Ceramic heater
DE10225337A1 (en) * 2002-06-06 2003-12-24 Schott Glas Cooking system with directly heated glass ceramic plate
US20050167414A1 (en) * 2004-01-30 2005-08-04 Po-Chun Kuo Cooking device with a thick film resistive element heater
US6991967B2 (en) * 2004-02-23 2006-01-31 Asm Assembly Automation Ltd. Apparatus and method for die attachment
CN101164369A (en) * 2005-03-25 2008-04-16 汉高公司 Compositions and processes for assembling appliances
US20150257576A1 (en) * 2012-10-11 2015-09-17 Arcelik Anonim Sirketi Wireless cooking appliance operated on an induction heating cooktop
CN103731940A (en) * 2012-10-16 2014-04-16 张鸿鸣 Microcrystal heating element and metal microcrystal heating element
TR201408916A2 (en) * 2014-07-25 2016-02-22 Bsh Ev Aletleri San Ve Tic As A COOKING DEVICE HAVING AN ELECTRICAL TRANSMISSlON ELEMENT
KR101762159B1 (en) * 2016-02-24 2017-08-04 엘지전자 주식회사 The surface heater, The electric range comprising the same, and The manufacturing method for the same
KR102111109B1 (en) * 2017-02-21 2020-05-14 엘지전자 주식회사 The surface heater, the electric range comprising the same, and the manufacturing method for the same
US10917942B2 (en) * 2017-07-31 2021-02-09 Samsung Electronics Co., Ltd. Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure
CN108684089A (en) * 2018-04-20 2018-10-19 江苏澳盛复合材料科技有限公司 A kind of heating plate
KR102091251B1 (en) * 2018-08-21 2020-03-19 엘지전자 주식회사 Electric Heater
KR102159802B1 (en) * 2018-08-21 2020-09-25 엘지전자 주식회사 Electric Heater
KR102123677B1 (en) * 2018-08-21 2020-06-17 엘지전자 주식회사 Electric Heater
KR102056084B1 (en) * 2018-08-21 2019-12-16 엘지전자 주식회사 Electric Heater
US11825568B2 (en) * 2021-04-01 2023-11-21 Whirlpool Corporation Segmented thermoresistive heating system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD109281A5 (en) * 1972-12-20 1974-10-20
US3813520A (en) * 1973-03-28 1974-05-28 Corning Glass Works Electric heating unit
US3978316A (en) * 1975-09-19 1976-08-31 Corning Glass Works Electrical heating unit
DE7736873U1 (en) * 1977-12-02 1979-05-10 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart COOKING PLATE, PREFERABLY CERAMIC GLASS HOB
FR2451899A1 (en) * 1979-03-23 1980-10-17 Labo Electronique Physique DIELECTRIC COMPOSITION, SERIGRAPHIABLE INK COMPRISING SUCH A COMPOSITION, AND PRODUCTS OBTAINED
FR2490210A1 (en) * 1980-09-15 1982-03-19 Labo Electronique Physique STARTING MIXTURE FOR A HIGHLY RESISTANT COMPOSITION, INK SERIGRAPHIABLE CONSTITUTED WITH AND ELECTRIC CIRCUITS SO PERFORMED
JPS60145594U (en) * 1984-03-02 1985-09-27 東京コスモス電機株式会社 Resistor element for planar heating element
DE3536268A1 (en) * 1985-10-11 1987-04-16 Bayer Ag SURFACE HEATING ELEMENTS

Also Published As

Publication number Publication date
JP2661994B2 (en) 1997-10-08
FR2623684A1 (en) 1989-05-26
DE3884569D1 (en) 1993-11-04
JPH025392A (en) 1990-01-10
US4973826A (en) 1990-11-27
DE3884569T2 (en) 1994-04-07
EP0319079A1 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
EP0319079B1 (en) Vitroceramic heating element
US6118102A (en) Immersion heating element sandwiched between two substrates
KR940010815B1 (en) Electrically heatable transparency
US4889974A (en) Thin-film heating element
US6125234A (en) Cooking apparatus with transparent heating plates
US5057659A (en) Microwave heating utensil with particulate susceptor layer
US5889261A (en) Electrical heating elements
JPH09145489A (en) Resistance thermometer
JP2001523036A (en) Quartz substrate heater
WO2006030165A1 (en) Electric heating structure
US7423239B2 (en) Laminated element provided with a heated layer
US4751358A (en) Cooking container having a browning coating for microwave ovens and a method of forming the coating
CA3029461A1 (en) Glazing provided with an electrical conductor device with improved welding areas
US5252809A (en) Panel heating element and process for its production
BE1010927A4 (en) Hot plate, especially hob ceramic material and method of making the same.
US5657532A (en) Method of making insulated electrical heating element using LTCC tape
JPH09186368A (en) Thick film thermoelectric element
CA2463320A1 (en) A radiant electric heating element
FR2502750A3 (en) ASSEMBLY COMPRISING A TEMPERATURE SENSOR FOR RADIATION ELECTRIC HEATING ELEMENTS
US20060118102A1 (en) Cooking system comprising a directly heated glass-ceramic plate
FR2619805A1 (en) METHOD FOR APPLYING A FINE CONDUCTIVE FILM TO A VITROCERAMIC SUPPORT SURFACE, A SUPPORTING SURFACE THUS OBTAINED, AND A HOUSEHOLD COOKING APPARATUS INCLUDING THE SAME
TW201116236A (en) Carrier for heating and keeping warm
FR2744116A1 (en) Substrate used for cooking and/or temperature maintaining devices
EP0497720A1 (en) Glass heating panel
FR2490056A1 (en) Electrically powered heating panel - uses medium resistivity material on heat and electrically insulating base with electric insulator covering to provide uniform heat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19891129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

17Q First examination report despatched

Effective date: 19920212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3884569

Country of ref document: DE

Date of ref document: 19931104

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971114

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051123