WO2001084887A1 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
WO2001084887A1
WO2001084887A1 PCT/JP2001/003777 JP0103777W WO0184887A1 WO 2001084887 A1 WO2001084887 A1 WO 2001084887A1 JP 0103777 W JP0103777 W JP 0103777W WO 0184887 A1 WO0184887 A1 WO 0184887A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
heating element
resistance heating
substrate
ceramic substrate
Prior art date
Application number
PCT/JP2001/003777
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2001084887A1 publication Critical patent/WO2001084887A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic

Definitions

  • the present invention relates to a ceramic heater mainly used in the semiconductor industry, and more particularly to a ceramic heater excellent in uniform control of temperature distribution on a substrate heating surface.
  • a typical semiconductor chip is manufactured by slicing a silicon single crystal into a predetermined thickness to produce a silicon wafer, and then forming a plurality of integrated circuits and the like on the silicon wafer.
  • a silicon wafer placed on an electrostatic chuck is subjected to various processes such as etching and CVD to form a conductive circuit or to apply a resin for resist. After that, heating and drying are performed. Ceramic heaters are often used for such treatments.
  • Japanese Patent Application Laid-Open Nos. Hei 11-43030 and Hei 4-43049 disclose ceramic ceramics made of carbide or nitride.
  • a ceramic heater as shown in FIG. 1 has a configuration in which resistance heating elements are arranged concentrically or spirally.
  • a resistive heating element pattern having an even arrangement, if the pattern is divided into two or more to be individually controlled, interference occurs due to each pattern. In this case, if power is applied excessively in one pattern, it will affect the temperature distribution of other patterns, and it will be impossible to control the temperature distribution accurately over the entire substrate.
  • An object of the present invention is to provide a ceramic having excellent controllability of uniform temperature distribution on a substrate heating surface.
  • An object of the present invention is to provide a heater.
  • Another object of the present invention is to provide a plurality of heating element patterns provided on a single substrate, so that heat interference does not occur between adjacent resistance heating element patterns.
  • the idea is to design the layout of the turns.
  • the present invention is a ceramic heater according to the following gist configuration.
  • a buffer area is provided between the adjacent resistance heating element patterns. Is provided.
  • the buffer region is a region for mitigating heat interference occurring between adjacent resistive heating element patterns.
  • the ceramic substrate has a circular shape.
  • the ceramic substrate is made of a carbide ceramic or a nitride ceramic.
  • the surface of the ceramic substrate is covered with an insulating layer.
  • the insulating layer is formed of a layer coated with an oxide ceramic.
  • the buffer region has a width in a radial direction of the ceramic substrate and a size within a range of 0.5% to 35.5% of the substrate diameter.
  • the buffer region has a width that is more than about twice the distance between the respective resistance heating elements in the resistance heating element pattern.
  • the ceramic substrate according to the above (9) is characterized in that it has a disk shape.
  • the ceramic substrate according to the above (9) is characterized in that it is a charcoal nitride or a nitride ceramic.
  • the width in the radial direction of the non-resistance heating element forming region is 0.5% to 35% of the diameter of the ceramic substrate.
  • the width in the diameter direction of the non-resistance heating element formation region is characterized by exceeding twice the diametric width between the resistance heating elements constituting the resistance heating element formation region.
  • the present invention is a ceramic heater in which a plurality of resistance heating element patterns constituting independent circuits that are individually controlled are provided on the surface or inside of a ceramic substrate.
  • the temperature of the ceramic substrate can be controlled for each part.
  • a thermocouple, a thermopure, or the like is attached and the temperature of the ceramic substrate is measured, the applied power can be controlled for each resistance heating element pattern, and the temperature distribution on the substrate heating surface can be finely adjusted. Will be able to
  • a buffer area which is a non-resistance heating element forming area, is provided between the respective resistance heating element patterns.
  • This buffer area is composed of adjacent resistance heating element patterns This is a region for mitigating the thermal interference that occurs between one another. With such a buffer area, even if a large amount of electric power is applied to one resistive heating element pattern and the temperature of this area rises, the effect of the temperature rise is affected by the presence of the buffer area. Precise temperature distribution can be controlled without spreading to other resistance heating element pan formation areas.
  • FIG. 2 shows that the temperature of a laminar heater having the conventional resistance heating element pattern shown in FIG. 1 is raised to 140 ° C., and a semiconductor wafer at 25 ° C. is placed on the surface of the ceramic substrate.
  • FIG. 9 shows a temporal change in temperature in the middle, center, and outer peripheral portions of the ceramic substrate when held at an interval of 0 zm.
  • the temperature of each part did not stabilize and the temperature distribution was not even after 40 seconds as shown in the figure.
  • the ceramic heater having the resistive heating element pattern according to the present invention shown in FIG. 4 due to the existence of the buffer area, the settling has already been set after the elapse of 40 seconds as shown in FIG.
  • the temperature distribution is almost completely uniform.
  • the buffer area is provided between each of the individually controlled resistance heating element patterns, so that the influence of the temperature change of another adjacent resistance heating element pattern can be reduced. This can be eliminated or reduced, and uniform control of the temperature distribution on the heating surface of the ceramic substrate can be performed quickly and accurately.
  • the ceramic heater of the present invention is formed by combining concentric, spiral, and bent (wavy) resistance heating element patterns and disposing them in the radial direction.
  • the buffer area that is, the area where the resistance heating element pattern is not formed, is an area where the resistance heating element pattern is formed and an area where another resistance heating element circuit is formed adjacent to the area. And where no so-called resistance heating element is formed.
  • the size (distance) of the buffer area in the radial direction of the substrate is determined by the distance between adjacent resistance heating elements in each pattern. It is desirable to make the width larger than the space between them, especially more than twice (radial space).
  • the size (interval) in the radial direction of the substrate between the patterns of the resistance heating elements and the turns is 0.5% to 35%, preferably 0.5% to 35%, in the radial direction (width) of the circular ceramic substrate. Should be about 5% to 30%.
  • the width of the buffer area between the respective resistive heating element patterns is smaller than the above-mentioned width, or if the spacing in the radial direction of the ceramic substrate is less than 5%, heat interference occurs. If it exceeds 0%, the temperature in the buffer region becomes too low, and in any case, the temperature distribution on the heating surface tends to be uneven.
  • FIG. 1 is a rear view of a ceramic substrate illustrating a conventional resistance heating element pattern
  • FIG. 2 is a graph showing a temperature distribution of a conventional ceramic heater
  • FIG. 3 is a temperature distribution of a ceramic heater according to the present invention
  • FIG. 4 is a rear view of a ceramic substrate illustrating a resistance heating element pattern according to the present invention
  • FIG. 5 is a partial cross-sectional view of the ceramic heater, which is partially cut away.
  • the ceramic substrate of the present invention uses a nitride ceramic or a carbide ceramic as a ceramic substrate, and preferably forms an oxide ceramic insulating layer on the surface thereof. This is because nitride ceramics as a substrate material tend to have a low volume resistance at high temperatures due to solid solution of oxygen and the like, and carbide ceramics have conductivity unless they are highly purified. By coating the substrate with an oxide ceramic, a short circuit between the patterns can be prevented even at high temperatures or even when impurities are contained, and the temperature controllability can be further facilitated.
  • nitride ceramic constituting the ceramic substrate examples include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
  • the above-mentioned carbide ceramics include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tanste carbide. And the like. It should be noted that an oxide ceramic may be used as the ceramic substrate, and alumina, silica, glasslite, mullite, zirconia, beryllia, and the like can be used.
  • a sintering aid in the ceramic substrate material.
  • Alkali metal oxides, alkaline earth metal oxides, and rare earth oxides can be used as sintering aids for aluminum nitride.
  • these sintering aids CaO, Y 2 ⁇ 3, Na 2 0, Li. ⁇ , Rb 2 0 3 are preferred.
  • alumina may be used.
  • the content of these sintering aids is desirably 0.1 to 20 wt%.
  • silicon carbide it is preferable to use B 4 C, C, or ALN as a sintering aid.
  • the ceramic substrate contains about 5 to 500 ppm of carbon.
  • the ceramic substrate can be blackened, and when used as a heater, the radiation characteristics of radiant heat can be expected to be improved.
  • the carbon may be amorphous or crystalline. When amorphous carbon is used, it is possible to prevent a decrease in volume resistivity at high temperatures, and when using crystalline one, it is possible to prevent a decrease in thermal conductivity at high temperatures. Because you can. Therefore, depending on the application, both crystalline carbon and amorphous carbon may be used in combination. Further, the content of carbon is more preferably 50 to 2000 ppm.
  • the ceramic substrate has a diameter of 20 Omm or more, especially 12 inches (300 mm) or more. This is because it can be adapted to the next generation of semiconductor wafers.
  • the thickness is preferably 5 Omm or less, particularly preferably 25 mm or less. The reason is that when the thickness of the ceramic substrate exceeds 25 mm, the heat capacity of the ceramic substrate becomes large, and the temperature follow-up property in the case of heating and cooling via the temperature control means 5 is reduced. In this sense, it is optimal that the thickness of the substrate is about 5 mm or more, and the thickness is preferably more than 1.5 mm.
  • an oxide ceramic is desirable, and specifically, silica, alumina, mullite, cordierite, beryllia, or the like can be used.
  • the insulating layer may be formed by subjecting a sol solution obtained by hydrolyzing and polymerizing an alkoxide to spin coating, followed by baking, or by performing a treatment such as sputtering or CVD.
  • the insulating layer may be an oxide layer formed by oxidizing the surface of a ceramic substrate.
  • the semiconductor wafer is directly mounted on the surface (heating surface) of the ceramic substrate on which the wafer is mounted, and the semiconductor wafer is supported on support pins (reflection pins) or spacers.
  • support pins reflection pins
  • spacers spacers.
  • a certain distance may be interposed between the ceramic substrate and the wafer and held.
  • the distance between the substrate heating surface and the semiconductor wafer is desirably about 5 to 500 ⁇ m.
  • a bottomed hole 6 can be provided as needed to embed a thermocouple as a side temperature element. This is because the temperature of the ceramic substrate is measured by the thermocouple, and based on the data, the voltage and the current to each resistance heating element pattern are changed to effectively control the temperature distribution of the entire substrate.
  • the size of the junction of the metal wires of the thermocouple should be the same as or larger than the diameter of each metal wire. For example, 0.5 mm or less is preferable. With this configuration, the heat capacity of the junction is reduced, and the temperature can be accurately and quickly converted to a current value. As a result, the temperature controllability is improved, and the difference in the temperature distribution on the substrate heating surface can be reduced.
  • thermocouple for example, as shown in JIS-C-162 (1980), K-type, R-type, B-type, S-type, E-type, J-type and T-type Can be used.
  • This thermocouple may be bonded to the bottom of the bottomed hole using gold brazing, silver brazing, or the like, or may be inserted into the bottomed hole and sealed with a heat-resistant resin.
  • a heat-resistant resin for example, a thermosetting resin, particularly, an epoxy resin, a polyimide resin, a bismaleimide-triazine resin, or the like can be used. These resins may be used alone or in combination of two or more.
  • gold brazing it is selected from 37-80.5wt% Au-63-; L9.5wt% Cu alloy, 81.5-82.5wt Au-18.5-17.5wt% Ni alloy At least one is preferred. These are because the melting temperature is 900 ° C or higher, and it is difficult to melt even in a high temperature region.
  • the silver solder for example, an Ag—C 11-based solder can be used.
  • the resistance heating element is divided into at least two or more patterns composed of independent circuits that can be controlled individually. More preferably, it is divided into the following patterns. Since the resistance heating element pattern is divided into a plurality of parts, the amount of heat generated is changed by individually controlling the power supplied to each resistance heating element pattern, and the temperature distribution of the entire substrate, that is, the temperature of the wafer heating surface The distribution can be finely adjusted. As examples of the pattern of the resistance heating element, concentric, spiral, eccentric, bent (wavy), etc. are well suited.
  • a conductive paste containing metal particles is applied to the surface of the ceramic substrate to form a conductive paste layer having a predetermined pattern, which is then baked. And firing the above metal particles.
  • the firing of the metal particles is desirably performed so that the metal particles fuse with each other and between the metal particles and the ceramic.
  • FIG. 4 is an example of a preferred embodiment of the resistance heating element pattern of the present invention.
  • a concentric resistive heating element pattern 2a is provided on the front surface (substrate back surface) of the ceramic substrate 1 opposite to the non-heated surface, a central portion is provided with two concentric resistive heating elements,
  • the resistance heating element patterns 2b, 2b, and the outer periphery are divided into four wavy resistance heating element patterns 2c in the circumferential direction, each with a buffer area 3 It was formed.
  • the buffer region 3 Due to the presence of the buffer region 3, for example, even if a large amount of power is applied to the resistance heating element pattern 2 b and the temperature rises, the buffer region 3 exists, and concentric circular resistance heating element patterns 2 a and The wavy resistance on the outside has no effect on the heating element pattern 2c and does not interfere with each other.c Therefore, the temperature such as lowering the temperature of the resistance heating element pattern 2a or the resistance heating element pattern 2c No control is required, and the temperature difference on the heated surface of the substrate can be reduced quickly with simple control.
  • Each of the resistance heating element patterns 2 a, 2 b, 2 b ′, and 2 c is formed in a concentric, spiral, or bent (wave-shaped) pattern as described above. It is desirable to form a circuit in the evening formation region. This is because it is easier to control if the control unit is a single circuit.
  • the thickness of the resistance heating element itself is preferably about 1 to 30 m, more preferably 1 to 10 m.
  • the line width of the resistive heating element is preferably about 0.1 to 20 mm, more preferably about 0.1 to 5 mm.
  • Such a resistance heating element can vary its resistance value depending on its width and thickness, but the above range is the most practical. The resistance value increases as the thickness decreases and the resistance decreases.
  • the resistance heating element By arranging the resistance heating element as described above, the heat generated from the resistance heating element is diffused throughout the ceramic substrate while propagating in the thickness direction of the substrate, and the object to be heated (silicon wafer) The temperature distribution on the surface where the object is heated is made uniform, and as a result, the temperature in each part of the object to be heated is made uniform.
  • This resistance heating element may have a rectangular or elliptical cross section, but is preferably flat. This is because the flattened surface is more scattered toward the wafer heating surface, and thus it is difficult to achieve a non-uniform temperature distribution on the wafer heating surface. That is, the aspect ratio (width of the heating element / thickness of the heating element) of the cross section of the resistance heating element is desirably about 10 to 500,000. Adjusting this range will increase the resistance of the heating element. This is because the uniformity of the temperature of the wafer heating surface can be ensured.
  • the aspect ratio is smaller than the above range, the amount of heat transmitted in the direction of the heating surface of the ceramic substrate 1 to the wafer decreases, and the heat distribution approximated to the pattern of the heating element becomes smaller. It occurs on the heated surface, and conversely the aspect ratio
  • the aspect ratio of the cross section is 10 to 500.
  • the aspect ratio of the resistance heating element is as follows when the resistance heating element is formed on the surface of the substrate. If it is formed inside, it is desirably 200 to 500,000.
  • the aspect ratio can be increased when the resistance heating element is formed inside the substrate.
  • the distance between the wafer heating surface and the heating element becomes shorter, and This is because it is necessary to make the heating element itself flat because the temperature uniformity of the heating element decreases.
  • the conductive paste for forming such a resistance heating element is not particularly limited, but contains metal particles or conductive ceramic for ensuring conductivity, and also contains a resin, a solvent, a thickener, etc. Is preferred.
  • metal particles for example, noble metals (gold, silver, platinum, palladium), lead, tungsten, molybdenum, nickel and the like are preferable. These may be used alone or in combination of two or more. This is because these metals are relatively hard to oxidize and have sufficient resistance to generate heat.
  • the conductive ceramic include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more.
  • the metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 ⁇ m. If it is too small, less than 0.1 m, it is liable to be oxidized, while if it exceeds 100 m ', sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. Use these metal particles -In that case, it may be a mixture of the above-mentioned spheres and the above-mentioned flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the heating element and the nitride ceramic is improved. This is advantageous because it can ensure that the resistance can be increased.
  • Examples of the resin used for the conductor base include an epoxy resin and a phenol resin.
  • Examples of the solvent include isopropyl alcohol.
  • Examples of the thickener include cellulose.
  • the conductor paste is formed by adding a metal oxide to metal particles and sintering the metal particles and the metal oxide as a resistance heat generator.
  • the ceramic substrate ie, the nitride ceramic or the carbide ceramic
  • the ceramic substrate ie, the nitride ceramic or the carbide ceramic
  • the surface of metal particles and the surfaces of nitride ceramics and carbide ceramics are slightly oxidized. This does not mean that the oxide films are formed by sintering through the metal oxide to form an integrated film, thereby improving the adhesion between the metal particles and the nitride ceramic or the carbide ceramic. It is thought.
  • metal oxide for example, at least one selected from the group consisting of lead oxide, zinc oxide, silica, boron oxide (B 2 ⁇ 3 ), alumina, methanol and titania is preferable. This is because these oxides can improve the adhesion between the metal particles and the nitride ceramic or the carbide ceramic without increasing the resistance value of the heating element.
  • the amount of the metal oxide to be added to the metal particles is preferably from 0.1 wt% to less than 10 wt%. Further, when the heating element is formed by using the conductor paste having such a configuration, the sheet resistivity is preferably 1 to 45 ⁇ / port.
  • the sheet resistivity exceeds 45 ⁇ , the calorific value becomes too small with respect to the applied voltage, and it is difficult to control the calorific value of a ceramic substrate provided with a resistive heating element on its surface. If the added amount of the metal oxide is 1 O wt% or more, the sheet resistivity exceeds 50 ⁇ , and the calorific value becomes too small, so that the temperature control becomes difficult and the uniformity of the temperature distribution decreases. I do.
  • the surface of the heating element is desirably covered with a metal coating layer 8 as shown in FIG. This is to prevent the internal resistance heating element (metal sintered body) from being oxidized and changing the resistance value.
  • the thickness of the metal covering layer 8 to be formed is preferably 0.1 to 10 zm.
  • the metal used for forming the metal coating layer 8 is not particularly limited as long as it is a non-oxidizing metal. Specific examples include gold, silver, palladium, platinum, and nickel. Can be These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • connection terminal 9 with pins for connecting to an external power supply.
  • the connection terminal 9 is attached to the resistance heating element 2 via a solder layer 10. This is because the thermal diffusion of the solder is prevented.
  • Examples of the connection terminal 9 include, for example, terminal pins made of console.
  • solder layer 10 is preferably 0.1 to 50 m. This is because the range is sufficient to secure connection by soldering.
  • a slurry is prepared by mixing a sintering aid such as yttria or a binder as necessary with the powder of the above-mentioned nitride ceramic or carbide ceramic, and then preparing the slurry.
  • a sintering aid such as yttria or a binder as necessary with the powder of the above-mentioned nitride ceramic or carbide ceramic, and then preparing the slurry.
  • thermocouple a temperature measuring element such as a thermocouple or a portion serving as a through hole 4 into which a lift pin 5 for supporting a silicon wafer can be vertically moved as required, in the above-described formed body.
  • the portion which becomes the bottomed hole 6 of the above is formed.
  • the formed body is heated, fired, and sintered to produce a ceramic plate.
  • the ceramic substrate 1 is manufactured by processing into a predetermined shape, but may be a shape that can be used as it is after firing.
  • Heating and firing may be performed at a temperature equal to or higher than the sintering temperature.
  • the temperature is 100 to 250 ° C.
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent.
  • the conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer.
  • the resistance heating element should be printed in a pattern as shown in Fig. 4 because it is necessary to keep the entire substrate at a uniform temperature.
  • the conductor paste layer is desirably formed so that the cross section of the resistance heating element 2 after firing is rectangular and flat.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 1 is heated and baked to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the substrate 1 to form the resistance heating element 2 .
  • the heating and firing temperature is preferably from 500 to 100 ° C.
  • the metal oxide is added to the conductor paste, the metal particles, substrate and Since the metal oxide and the metal oxide are sintered and integrated, the adhesion between the resistance heating element 2 and the ceramic substrate 1 is improved.
  • the metal coating layer 8 can be formed by electrolytic plating, electroless plating, sputtering or the like, but in consideration of mass productivity, electroless plating is optimal.
  • connection terminal 9 for connection to an external power supply is attached to an end of the pattern of the resistance heating element 2 via a solder layer 10.
  • thermocouples are fixed to the bottomed holes 6 with silver braze, gold braze, etc., sealed with polyimide or other heat-resistant resin, and the production of ceramic heaters is completed.
  • an electrostatic electrode may be provided to serve as a static chuck, or a cap top conductor layer may be provided to serve as a wafer prober.
  • thermocouple (diameter: 1.1 mm, depth 2 mm).
  • a disk having a diameter of 8 inches (210 mm) was cut out from the plate to obtain a ceramic plate (ceramic substrate 1).
  • a conductive paste was printed on the ceramic substrate 1 obtained in the above (3) by screen printing.
  • the printing patterns were two concentric patterns and four wavy patterns on the outer periphery as shown in FIG.
  • the distance between the resistance heating element pattern 2a and the resistance heating element pattern 2b is 1 mm
  • the distance between the resistance heating element pattern 2b and the resistance heating element pattern 25c is 20mm
  • the resistance heating element pattern 2 c The distance between them is 8 mm.
  • the distance between the circumferentially adjacent resistance heating element patterns 2c is 8 mm. Also,
  • Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used for forming through holes in printed wiring boards, was used.
  • This conductive paste is a silver-lead paste, and based on 100 parts by weight of silver, lead oxide (5 wt%), zinc oxide (55 wt%), silica (10 wt%), boron oxide (25 wt%) and It contained 7.5 parts by weight of metal oxide consisting of alumina (5 wt%).
  • the silver particles had an average particle size of 4.5 ⁇ m and were scaly.
  • the ceramic substrate on which the conductive paste is printed is heated and fired at 780 ° C. 5 to sinter the silver and lead in the paste and to bake the substrate 1 to generate resistance heat.
  • Body 2 formed.
  • the silver-lead resistance heating element 2 had a thickness of 5 m, a width of 2.4 mm, and an area resistivity of 7.7 ⁇ / m2.
  • the ceramic substrate 1 prepared in (5) above was treated with nickel sulfate 80 g / l, sodium hypophosphite 24 g / l, sodium acetate 12 g / l, boric acid 8 g / l, and ammonium chloride 6 gZl.
  • the metal coating layer (nickel layer) 8 having a thickness of 1 m was deposited on the surface of the silver-lead resistance heating element 2 by immersing it in an electroless nickel plating bath composed of an aqueous solution.
  • a silver-lead solder paste (manufactured by Tanaka Kikinzoku) was printed by screen printing on the portion where the connection terminals 9 with pins for securing connection to the power supply were to be formed, thereby forming a solder layer 150.
  • Kovar external terminal connection pins 9 were placed on the solder layer 10 and reflowed by heating at 420 ° C., and the connection terminals 9 were attached to the surface of the resistance heating element 2.
  • a thermocouple was buried in the bottomed hole 6 for temperature control, filled with polyimide resin, and baked at 190 ° C for 2 hours to obtain a ceramic heater (Fig. 4). .
  • Aluminum nitride powder manufactured by Tokuyama, average particle size: LI j
  • yttria average particle size: 0.4 jam
  • 4 parts by weight acrylic binder, 11.5 parts by weight, dispersing agent, 0.5 parts by weight
  • a green sheet having a thickness of 0.47 mm was obtained by molding using a paste obtained by mixing 53 parts by weight of alcohol composed of ethanol and ethanol by a dough plate method.
  • connection pad for connection with the connection terminal pin 9
  • a conductive paste B was prepared by mixing 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 ⁇ m, 1.9 parts by weight of an acrylic binder, 3.7 parts by weight of a terpionone solvent, and 0.2 parts by weight of a dispersant. Prepared.
  • the conductive paste A was printed on a green sheet by a screen printing method to form a conductive paste layer.
  • As the printing pattern three concentric patterns as shown in FIG. 4 were formed near the center and four wavy patterns were formed on the outer periphery.
  • the distance between the resistance heating element pattern 2a and the resistance heating element pattern 2b is 7 O mm
  • the distance between the resistance heating element pattern 2b and the resistance heating element pattern 2c is 20 mm
  • the distance between the heating elements is 2 mm.
  • the through-hole provided in the substrate 1 was filled with the conductive paste B.
  • Tungsten paste is further printed on the green sheet after the above processing -37 green sheets not to be laminated were stacked on the upper side (heating surface) and 13 on the lower side at 130 ° C and a pressure of 80 kg / cm.
  • the obtained laminate was degreased in a nitrogen gas at 600 ° C for 5 hours, and subjected to a hot press at 1890 ° C and a pressure of 150 kg / cm for 3 hours to form a 3 mm-thick aluminum nitride 5 plate. I got a body. This is cut out into a 210mm disk, with a thickness of 6 zm and a width of 1
  • a ceramic heater having a 0 mm resistance heating element embedded therein was obtained.
  • connection terminal 9 for power supply connection was fixed.
  • connection terminals 9 is desirably a structure that supports the tungsten support at three points. This is because connection reliability can be ensured.
  • thermocouple of Example 1 for temperature control was inserted and buried in the bottomed hole 6, embedded with a silicon sol, and dried at 100 ° C for 1 hour to produce a ceramic heater. Completed.
  • Example 1 a single concentric resistive heating element pattern 2 having spirals having different diameters arranged on the entire substrate as shown in FIG.
  • the diameter of the ceramic substrate 1 is 210 mm
  • the resistance heating element pattern is 2.4 mm
  • the radial width between the resistance heating elements is 4.8 mm.
  • Example 2 It is the same as in Example 1, but has three spiral (concentric) patterns as shown in FIG. 1, and four wavy patterns on the outer periphery.
  • the distance between the resistive heating element pattern 2a and the resistive heating element pattern 2b is 77mm
  • the distance between the resistive heating element pattern 2b and the resistive heating element pattern 2c is 20mm
  • the distance between the adjacent Resistance heating element pattern The distance between 2c is 0.8 mm.
  • the distance between the resistance heating elements in the resistance heating element pattern is l mm.
  • Example 1 and Comparative Example 1 were connected to a temperature controller (Omron E5ZE) equipped with a calculation unit, a power supply unit, and a control unit, and the temperature was raised to 140 ° C. Over time, the change in the surface temperature of the ceramic substrate over time was measured when the wafer with the temperature sensor at 25 ° C. was held close to a distance of 100 ⁇ m. The results are shown in FIGS. 2 and 3.
  • FIG. 3 shows Example 1 and FIG. 2 shows Comparative Example 1.
  • Example 1 the temperature returned to 140 ° C. after the elapse of 40 seconds, and was completely settled. However, in Comparative Example 1, it was not settled even after 40 seconds had elapsed. It took 60 seconds to settle.
  • the ceramic heater of the present invention it was confirmed that the temperature distribution on the heating surface can be easily and reliably uniformized with a simple control when the resistance heating element is divided into a plurality and controlled. .
  • the ceramic heater of the present invention is used for an apparatus for manufacturing a semiconductor or inspecting a semiconductor.
  • Examples include an electrostatic chuck, a wafer prober, and a susceptor.
  • an electrostatic chuck in addition to the resistance heating element, an electrostatic electrode,
  • the RF electrode When the RF electrode is used as a wafer prober, a check top conductor layer is formed on the surface as a conductor, and the guard electrode and ground electrode are conductive inside. It is formed as a body. Further, the ceramic substrate for a semiconductor device of the present invention is preferably used at 100 ° C. or higher, preferably 200 ° C. or higher. The upper temperature limit is 800 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

A ceramic heater comprises resistance heating body patterns on a substrate and buffer areas among the adjacent resistance heating body patterns so as to prevent thermal interference among the adjacent resistance heating body patterns. The controllability of the uniform temperature distribution in the heating surface of the substrate is especially excellent.

Description

曰月糸田 セラミヅクヒー夕 技術分野  Satsuki Itoda Ceramics
本発明は、 主に半導体産業において使用されるセラミックヒータに関し、 特に、 基板加熱面における温度分布の均一制御性に優れるセラミックヒ一夕である。 The present invention relates to a ceramic heater mainly used in the semiconductor industry, and more particularly to a ceramic heater excellent in uniform control of temperature distribution on a substrate heating surface.
近年、 半導体は、 単に電子産業に止まらず、 種々の産業界において不可欠な部品 の 1つとして重用されている。 例えば、 代表的な半導体チップは、 シリコン単結 晶を所定の厚さにスライスしてシリコンウェハを作製し、 その後、 このシリコン ウェハに複数の集積回路等を形成することにより製造されている。 In recent years, semiconductors have been used not only in the electronics industry but also as one of the indispensable components in various industries. For example, a typical semiconductor chip is manufactured by slicing a silicon single crystal into a predetermined thickness to produce a silicon wafer, and then forming a plurality of integrated circuits and the like on the silicon wafer.
この半導体チヅプの製造工程においては、 静電チヤヅク上に載置したシリコン ウェハに、 エッチングや C VD等の種々の処理を施することにより、 導体回路等 を形成したり、 レジスト用の樹脂を塗布したのち加熱して乾燥したりする処理が 行われる。 このような処理には、 多くの場合、 セラミックヒータが用いられる。 例えば、 特開平 1 1— 4 0 3 3 0号公報、 特開平 4— 3 0 0 2 4 9号公報などに は、 炭化物や窒化物を素材とするセラミックヒ一夕が開示されている。  In the manufacturing process of this semiconductor chip, a silicon wafer placed on an electrostatic chuck is subjected to various processes such as etching and CVD to form a conductive circuit or to apply a resin for resist. After that, heating and drying are performed. Ceramic heaters are often used for such treatments. For example, Japanese Patent Application Laid-Open Nos. Hei 11-43030 and Hei 4-43049 disclose ceramic ceramics made of carbide or nitride.
しかしながら、 これらの技術は、 基板加熱面の温度分布が不均一になりやすい という問題があった。 例えば、 第 1図に示すようなセラミックヒータは、 抵抗発 熱体が同心円状あるいは渦巻き状の均等配置に係るものである。 このような均等 配置に係る抵抗発熱体パターンだと、 該パ夕一ンを 2以上に分割して個別に制御 しょうとすると、 各パターンによる干渉が起こる。 この場合、 もし一つのパ夕一 ンに過剰に電力を投入すると、 他のパターンの温度分布にまで影響を及ぼしてし まい、 基板全体に正確な温度分布の制御ができなくなるという問題があつた。 本発明の目的は、 基板加熱面における温度分布の均一制御性に優れるセラミッ クヒータを提供することにある。 However, these techniques have a problem that the temperature distribution on the substrate heating surface tends to be non-uniform. For example, a ceramic heater as shown in FIG. 1 has a configuration in which resistance heating elements are arranged concentrically or spirally. In the case of such a resistive heating element pattern having an even arrangement, if the pattern is divided into two or more to be individually controlled, interference occurs due to each pattern. In this case, if power is applied excessively in one pattern, it will affect the temperature distribution of other patterns, and it will be impossible to control the temperature distribution accurately over the entire substrate. . An object of the present invention is to provide a ceramic having excellent controllability of uniform temperature distribution on a substrate heating surface. An object of the present invention is to provide a heater.
本発明の他の目的は、 一つの基板に複数の発熱体パターンが設けれている場合 に、 隣り合うその抵抗発熱体パターンどうしで熱の干渉が起こらないように、 該 抵抗発熱体ノ、°ターンの配置を設計することにある。  Another object of the present invention is to provide a plurality of heating element patterns provided on a single substrate, so that heat interference does not occur between adjacent resistance heating element patterns. The idea is to design the layout of the turns.
5  Five
発明の開示  Disclosure of the invention
" 発明者らは、 従来技術が抱えている問題点、 とくに一つのセラミック基板に、 個別に制御できる回路にて構成される複数の抵抗発熱体パターンが設けられてい る場合に、 これら各抵抗発熱体パターン相互間で熱の干渉による不均一温度分布0 が発生するという問題点を克服するには、 各パターン間に適当な大きさの緩衝域 を設けることが有効であるとの知見を得て、 本発明を完成した。 即ち、 本発明は 下記の要旨構成に係るセラミックヒー夕である。  The inventors have found that the problems with the prior art, especially when a single ceramic substrate is provided with a plurality of resistance heating element patterns composed of individually controllable circuits, In order to overcome the problem of non-uniform temperature distribution 0 due to heat interference between body patterns, we found that it is effective to provide a buffer area of appropriate size between each pattern. That is, the present invention is a ceramic heater according to the following gist configuration.
( 1 ) セラミック基板の表面または内部に、 それそれ独立した回路を構成している 複数の抵抗発熱体パターンを有するセラミックヒー夕において、 隣り合う前記抵5 抗発熱体パターン相互の間に、 緩衝域を設けてなることを特徴とする。  (1) In a ceramic heater having a plurality of resistance heating element patterns forming independent circuits on the surface or inside of the ceramic substrate, a buffer area is provided between the adjacent resistance heating element patterns. Is provided.
(2) 前記緩衝域は、 隣り合う抵抗発熱体パターンどうしの間で起こる熱の干渉を - 緩和する領域であることを特徴とする。  (2) The buffer region is a region for mitigating heat interference occurring between adjacent resistive heating element patterns.
(3) 前記セラミック基板は、 円形であることを特徴とする。  (3) The ceramic substrate has a circular shape.
(4) 前記セラミック基板は、 炭化物セラミックまたは窒化物セラミヅクを用いる0 ことを特徴とする。  (4) The ceramic substrate is made of a carbide ceramic or a nitride ceramic.
( 5 ) 前記セラミック基板は、 表面が絶縁層にて被覆されていることを特徴とする。 (5) The surface of the ceramic substrate is covered with an insulating layer.
(6 ) 前記絶縁層は、 酸化物セラミックを被覆した層にて構成することを特徴とす (6) The insulating layer is formed of a layer coated with an oxide ceramic.
(7) 前記緩衝域は、 セラミヅク基板の半径方向の幅で、 基板直径の 0 . 5 %~ 35 5 %の範囲内の大きさとすることを特徴とする。 (7) The buffer region has a width in a radial direction of the ceramic substrate and a size within a range of 0.5% to 35.5% of the substrate diameter.
(8) 前記緩衝域は、 抵抗発熱体パターン内における各抵抗発熱体相互間間隔の約 2倍を超える幅をもつものにすることを特徴とする。 ( 9)セラミック基板の表面または内部に、 抵抗発熱体が形成されてなるセラミック ヒータであって、 2以上の回路からなる抵抗発熱体形成領域の間に、 抵抗発熱体 非形成領域が設けられてなるセラミックヒー夕。 (8) The buffer region has a width that is more than about twice the distance between the respective resistance heating elements in the resistance heating element pattern. (9) A ceramic heater having a resistance heating element formed on the surface or inside of a ceramic substrate, wherein a non-resistance heating element formation area is provided between resistance heating element formation areas comprising two or more circuits. Ceramic ceramic evening.
( 10 )上記の( 9 )に記載のセラミック基板は、 円板形状であることを特徴とする。 ( Π )上記の ( 9 )に記載のセラミヅク基板は、 炭ィ匕物または窒化物セラミックである ことを特徴とする。  (10) The ceramic substrate according to the above (9) is characterized in that it has a disk shape. (Iii) The ceramic substrate according to the above (9) is characterized in that it is a charcoal nitride or a nitride ceramic.
( 12)前記抵抗発熱体非形成領域の半径方向の幅は、 セラミック基板の直径の 0.5%〜35%であることを特徴とする。  (12) The width in the radial direction of the non-resistance heating element forming region is 0.5% to 35% of the diameter of the ceramic substrate.
( 13)抵抗発熱体非形成領域の直径方向の幅は、 抵抗発熱体形成領域を構成する抵 抗発熱体間の直径方向の幅の 2倍を超えることを特徴とする。  (13) The width in the diameter direction of the non-resistance heating element formation region is characterized by exceeding twice the diametric width between the resistance heating elements constituting the resistance heating element formation region.
上述したように本発明は、 セラミック基板の表面または内部に、 個別に制御さ れる独立した回路を構成している複数の抵抗発熱体パターンが設けられているセ ラミヅクヒータである。  As described above, the present invention is a ceramic heater in which a plurality of resistance heating element patterns constituting independent circuits that are individually controlled are provided on the surface or inside of a ceramic substrate.
このように、 本発明は、 セラミック基板に、 個別に制御できる抵抗発熱体パ夕 —ンを 2以上配設することで、 セラミック基板を部分ごとに温度制御することが できるようになる。 とくに、 本発明では、 熱電対やサーモピュアなどを取付けて 該セラミック基板の温度を測定すれば、 各抵抗発熱体パターン毎に投入電力を制 御でき、 基板加熱面の温度分布を細かく調整することができるようになる。  Thus, according to the present invention, by arranging two or more individually controllable resistance heating elements on the ceramic substrate, the temperature of the ceramic substrate can be controlled for each part. In particular, in the present invention, if a thermocouple, a thermopure, or the like is attached and the temperature of the ceramic substrate is measured, the applied power can be controlled for each resistance heating element pattern, and the temperature distribution on the substrate heating surface can be finely adjusted. Will be able to
このように、 セラミック基板を部分的に温度制御を行う場合、 各抵抗発熱体パ ターンの形成領域が近接していると、 ある特定の抵抗発熱体パターンに大きな電 力が投入されたような場合に、 この部分の温度が上昇すると、 その影響が隣り合 う他の抵抗発熱体パターン形成領域にまで波及し、 しかも互いに干渉し合うこと になる。 この場合、 一般には他 (後者)の抵抗発熱体パターンの方の投入電力を低 下させなければならず、 複雑な温度制御が必要になり、 加熱面の温度分布を正確 に制御することが難しくなる。  As described above, when the temperature of the ceramic substrate is partially controlled, if a large area is applied to a specific resistance heating element pattern when the formation area of each resistance heating element pattern is close to each other, In addition, when the temperature of this portion rises, the influence spreads to other adjacent resistance heating element pattern formation regions, and furthermore, they interfere with each other. In this case, in general, the input power of the other (the latter) resistive heating element pattern must be reduced, and complicated temperature control is required, making it difficult to accurately control the temperature distribution on the heated surface. Become.
そこで、 本発明では、 各抵抗発熱体パターン相互の間に抵抗発熱体非形成領域 である緩衝域を設けるようにした。 この緩衝域は、 隣り合う抵抗発熱体パターン どうしの間で起こる熱の干渉を緩和するため領域である。 このような緩衝域があ ると、 たとえ一つの抵抗発熱体パターンに大きな電力が投入されて、 この部分の 温度が上昇したとしても、 上記緩衝域の存在のために、 その温度上昇の影響が他 の抵抗発熱体パ夕一ン形成領域にまで波及せず、 正確な温度分布の制御ができる ようになる。 Therefore, in the present invention, a buffer area, which is a non-resistance heating element forming area, is provided between the respective resistance heating element patterns. This buffer area is composed of adjacent resistance heating element patterns This is a region for mitigating the thermal interference that occurs between one another. With such a buffer area, even if a large amount of electric power is applied to one resistive heating element pattern and the temperature of this area rises, the effect of the temperature rise is affected by the presence of the buffer area. Precise temperature distribution can be controlled without spreading to other resistance heating element pan formation areas.
たとえば、 第 2図は、 第 1図に示す従来の抵抗発熱体パターンをもつラミック ヒ一夕を 1 4 0 °Cまで昇温して、 2 5 °Cの半導体ウェハをセラミック基板の表面 に 1 0 0 zmの間隔をおいて保持したときのセラミヅク基板の中間部、 中央部、 外周部における温度の経時変化を示したものである。 この従来セラミックヒ一夕 では、 図示したように 4 0秒を経過しても、 各部の温度が整定せず温度分布が均 一化していない。 これに対し、 第 4図に示す本発明に係る抵抗発熱体パターンを もつセラミックヒータの場合では、 緩衝域が存在することで、 第 3図に示すよう に 4 0秒経過後は既に整定していて、 温度分布がほぼ完全に均一化している。 このように、 本発明のセラミックヒータは、 個別制御される各抵抗発熱体パ夕 —ンの間に、 それそれ緩衝域を設けたので、 隣り合う他の抵抗発熱体パターンの 温度変化の影響を排除ないし緩和することができ、 セラミック基板加熱面の温度 分布の均一制御を迅速に、 かつ正確に行うことができる。  For example, FIG. 2 shows that the temperature of a laminar heater having the conventional resistance heating element pattern shown in FIG. 1 is raised to 140 ° C., and a semiconductor wafer at 25 ° C. is placed on the surface of the ceramic substrate. FIG. 9 shows a temporal change in temperature in the middle, center, and outer peripheral portions of the ceramic substrate when held at an interval of 0 zm. In this conventional ceramic heater, the temperature of each part did not stabilize and the temperature distribution was not even after 40 seconds as shown in the figure. On the other hand, in the case of the ceramic heater having the resistive heating element pattern according to the present invention shown in FIG. 4, due to the existence of the buffer area, the settling has already been set after the elapse of 40 seconds as shown in FIG. The temperature distribution is almost completely uniform. As described above, in the ceramic heater of the present invention, the buffer area is provided between each of the individually controlled resistance heating element patterns, so that the influence of the temperature change of another adjacent resistance heating element pattern can be reduced. This can be eliminated or reduced, and uniform control of the temperature distribution on the heating surface of the ceramic substrate can be performed quickly and accurately.
なお、 本発明のセラミックヒータは、 抵抗発熱体パターンとして、 同心円状、 渦巻き状、 屈曲状 (波状)のものを組み合せて、 半径方向に離隔配置してなるもの である。 また、 上記緩衝域、 即ち抵抗発熱体パターン非形成領域とは、 抵抗発熱 体パターンが形成された領域と、 その領域に隣接して他の抵抗発熱体パ夕一ン回 路が形成された領域との間であって、 いわゆる抵抗発熱体が形成されていない場 所である。  The ceramic heater of the present invention is formed by combining concentric, spiral, and bent (wavy) resistance heating element patterns and disposing them in the radial direction. The buffer area, that is, the area where the resistance heating element pattern is not formed, is an area where the resistance heating element pattern is formed and an area where another resistance heating element circuit is formed adjacent to the area. And where no so-called resistance heating element is formed.
特に、 円形のセラミック基板に渦巻状または同心円状のパ夕一ンを形成する場 合、 前記緩衝域の基板半径方向における大きさ (距離) は、 各パターン内におけ る隣接する抵抗発熱体相互間の間隔よりも大きな幅、 特に 2倍を超える大き (半 径方向の間隔) にすることが望ましい。 また、 かかる抵抗発熱体ノ、'ターンの各パターン間の基板半径方向における大き さ (間隔) は、 円形セラミヅク基板の半径方向の大きさ (幅) で、 0 . 5 %〜3 5 %、 好ましくは 5 %〜 3 0 %程度とする。 この点、 各抵抗発熱体パターン相互 間の緩衝域の幅が上記の幅よりも小さい場合、 あるいはセラミック基板の半径方 向における間隔が 5 %未満であれば、 熱の干渉が起こり、 一方、 3 0 %を越える とその緩衝域では温度が低くなりすぎて、 いずれにしても加熱面での温度分布が 不均一化しやすくなる。 図面の簡単な説明 In particular, when a spiral or concentric pattern is formed on a circular ceramic substrate, the size (distance) of the buffer area in the radial direction of the substrate is determined by the distance between adjacent resistance heating elements in each pattern. It is desirable to make the width larger than the space between them, especially more than twice (radial space). The size (interval) in the radial direction of the substrate between the patterns of the resistance heating elements and the turns is 0.5% to 35%, preferably 0.5% to 35%, in the radial direction (width) of the circular ceramic substrate. Should be about 5% to 30%. In this regard, if the width of the buffer area between the respective resistive heating element patterns is smaller than the above-mentioned width, or if the spacing in the radial direction of the ceramic substrate is less than 5%, heat interference occurs. If it exceeds 0%, the temperature in the buffer region becomes too low, and in any case, the temperature distribution on the heating surface tends to be uneven. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の抵抗発熱体パターンを例示するセラミック基板の裏面図、 第 2図は、 従来めセラミックヒータの温度分布を示すグラフ、 第 3図は、 本発明に 係るセラミックヒータの温度分布を示すグラフ、 第 4図は、 本発明の抵抗発熱体 パターンを例示するセラミック基板の裏面図、 第 5図は、 セラミックヒ一夕の一 部を部分的に破断して示すセラミックヒ一夕の部分断面図である。 発明を実施するための最良の形態  FIG. 1 is a rear view of a ceramic substrate illustrating a conventional resistance heating element pattern, FIG. 2 is a graph showing a temperature distribution of a conventional ceramic heater, and FIG. 3 is a temperature distribution of a ceramic heater according to the present invention. FIG. 4 is a rear view of a ceramic substrate illustrating a resistance heating element pattern according to the present invention, and FIG. 5 is a partial cross-sectional view of the ceramic heater, which is partially cut away. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のセラミックヒ一夕は、 セラミック基板として窒化物セラミックまたは 炭化物セラミックを使用し、 その表面には好ましくは酸化物セラミックの絶縁層 を形成する。 それは、 基板材料としての窒化物セラミックは、 酸素の固溶等によ り高温で体積抵抗値が低下しやすく、 また炭化物セラミックの場合は、 高純度化 しない限り導電性を有することから、 これらの基板を酸化物セラミックで被覆す ることにより、 高温時あるいは不純物を含有していても各パターン間の短絡を防 止でき、 温度制御性をより一層容易にすることができるからである。  The ceramic substrate of the present invention uses a nitride ceramic or a carbide ceramic as a ceramic substrate, and preferably forms an oxide ceramic insulating layer on the surface thereof. This is because nitride ceramics as a substrate material tend to have a low volume resistance at high temperatures due to solid solution of oxygen and the like, and carbide ceramics have conductivity unless they are highly purified. By coating the substrate with an oxide ceramic, a short circuit between the patterns can be prevented even at high temperatures or even when impurities are contained, and the temperature controllability can be further facilitated.
前記セラミック基板を構成する窒化物セラミックとしては、 金属窒化物セラミ ヅク、 例えば、 窒化アルミニウム、 窒化けい素、 窒化ホウ素、 窒化チタン等が挙 げられる。 また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例え ば、 炭化ケィ素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タンステ ン等が挙げられる。 なお、 セラミック基板として酸ィ匕物セラミックを使用しても よく、 アルミナ、 シリカ、 コ一ジヱライ ト、 ムライ ト、 ジルコニァ、 ベリリアな ' どが使用できる。 Examples of the nitride ceramic constituting the ceramic substrate include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like. The above-mentioned carbide ceramics include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tanste carbide. And the like. It should be noted that an oxide ceramic may be used as the ceramic substrate, and alumina, silica, glasslite, mullite, zirconia, beryllia, and the like can be used.
前記セラミック基板材料中には焼結助剤を含有させることが望ましい。 例えば、 It is desirable to include a sintering aid in the ceramic substrate material. For example,
5 窒化アルミニウムの焼結助剤としては、 アルカリ金属酸化物、 アルカリ土類金属 酸化物、 希土類酸化物を使用することができ、 これらの焼結助剤のなかでは、 特 に CaO、 Y23、 Na20、 Li。〇、 Rb203が好ましい。 また、 アルミナを 使用してもよい。 これらの焼結助剤含有量としては、 0. l〜20wt%が望ま しい。 また、 炭化けい素の場合は、 焼結助剤として、 B4C、 C、 ALNを用いる0 ことが好ましい。 5 Alkali metal oxides, alkaline earth metal oxides, and rare earth oxides can be used as sintering aids for aluminum nitride. Among these sintering aids, CaO, Y 23, Na 2 0, Li. 〇, Rb 2 0 3 are preferred. Also, alumina may be used. The content of these sintering aids is desirably 0.1 to 20 wt%. In the case of silicon carbide, it is preferable to use B 4 C, C, or ALN as a sintering aid.
また、 上記セラミック基板中には、 5〜500 Oppm程度のカーボンを含有 していることが望ましい。 基板材料中にカーボンを含有させることにより、 セラ . ミック基板を黒色化することができ、 ヒータとして使用する際に、 輻射熱の放射 特性の向上が期待できる。 そのカーボンは、 非晶質のものであっても、 結晶質の5 ものであってもよい。 非晶質のカーボンを使用した場合には、 高温における体積 抵抗率の低下を防止することができ、 結晶質のものを使用した場合には、 高温に おける熱伝導率の低下を防止することができるからである。 従って、 用途によつ ては、 結晶質のカーボンと非晶質のカーボンの両方を併用してもよい。 また、 力 —ボンの含有量は、 50〜2000 ppmがより好ましい。 It is desirable that the ceramic substrate contains about 5 to 500 ppm of carbon. By including carbon in the substrate material, the ceramic substrate can be blackened, and when used as a heater, the radiation characteristics of radiant heat can be expected to be improved. The carbon may be amorphous or crystalline. When amorphous carbon is used, it is possible to prevent a decrease in volume resistivity at high temperatures, and when using crystalline one, it is possible to prevent a decrease in thermal conductivity at high temperatures. Because you can. Therefore, depending on the application, both crystalline carbon and amorphous carbon may be used in combination. Further, the content of carbon is more preferably 50 to 2000 ppm.
0 このセラミック基板としては、 直径が 20 Omm以上の大きさ、 とくに 12ィ ンチ (300mm) 以上であることが望ましい。 次世代の半導体ウェハに適合さ せ得るからである。 また、 その厚さは 5 Omm以下のもの、 特に 25 mm以下の ものが望ましい。 その理由は、 セラミック基板の厚さが 25 mmを超えると、 セ " ラミック基板の熱容量が大きくなり、 温度制御手段を介して加熱、 冷却する場合5 の温度追従性が低下するからである。 この意味において、 基板厚みは 5mm以上 程度の厚さにすることが最適である。 なお、 その厚みは、 1. 5 mmを越えるこ とが望ましい。 基板の表面に被覆する上記絶縁層としては、 酸化物セラミックが望ましく、 具体 的には、 シリカ、 アルミナ、 ムライト、 コ一ジエライト、 ベリリアなどを使用す ることができる。 また、 この絶縁層をアルコキシドを加水分解し、 重合させて得 たゾル溶液をスピンコートしたのち、 焼成を行ったり、 スパッタリングや C VD などの処理を行って形成してもよい。 その他、 上記絶縁層としては、 セラミック 基板の表面を酸化処理して形成した酸化物層であってもよい。 0 It is desirable that the ceramic substrate has a diameter of 20 Omm or more, especially 12 inches (300 mm) or more. This is because it can be adapted to the next generation of semiconductor wafers. The thickness is preferably 5 Omm or less, particularly preferably 25 mm or less. The reason is that when the thickness of the ceramic substrate exceeds 25 mm, the heat capacity of the ceramic substrate becomes large, and the temperature follow-up property in the case of heating and cooling via the temperature control means 5 is reduced. In this sense, it is optimal that the thickness of the substrate is about 5 mm or more, and the thickness is preferably more than 1.5 mm. As the insulating layer covering the surface of the substrate, an oxide ceramic is desirable, and specifically, silica, alumina, mullite, cordierite, beryllia, or the like can be used. Alternatively, the insulating layer may be formed by subjecting a sol solution obtained by hydrolyzing and polymerizing an alkoxide to spin coating, followed by baking, or by performing a treatment such as sputtering or CVD. In addition, the insulating layer may be an oxide layer formed by oxidizing the surface of a ceramic substrate.
本発明のセラミックヒータにおいては、 半導体ウェハは、 セラミック基板のゥ ェハを載置する面 (加熱面)に直接載置するほか、 半導体ウェハを支持ピン (リフ 夕一ピン) やスぺ一サなどを介して、 セラミックス基板とのウェハとの間に一定 の間隔を介在させて保持してもよい。 この場合において、 基板加熱面と半導体ゥ ェハとの離間間隔としては、 5〜5 0 0 0〃m程度が望ましい。  In the ceramic heater of the present invention, the semiconductor wafer is directly mounted on the surface (heating surface) of the ceramic substrate on which the wafer is mounted, and the semiconductor wafer is supported on support pins (reflection pins) or spacers. For example, a certain distance may be interposed between the ceramic substrate and the wafer and held. In this case, the distance between the substrate heating surface and the semiconductor wafer is desirably about 5 to 500 μm.
上記セラミック基板には、 必要に応じて、 有底孔 6を設けて側温素子である熱 電対を埋め込んでおくことができる。 この熱電対により該セラミック基板の温度 を測定し、 そのデータをもとに各抵抗発熱体パターンへの電圧、 電流量を変えて、 基板全体の温度分布を制御するのに有効だからである。 その熱電対の金属線の接 合部位の大きさは、 各金属線の素線径と同一か、 もしくは、 それよりも大きいも のがよい。例えば、 0 . 5 mm以下がよい。 このように構成することによって、 接合部分の熱容量が小さくなり、 温度を正確、 かつ、 迅速に電流値に変換できる。 その結果、 温度制御性が向上して基板加熱面の温度分布の差を小さくすることが できる。  In the ceramic substrate, a bottomed hole 6 can be provided as needed to embed a thermocouple as a side temperature element. This is because the temperature of the ceramic substrate is measured by the thermocouple, and based on the data, the voltage and the current to each resistance heating element pattern are changed to effectively control the temperature distribution of the entire substrate. The size of the junction of the metal wires of the thermocouple should be the same as or larger than the diameter of each metal wire. For example, 0.5 mm or less is preferable. With this configuration, the heat capacity of the junction is reduced, and the temperature can be accurately and quickly converted to a current value. As a result, the temperature controllability is improved, and the difference in the temperature distribution on the substrate heating surface can be reduced.
上記熱電対としては、 例えば、 J I S - C - 1 6 0 2 ( 1 9 8 0 ) にあるよう に、 K型、 R型、 B型、 S型、 E型、 J型、 T型のものを用いることができる。 この熱伝対は、 金ろう、 銀ろうなどを使用して、 前記有底孔の孔底に接着しても よく、 その有底孔に揷入した後、 耐熱性樹脂で封止してもよく、 両者を併用して もよい。 その耐熱性樹脂としては、 例えば、 熱硬化性樹脂、 特にはエポキシ樹脂、 ポリイミド樹脂、 ビスマレイミド一トリアジン樹脂などを用いることができる。 これらの樹脂は、 単独で用いてもよく、 2種以上を併用してもよい。 また、 上記 金ろうとしては、 37〜80. 5wt %Au— 63〜; L 9. 5wt%Cu合金、 8 1. 5〜82. 5 wt Au- 18. 5〜17. 5 w t %N i合金から選ばれ る少なくとも 1種のものが望ましい。 これらは、 溶融温度が、 900°C以上であ り、 高温領域でも溶融しにくいためである。 銀ろうとしては、 例えば、 Ag— C 11系のものを使用することができる。 As the thermocouple, for example, as shown in JIS-C-162 (1980), K-type, R-type, B-type, S-type, E-type, J-type and T-type Can be used. This thermocouple may be bonded to the bottom of the bottomed hole using gold brazing, silver brazing, or the like, or may be inserted into the bottomed hole and sealed with a heat-resistant resin. Well, both may be used in combination. As the heat-resistant resin, for example, a thermosetting resin, particularly, an epoxy resin, a polyimide resin, a bismaleimide-triazine resin, or the like can be used. These resins may be used alone or in combination of two or more. Also, For gold brazing, it is selected from 37-80.5wt% Au-63-; L9.5wt% Cu alloy, 81.5-82.5wt Au-18.5-17.5wt% Ni alloy At least one is preferred. These are because the melting temperature is 900 ° C or higher, and it is difficult to melt even in a high temperature region. As the silver solder, for example, an Ag—C 11-based solder can be used.
本発明のセラミックヒータにおいて、 前記抵抗発熱体は、 第 4図に示したよう に、 個別に制御できる独立した回路からなる少なくとも 2以上のパターンに分割 されていることが必要であり、 3〜10のパターンに分割されていることがより 望ましい。 この抵抗発熱体パターンが複数に分割されていることにより、 各抵抗 発熱体パ夕一ンに投入する電力を個別制御して発熱量を変え、 基板全体の温度分 布、 即ちウェハ加熱面の温度分布を細かくを調整することができるようになる。 その抵抗発熱体のパターン例としては、 同心円状のほか、 渦卷状、 偏心円状、 屈 曲状 (波状) などがよく適合する。  In the ceramic heater of the present invention, as shown in FIG. 4, it is necessary that the resistance heating element is divided into at least two or more patterns composed of independent circuits that can be controlled individually. More preferably, it is divided into the following patterns. Since the resistance heating element pattern is divided into a plurality of parts, the amount of heat generated is changed by individually controlling the power supplied to each resistance heating element pattern, and the temperature distribution of the entire substrate, that is, the temperature of the wafer heating surface The distribution can be finely adjusted. As examples of the pattern of the resistance heating element, concentric, spiral, eccentric, bent (wavy), etc. are well suited.
セラミック基板の表面に、 抵抗発熱体パターンを形成する場合、 金属粒子を含 む導電ペーストをセラミック基板の表面に塗布して所定のパターンの導体ペース ト層を形成し、 その後、 これを焼き付け処理して上記金属粒子を焼成する方法が 好ましい。 なお、 金属粒子の焼成は、 金属粒子同士および金属粒子とセラミック とが融着するようにすることが望ましい。  When forming a resistive heating element pattern on the surface of a ceramic substrate, a conductive paste containing metal particles is applied to the surface of the ceramic substrate to form a conductive paste layer having a predetermined pattern, which is then baked. And firing the above metal particles. The firing of the metal particles is desirably performed so that the metal particles fuse with each other and between the metal particles and the ceramic.
第 4図は、 本発明の抵抗発熱体パターンの好ましい実施形態の 1例である。 こ の例は、 セラミック基板 1の非加熱面とは反対側の表面 (基板裏面) に、 中心部 には、 同心円状の抵抗発熱体パターン 2 a を、 中間部には、 同心円状の 2つの抵 抗発熱体パターン 2 b, 2 b, を、 そして外周部には、 周方向に 4つに分割された 波状の抵抗発熱体パターン 2 cを、 それそれ緩衝域 3 · · 'を介在させて形成し たものである。  FIG. 4 is an example of a preferred embodiment of the resistance heating element pattern of the present invention. In this example, a concentric resistive heating element pattern 2a is provided on the front surface (substrate back surface) of the ceramic substrate 1 opposite to the non-heated surface, a central portion is provided with two concentric resistive heating elements, The resistance heating element patterns 2b, 2b, and the outer periphery are divided into four wavy resistance heating element patterns 2c in the circumferential direction, each with a buffer area 3 It was formed.
即ち、 上記抵抗発熱体パターン 2a と抵抗発熱体パターン 2 bとの間、 抵抗発 熱体パターン 2 b, と抵抗発熱体形パターン 2 cとの間、 そして基板外周部にお いて、 周方向に互いに隣り合う 4つの抵抗発熱体パターン 2 cどうしの間に、 所 定の大きさの緩衝域 3が設けられる。 この緩衝域 3の存在によって、 例えば抵抗 発熱体パターン 2 bに大きな電力が投入されて温度が上昇しても、 緩衝域 3が存 在するため、 その内側の同心円上抵抗発熱体パターン 2 aやその外側の波状抵抗 発熱体パターン 2 cに何ら影響を与えることはなく、 しかも互いには干渉しない c このため、 抵抗発熱体パターン 2 aや抵抗発熱体パターン 2 cの温度を低下させ るなどの温度制御が不要となり、 簡単な制御で基板加熱面の温度差を迅速に低減 することができる。 In other words, between the resistive heating element pattern 2a and the resistive heating element pattern 2b, between the resistive heating element pattern 2b, and the resistive heating element pattern 2c, and at the peripheral portion of the substrate, in the circumferential direction. Four adjacent resistance heating element patterns 2c A fixed size buffer area 3 is provided. Due to the presence of the buffer region 3, for example, even if a large amount of power is applied to the resistance heating element pattern 2 b and the temperature rises, the buffer region 3 exists, and concentric circular resistance heating element patterns 2 a and The wavy resistance on the outside has no effect on the heating element pattern 2c and does not interfere with each other.c Therefore, the temperature such as lowering the temperature of the resistance heating element pattern 2a or the resistance heating element pattern 2c No control is required, and the temperature difference on the heated surface of the substrate can be reduced quickly with simple control.
前記各抵抗発熱体パターン 2 a , 2 b , 2 b ' , 2 c は、 上述したように同心円状、 渦巻き状、 屈曲状(波状)のパターンで形成されているが、 一つの抵抗発熱体パ夕 ーン形成領域には、 一つの回路として形成されることが望ましい。 制御単位を一 つの回路にしておく方が制御しやすいからである。  Each of the resistance heating element patterns 2 a, 2 b, 2 b ′, and 2 c is formed in a concentric, spiral, or bent (wave-shaped) pattern as described above. It is desirable to form a circuit in the evening formation region. This is because it is easier to control if the control unit is a single circuit.
上記抵抗発熱体自体の厚みは、 1〜 3 0〃m程度が好ましく、 1〜 1 0〃mが より好ましい。  The thickness of the resistance heating element itself is preferably about 1 to 30 m, more preferably 1 to 10 m.
セラミツク基板 1の表面に該抵抗発熱体をパターン形成する場合、 該抵抗発熱体 の線幅は、 0 . .1〜 2 0 mm程度が好ましく、 0 . 1〜 5 mm程度がより好まし レ、。 かかる抵抗発熱体は、 その幅や厚さにより抵抗値に変化を持たせることがで きるが、 上記した範囲が最も実用的である。 その抵抗値は、 薄く、 また、 細くな る程大きくなる。 When the resistive heating element is patterned on the surface of the ceramic substrate 1, the line width of the resistive heating element is preferably about 0.1 to 20 mm, more preferably about 0.1 to 5 mm. . Such a resistance heating element can vary its resistance value depending on its width and thickness, but the above range is the most practical. The resistance value increases as the thickness decreases and the resistance decreases.
抵抗発熱体を上述したように配置することにより、 上記抵抗発熱体から発生し た熱が基板の厚み方向へと伝搬していくうちに、 セラミック基板全体に拡散し、 被加熱物 (シリコンウェハ) を加熱する面の温度分布が均一化され、 その結果、 被加熱物の各部分における温度が均一化される。  By arranging the resistance heating element as described above, the heat generated from the resistance heating element is diffused throughout the ceramic substrate while propagating in the thickness direction of the substrate, and the object to be heated (silicon wafer) The temperature distribution on the surface where the object is heated is made uniform, and as a result, the temperature in each part of the object to be heated is made uniform.
この抵抗発熱体は、 断面が矩形であっても楕円形であってもよいが、 偏平であ ることが望ましい。 偏平の方がウェハ加熱面に向かって摅散しゃすいため、 ゥェ ハ加熱面の不均一温度分布ができにくいからである。 即ち、 該抵抗発熱体の断面 のァスぺクト比 (発熱体の幅/発熱体の厚さ) は、 1 0〜5 0 0 0程度にするこ. とが望ましい。 この範囲に調整することにより、 発熱体の抵抗値を大きくするこ とができるとともに、 ウェハ加熱面の温度の均一性を確保することができるから である。 発熱体の厚さを一定とした場合、 アスペクト比が上記範囲より小さいと、 セラミック基板 1のウェハ加熱面方向への熱の伝搬量が小さくなり、 発熱体のパ ターンに近似した熱分布がウェハ加熱面に発生してしまい、 逆にァスぺクト比がThis resistance heating element may have a rectangular or elliptical cross section, but is preferably flat. This is because the flattened surface is more scattered toward the wafer heating surface, and thus it is difficult to achieve a non-uniform temperature distribution on the wafer heating surface. That is, the aspect ratio (width of the heating element / thickness of the heating element) of the cross section of the resistance heating element is desirably about 10 to 500,000. Adjusting this range will increase the resistance of the heating element. This is because the uniformity of the temperature of the wafer heating surface can be ensured. When the thickness of the heating element is constant, if the aspect ratio is smaller than the above range, the amount of heat transmitted in the direction of the heating surface of the ceramic substrate 1 to the wafer decreases, and the heat distribution approximated to the pattern of the heating element becomes smaller. It occurs on the heated surface, and conversely the aspect ratio
"5 大きすぎると、 該抵抗発熱体の中央の直上部分が高温となってしまい、 結局、 発 熱体のパターンに近似した温度分布がウェハ加熱面に発生してしまう。 従って、 温度分布を考慮すると、 断面のアスペクト比は、 1 0〜5 0 0 0であることが好 ましいのである。 なお、 この抵抗発熱体のアスペクト比は、 該抵抗発熱体を基板 の表面に形成する場合は、 1 0〜2 0 0、 内部に形成する場合は、 2 0 0〜5 00 0 0とすることが望ましい。 "5 If it is too large, the temperature directly above the center of the resistance heating element will be high, and eventually a temperature distribution similar to the pattern of the heating element will be generated on the wafer heating surface. Then, it is preferable that the aspect ratio of the cross section is 10 to 500. The aspect ratio of the resistance heating element is as follows when the resistance heating element is formed on the surface of the substrate. If it is formed inside, it is desirably 200 to 500,000.
この抵抗発熱体は、 基板の内部に形成した場合の方が、 アスペクト比を大きく できるが、 それは、 該抵抗発熱体を内部に設けると、 ウェハ加熱面と発熱体との 距離が短くなり、 表面の温度均一性が低下するため、 発熱体自体を偏平にする必 要があるからである。 The aspect ratio can be increased when the resistance heating element is formed inside the substrate. However, when the resistance heating element is provided inside, the distance between the wafer heating surface and the heating element becomes shorter, and This is because it is necessary to make the heating element itself flat because the temperature uniformity of the heating element decreases.
5 かかる抵抗発熱体を形成するための導体ペーストとしては特に限定されないが、 導電性を確保するための金属粒子または導電性セラミックが含有されているほか、 樹脂、 溶剤、 増粘剤などを含むものが好ましい。 その上記金属粒子としては、 例 えば、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリブデン、 ニッケルなどが好ましい。 これらは、 単独で用いてもよく、 2種以上を併用して0 もよい。 これらの金属は、 比較的酸化しにくく、 発熱するに充分な抵抗値を有す るからである。 また、 導電性セラミックとしては、 例えば、 タングステン、 モリ ブデンの炭化物などが挙げられる。 これらは、 単独で用いてもよく、 2種以上を 併用してもよい。 5 The conductive paste for forming such a resistance heating element is not particularly limited, but contains metal particles or conductive ceramic for ensuring conductivity, and also contains a resin, a solvent, a thickener, etc. Is preferred. As the metal particles, for example, noble metals (gold, silver, platinum, palladium), lead, tungsten, molybdenum, nickel and the like are preferable. These may be used alone or in combination of two or more. This is because these metals are relatively hard to oxidize and have sufficient resistance to generate heat. Examples of the conductive ceramic include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more.
これら金属粒子または導電性セラミック粒子の粒径は、 0 . l〜1 0 0〃mが5 好ましい。 0 . 1 m未満と微細すぎると、 酸化されやすく、 一方、 1 0 0 m ' を越えると、 焼結しにくくなり、 抵抗値が大きくなるからである。 上記金属粒子 の形状は、 球状であっても、 燐片状であってもよい。 これらの金属粒子を用いる - 場合、 上記球状物と上記燐片状物との混合物であってよい。 上記金属粒子が燐片 状物、 または、 球状物と燐片状物との混合物の場合は、 金属粒子間の金属酸化物 を保持しやすくなり、 発熱体と窒化物セラミック等との密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利である。 The metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 μm. If it is too small, less than 0.1 m, it is liable to be oxidized, while if it exceeds 100 m ', sintering becomes difficult and the resistance value becomes large. The shape of the metal particles may be spherical or scaly. Use these metal particles -In that case, it may be a mixture of the above-mentioned spheres and the above-mentioned flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the heating element and the nitride ceramic is improved. This is advantageous because it can ensure that the resistance can be increased.
5 導体べ一ストに使用される樹脂としては、 例えば、 エポキシ樹脂、 フエノール 樹脂などが挙げられる。 また、 溶剤としては、 例えば、 イソプロピルアルコール などが挙げられる。 増粘剤としては、 セルロースなどが挙げられる。  5 Examples of the resin used for the conductor base include an epoxy resin and a phenol resin. Examples of the solvent include isopropyl alcohol. Examples of the thickener include cellulose.
導体ペーストには、 上記したように、 金属粒子に金属酸化物を添加し、 抵抗発 熱体を金属粒子および金属酸化物を焼結させたものとすることが望ましい。 この0 ように、 金属酸化物を金属粒子とともに焼結することにより、 セラミック基板で ある窒化物セラミックまたは炭化物セラミックと金属粒子とをよく密着させるこ とができる。 即ち、 金属酸化物を混合することにより、 窒化物セラミックまたは 炭化物セラミックとの密着性が改善される理由は明確ではないが、 金属粒子表面 や窒化物セラミック、 炭化物セラミックの表面が、 わずかに酸化されて酸化膜が5 形成されているため、 この酸化膜どうしが金属酸化物を介して焼結して一体ィ匕し、 金属粒子と窒化物セラミックまたは炭化物セラミックとの密着性を改善するので はないかと考えられる。  As described above, it is desirable that the conductor paste is formed by adding a metal oxide to metal particles and sintering the metal particles and the metal oxide as a resistance heat generator. As described above, by sintering the metal oxide together with the metal particles, the ceramic substrate, ie, the nitride ceramic or the carbide ceramic, can be brought into close contact with the metal particles. That is, it is not clear why mixing metal oxides improves the adhesion to nitride ceramics or carbide ceramics, but the surface of metal particles and the surfaces of nitride ceramics and carbide ceramics are slightly oxidized. This does not mean that the oxide films are formed by sintering through the metal oxide to form an integrated film, thereby improving the adhesion between the metal particles and the nitride ceramic or the carbide ceramic. It is thought.
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B 23 ) 、 アルミナ、 ィヅトリアおよびチタニアからなる群から選ばれる少な0 くとも 1種が好ましい。 これらの酸化物は、 発熱体の抵抗値を大きくすることな く、 金属粒子と窒化物セラミックまたは炭化物セラミックとの密着性を改善する - ことができるからである。 As the above-mentioned metal oxide, for example, at least one selected from the group consisting of lead oxide, zinc oxide, silica, boron oxide (B 23 ), alumina, methanol and titania is preferable. This is because these oxides can improve the adhesion between the metal particles and the nitride ceramic or the carbide ceramic without increasing the resistance value of the heating element.
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 2 03) 、 アルミナ、 イツトリ ァ、 チタニアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量比で、5 酸化鉛が:!〜 1 0、 シリカが 1〜 3 0、 酸化ホウ素が 5〜 5 0、 酸化亜鉛が 2 0 〜7 0、 アルミナが;!〜 1 0、 イットリアが 1〜 5 0、 チタニアが 1〜5 0であ つて、 その合計が 1 0 0重量部を超えない範囲で調整されていることが望ましい。 これらの範囲で、 これらの酸化物の量を調整することにより、 特に窒化物セラミ ックとの密着性を改善することができる。 The lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Itsutori §, the proportion of titania, when the 1 0 0 parts by weight of the total amount of the metal oxide, by weight, 5 lead oxide But:! ~ 10, silica 1 ~ 30, boron oxide 5 ~ 50, zinc oxide 20 ~ 70, alumina; ~ 10, yttria is 1 ~ 50, titania is 1 ~ 50, and the total is preferably adjusted within a range not exceeding 100 parts by weight. By adjusting the amounts of these oxides within these ranges, the adhesion to nitride ceramics can be particularly improved.
上記金属酸化物の金属粒子に対する添加量は、 0 . l w t %以上1 0 w t %未 満が好ましい。 また、 このような構成の導体ペーストを使用して発熱体を形成し た際の面積抵抗率は、 1〜4 5 πι Ω /口が好ましい。  The amount of the metal oxide to be added to the metal particles is preferably from 0.1 wt% to less than 10 wt%. Further, when the heating element is formed by using the conductor paste having such a configuration, the sheet resistivity is preferably 1 to 45 πιΩ / port.
面積抵抗率が 4 5 πιΩΖ口を超えると、 印加電圧量に対して発熱量は小さくな りすぎて、 表面に抵抗発熱体を設けたセラミック基板では、 その発熱量を制御し にくいからである。 なお、 金属酸化物の添加量が 1 O w t %以上だと、 面積抵抗 率が 5 0 πιΩΖ口を超えてしまい、 発熱量が小さくなりすぎて温度制御が難しく なり、 温度分布の均一性が低下する。  If the sheet resistivity exceeds 45 πιΩΖ, the calorific value becomes too small with respect to the applied voltage, and it is difficult to control the calorific value of a ceramic substrate provided with a resistive heating element on its surface. If the added amount of the metal oxide is 1 O wt% or more, the sheet resistivity exceeds 50 πιΩΖ, and the calorific value becomes too small, so that the temperature control becomes difficult and the uniformity of the temperature distribution decreases. I do.
なお、 抵抗発熱体を基板の表面に形成する場合、 発熱体表面には、 第 5図に示 すように、 金属被覆層 8を被覆することが望ましい。 内部の抵抗発熱体 (金属焼 結体) が酸化されて抵抗値が変化するのを防止するためである。 形成する金属被 覆層 8の厚さは、 0 . 1〜1 0 zmが好ましい。 前記金属被覆層 8を形成する際 に使用される金属は、 非酸ィ匕性の金属であれば特に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッケルなどが挙げられる。 これらは、 単 独で用いてもよく、 2種以上を併用してもよい。 これらのなかでは、 ニッケルが 好ましい。  When the resistance heating element is formed on the surface of the substrate, the surface of the heating element is desirably covered with a metal coating layer 8 as shown in FIG. This is to prevent the internal resistance heating element (metal sintered body) from being oxidized and changing the resistance value. The thickness of the metal covering layer 8 to be formed is preferably 0.1 to 10 zm. The metal used for forming the metal coating layer 8 is not particularly limited as long as it is a non-oxidizing metal. Specific examples include gold, silver, palladium, platinum, and nickel. Can be These may be used alone or in combination of two or more. Of these, nickel is preferred.
前記抵抗発熱体 2には、 外部電源と接続するためのピンつき接続端子 9が必要 であり、 この接続端子 9は、 半田層 1 0介して抵抗発熱体 2に取付けるが、 ニヅ ケルは、 半田の熱拡散を防止するからである。 接続端子 9の例としては、 例えば、 コノ ール製の端子ピンが挙げられる。  The resistance heating element 2 requires a connection terminal 9 with pins for connecting to an external power supply. The connection terminal 9 is attached to the resistance heating element 2 via a solder layer 10. This is because the thermal diffusion of the solder is prevented. Examples of the connection terminal 9 include, for example, terminal pins made of console.
接続端子 9を接続する場合、 半田としては、 銀一鉛、 鉛—スズ、 ビスマスース ズなどの合金を使用することができる。 なお、 半田層 1 0の厚さは、 0 . 1〜5 0〃mが好ましい。 半田による接続を確保するのに充分な範囲だからである。 次に、 本発明のセラミヅクヒータを製造する方法について説明する。  When the connection terminal 9 is connected, an alloy such as silver-lead, lead-tin, and bismuth tin can be used as the solder. The thickness of the solder layer 10 is preferably 0.1 to 50 m. This is because the range is sufficient to secure connection by soldering. Next, a method of manufacturing the ceramic heater of the present invention will be described.
ここでは、 セラミヅクヒータの内部に抵抗発熱体が形成された製造方法について 説明する。 Here, a manufacturing method in which a resistance heating element is formed inside a ceramic heater is described. explain.
( 1) セラミック基板の作製工程  (1) Manufacturing process of ceramic substrate
上述した窒化物セラミックまたは炭化物セラミヅクの粉末に必要に応じてィッ トリァ等の焼結助剤やバインダ等を配合してスラリーを調製した後、 このスラリ A slurry is prepared by mixing a sintering aid such as yttria or a binder as necessary with the powder of the above-mentioned nitride ceramic or carbide ceramic, and then preparing the slurry.
-5 一をスプレードライ等の方法で顆粒状にし、 この顆粒を金型などに入れて加圧す ることにより板状などに成形し、 生成形体 (グリーン) を作製する。 -5 Make granules into granules by spray-drying, etc., and place the granules in a mold or the like and pressurize them into a plate-like shape to produce a green body.
次に、 上記生成形体に、 必要に応じて、 シリコンウェハを支持するためのリフ 夕一ピン 5を昇降可能に挿入するための貫通孔 4となる部分や熱電対などの測温 素子を埋め込むための有底孔 6となる部分を形成する。 Next, in order to embed a temperature measuring element such as a thermocouple or a portion serving as a through hole 4 into which a lift pin 5 for supporting a silicon wafer can be vertically moved as required, in the above-described formed body. The portion which becomes the bottomed hole 6 of the above is formed.
0 次に、 上記生成形体を加熱、 焼成して焼結させ、 セラミック製の板状体を製造 する。 その後、 所定の形状に加工することにより、 セラミック基板 1を作製する が、 焼成後にそのまま使用することができる形状としてもよい。 また、 加圧しな がら加熱、 焼成を行うことにより、 気孔のないセラミック基板 1を製造すること が可能となる。 加熱、 焼成は、 焼結温度以上であればよいが、 窒化物セラミック5 または炭化物セラミックでは、 1 0 0 0〜2 5 0 0 °Cである。 Next, the formed body is heated, fired, and sintered to produce a ceramic plate. After that, the ceramic substrate 1 is manufactured by processing into a predetermined shape, but may be a shape that can be used as it is after firing. In addition, by performing heating and firing while applying pressure, it is possible to manufacture a ceramic substrate 1 having no pores. Heating and firing may be performed at a temperature equal to or higher than the sintering temperature. However, in the case of nitride ceramic 5 or carbide ceramic, the temperature is 100 to 250 ° C.
(2) セラミヅク基板に抵抗発熱体用導体ペーストを印刷する工程  (2) Process of printing conductor paste for resistance heating element on ceramic substrate
導体ペーストは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体を設けようと する部分に印刷を行うことにより、 導体ペースト層を形成する。 抵抗発熱体は、0 基板全体を均一な温度にする必要があることから、 第 4図に示すようなパターン に印刷することが望ましい。 導体ペースト層は、 焼成後の抵抗発熱体 2の断面が 方形で、 偏平な形状となるように形成することが望ましい。  The conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent. The conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer. The resistance heating element should be printed in a pattern as shown in Fig. 4 because it is necessary to keep the entire substrate at a uniform temperature. The conductor paste layer is desirably formed so that the cross section of the resistance heating element 2 after firing is rectangular and flat.
(3) 導体ペーストの焼成  (3) firing of conductive paste
セラミック基板 1の底面に印刷した導体ペースト層を加熱焼成して、 樹脂、 溶5 剤を除去するとともに、 金属粒子を焼結させ、 基板 1の底面に焼き付け、 抵抗発 - 熱体 2を形成する。 加熱焼成の温度は、 5 0 0〜1 0 0 0 °Cが好ましい。  The conductor paste layer printed on the bottom surface of the ceramic substrate 1 is heated and baked to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the substrate 1 to form the resistance heating element 2 . The heating and firing temperature is preferably from 500 to 100 ° C.
導体ペースト中に上述した金属酸化物を添加しておくと、 金属粒子、 基板およ " び金属酸化物が焼結して一体化するため、 抵抗発熱体 2とセラミック基板 1との 密着性が向上する。 If the above-mentioned metal oxide is added to the conductor paste, the metal particles, substrate and Since the metal oxide and the metal oxide are sintered and integrated, the adhesion between the resistance heating element 2 and the ceramic substrate 1 is improved.
(4) 金属被覆層の形成  (4) Formation of metal coating layer
抵抗発熱体 2の表面には、 金属被覆層 8を設けることが望ましい。 その金属被 5 覆層 8は、 電解めつき、 無電解めつき、 スパッタリング等により形成することが できるが、 量産性を考慮すると、 無電解めつきが最適である。  It is desirable to provide a metal coating layer 8 on the surface of the resistance heating element 2. The metal coating layer 8 can be formed by electrolytic plating, electroless plating, sputtering or the like, but in consideration of mass productivity, electroless plating is optimal.
(5) 端子等の取付け  (5) Installation of terminals, etc.
前記抵抗発熱体 2のパタ一ンの端部に、 外部電源との接続のための接続端子 9 を半田層 1 0を介して取り付ける。 また、 有底孔 6に銀ろう、 金ろうなどで熱電0 対を固定し、 ポリイミド等の耐熱樹脂で封止し、 セラミックヒー夕の製造を終了 A connection terminal 9 for connection to an external power supply is attached to an end of the pattern of the resistance heating element 2 via a solder layer 10. In addition, thermocouples are fixed to the bottomed holes 6 with silver braze, gold braze, etc., sealed with polyimide or other heat-resistant resin, and the production of ceramic heaters is completed.
. する。 .
なお、 本発明のセラミックヒー夕では、 静電電極を設けて静鼋チャックとして もよく、 チヤヅプトップ導体層を設けてウェハプローバとしてもよい。 5 実施例  In the ceramic heater of the present invention, an electrostatic electrode may be provided to serve as a static chuck, or a cap top conductor layer may be provided to serve as a wafer prober. 5 Example
(実施例 1 ) 窒ィ匕アルミニウム製のセラミックヒ一夕の製造  (Example 1) Manufacture of ceramic ceramic made of aluminum
(1) 窒化アルミニウム粉末 (平均粒径: 1.1 u ) 100重量部、 イットリア (平 均粒径: 0.4 urn) 4重量部、 ァクリル系バインダ 12重量部およびアルコールか らなる組成物のスプレードライを行い、 顆粒状の粉末を作製した。 (1) A composition consisting of 100 parts by weight of aluminum nitride powder (average particle size: 1.1 u), 4 parts by weight of yttria (average particle size: 0.4 urn), 12 parts by weight of acryl-based binder and alcohol is spray-dried. A granular powder was produced.
0 (2) 次に、 上記顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グリー ン) を得た。 このグリーンシートにドリル加工を施し、 シリコンウェハのリフ夕 " 一ピン 5を挿入するための貫通孔 4となる部分、 熱電対を埋め込むための有底孔 6となる部分 (直径: 1.1 mm、 深さ: 2 mm) を形成した。 0 (2) Next, the above granular powder was placed in a mold and molded into a flat plate to obtain a green compact. The green sheet is drilled to form a through hole 4 for inserting a pin 5 of a silicon wafer and a bottomed hole 6 for embedding a thermocouple (diameter: 1.1 mm, depth 2 mm).
(3) 加工処理の終った成形体を 1800°C、 圧力: 200 kg/cm でホットプレスし、5 厚さが 3 mmの窒ィ匕アルミニウム板状体を得た。 (3) The processed compact was hot-pressed at 1800 ° C and a pressure of 200 kg / cm to obtain a 5 mm-thick 3 mm thick aluminum plate.
次に、 この板状体から直径 8インチ (2 1 0 mm) の円板体を切り出し、 セラ ミック製の板状体 (セラミック基板 1 ) とした。 (4)上記 (3) で得たセラミック基板 1に、 スクリーン印刷にて導電性べ一ストを 印刷した。 印刷パターンは、 図 4に示したような、 2つの同心円状パターン、 外 周部に 4つの波状パターンとした。 抵抗発熱体パターン 2 aと抵抗発熱体パ夕一 ン 2 bとの距離は、 1◦ mm、 抵抗発熱体パターン 2 bと抵抗発熱体パターン 2 5 cとの距離は 20mm、 抵抗発熱体パターン 2 c相互間の距離は 8 mmである。 Next, a disk having a diameter of 8 inches (210 mm) was cut out from the plate to obtain a ceramic plate (ceramic substrate 1). (4) A conductive paste was printed on the ceramic substrate 1 obtained in the above (3) by screen printing. The printing patterns were two concentric patterns and four wavy patterns on the outer periphery as shown in FIG. The distance between the resistance heating element pattern 2a and the resistance heating element pattern 2b is 1 mm, the distance between the resistance heating element pattern 2b and the resistance heating element pattern 25c is 20mm, and the resistance heating element pattern 2 c The distance between them is 8 mm.
周方向に隣り合う各抵抗発熱体パターン 2 c相互間の距離は 8 mmである。 また、 The distance between the circumferentially adjacent resistance heating element patterns 2c is 8 mm. Also,
― 各抵抗発熱体パターン内における各発熱体相互間の距離は、 1mmとした。 -The distance between each heating element in each resistance heating element pattern was 1 mm.
上記導電性ペーストとしては、 プリント配線板のスルーホール形成に使用され ている徳カ化学研究所製のソルぺスト PS 603Dを使用した。 この導電性ぺー0 ストは、 銀—鉛ペーストであり、 銀 100重量部に対して、 酸化鉛 (5wt%)、 酸化亜鉛 (55wt%)、 シリカ (10wt%)、 酸化ホウ素 (25wt%) およびァ ルミナ (5wt%) からなる金属酸化物を 7.5重量部含むものであった。 また、 銀粒子は、 平均粒径が 4.5〃mで、 燐片状のものであった。  As the conductive paste, Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used for forming through holes in printed wiring boards, was used. This conductive paste is a silver-lead paste, and based on 100 parts by weight of silver, lead oxide (5 wt%), zinc oxide (55 wt%), silica (10 wt%), boron oxide (25 wt%) and It contained 7.5 parts by weight of metal oxide consisting of alumina (5 wt%). The silver particles had an average particle size of 4.5 μm and were scaly.
(5)次に、 上記導電性ペーストを印刷したセラミック基板を 780 °Cで加熱、 焼成5 して、 該ぺ一スト中の銀、 鉛を焼結させるとともに該基板 1に焼き付け、 抵抗発 熱体 2を形成した。 銀—鉛の抵抗発熱体 2は、 厚さが 5〃m、 幅 2.4 mm、 面積 抵抗率が 7.7 πιΩ/Τ]であった。  (5) Next, the ceramic substrate on which the conductive paste is printed is heated and fired at 780 ° C. 5 to sinter the silver and lead in the paste and to bake the substrate 1 to generate resistance heat. Body 2 formed. The silver-lead resistance heating element 2 had a thickness of 5 m, a width of 2.4 mm, and an area resistivity of 7.7 πιΩ / m2.
" (6)上記 (5) で作製したセラミック基板 1を硫酸ニッケル 80 g/l、 次亜リン 酸ナトリウム 24g/l、 酢酸ナトリウム 12g/l、 ほう酸 8g/l、 塩化ァ0 ンモニゥム 6 gZlの濃度の水溶液からなる無電解ニッケルめっき浴中に浸漬し、 銀—鉛の抵抗発熱体 2の表面に厚さ 1 mの金属被覆層 (ニッケル層) 8を析出 させた。  (6) The ceramic substrate 1 prepared in (5) above was treated with nickel sulfate 80 g / l, sodium hypophosphite 24 g / l, sodium acetate 12 g / l, boric acid 8 g / l, and ammonium chloride 6 gZl. The metal coating layer (nickel layer) 8 having a thickness of 1 m was deposited on the surface of the silver-lead resistance heating element 2 by immersing it in an electroless nickel plating bath composed of an aqueous solution.
(7) 電源との接続を確保するためのピンつき接続端子 9を取り付ける部分に、 ス クリーン印刷により、 銀一鉛半田ペースト (田中貴金属製) を印刷して半田層 15 0を形成した。 ついで、 半田層 10の上にコバール製の外部端子接続用ピン 9 を載置して、 420°Cで加熱リフローし、 該接続端子 9を抵抗発熱体 2の表面に 取り付けた。 (8) 温度制御のため、 熱電対を有底孔 6に埋設し、 ポリイミ ド樹脂を充填して 1 9 0 °Cで 2時間硬ィ匕させ、 セラミックヒ一夕 (第 4図) を得た。 (7) A silver-lead solder paste (manufactured by Tanaka Kikinzoku) was printed by screen printing on the portion where the connection terminals 9 with pins for securing connection to the power supply were to be formed, thereby forming a solder layer 150. Next, Kovar external terminal connection pins 9 were placed on the solder layer 10 and reflowed by heating at 420 ° C., and the connection terminals 9 were attached to the surface of the resistance heating element 2. (8) A thermocouple was buried in the bottomed hole 6 for temperature control, filled with polyimide resin, and baked at 190 ° C for 2 hours to obtain a ceramic heater (Fig. 4). .
(実施例 2 ) 抵抗発熱体を内部に有するセラミ ヅクヒ一夕の製造  (Example 2) Manufacture of ceramic powder with resistance heating element inside
( 1 ) 窒化アルミニウム粉末 (トクャマ社製 平均粒径: ; L I j ) 、 イットリア (平均粒径: 0.4 ja m) 4重量部、 アクリルバインダ 11.5 重量部、 分散剤 0.5 重量部および 1ーブ夕ノールとエタノールとからなるアルコール 5 3重量部を混 合したペーストを用い、 ドク夕一プレート法により成形を行って、 厚さ 0.47 m mのグリーンシートを得た。  (1) Aluminum nitride powder (manufactured by Tokuyama, average particle size: LI j), yttria (average particle size: 0.4 jam), 4 parts by weight, acrylic binder, 11.5 parts by weight, dispersing agent, 0.5 parts by weight A green sheet having a thickness of 0.47 mm was obtained by molding using a paste obtained by mixing 53 parts by weight of alcohol composed of ethanol and ethanol by a dough plate method.
(2) 次に、 このグリーンシートを 8 0 °Cで 5時間乾燥させた後、 パンチングによ り直径 1.8 mm、 3.0 mm、 5.0 mmのシリコンウェハ用リフ夕一ピン 5を挿入 する貫通孔 4となる部分、 接続端子ピン 9と接続するためのスルーホール (接続 パヅド) となる部分を設けた。  (2) Next, after drying this green sheet at 80 ° C for 5 hours, a through hole 4 into which a 1.8 mm, 3.0 mm, and 5.0 mm diameter silicon wafer riff pin 5 is inserted by punching And a part to be a through hole (connection pad) for connection with the connection terminal pin 9 were provided.
( 3) 平均粒子径 l〃mのタングステンカーバイ ト粒子 1 0 0重量部、 アクリル系 バインダ 3.0 重量部、 ひ—テルピオ一ネ溶媒 3.5 重量部および分散剤 0.3 重量 部を混合して導電性ペースト Aを調製した。  (3) 100 parts by weight of tungsten carbide particles having an average particle diameter of l〃m, 3.0 parts by weight of an acrylic binder, 3.5 parts by weight of ethereal solvent, and 0.3 parts by weight of a dispersant are mixed to form a conductive paste. A was prepared.
平均粒子径 1〃mのタングステンカーバイ ト粒子 1 0 0重量部、 アクリル系バ インダ 1.9 重量部、 ひ—テルピオ一ネ溶媒 3.7重量部および分散剤 0.2 重量部 を混合して導電性ペースト Bを調製した。  A conductive paste B was prepared by mixing 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 μm, 1.9 parts by weight of an acrylic binder, 3.7 parts by weight of a terpionone solvent, and 0.2 parts by weight of a dispersant. Prepared.
前記導電性ペースト Aをグリーンシートにスクリーン印刷法により印刷し、 導 電性ペースト層を形成した。 印刷パターンは、 第 4図に示したような同心円状パ ターンを、 中心部寄りに 3パターン、 外周部に 4つの波状パターンを形成した。 抵抗発熱体パターン 2 aと抵抗発熱体パターン 2 bとの距離は 7 O mm、 抵抗発 熱体パターン 2 bと抵抗発熱体パターン 2 cとの距離は 2 0 mm、 各抵抗発熱体 パターン内における発熱体相互間の距離は 2 mmである。  The conductive paste A was printed on a green sheet by a screen printing method to form a conductive paste layer. As the printing pattern, three concentric patterns as shown in FIG. 4 were formed near the center and four wavy patterns were formed on the outer periphery. The distance between the resistance heating element pattern 2a and the resistance heating element pattern 2b is 7 O mm, the distance between the resistance heating element pattern 2b and the resistance heating element pattern 2c is 20 mm, and The distance between the heating elements is 2 mm.
また、 接続端子 9を基板内部に設けた抵抗発熱体 2に接続するために、 該基板 1 に設けたスル一ホール内に導電性ペースト Bを充填した。 Further, in order to connect the connection terminal 9 to the resistance heating element 2 provided inside the substrate, the through-hole provided in the substrate 1 was filled with the conductive paste B.
上記処理の終わったグリーンシートに、 さらに、 タングステンペーストを印刷 - しないグリーンシートを上側 (加熱面) に 37枚、 下側に 13枚、 130°C、 8 0 kg/cmの圧力で積層した。 Tungsten paste is further printed on the green sheet after the above processing -37 green sheets not to be laminated were stacked on the upper side (heating surface) and 13 on the lower side at 130 ° C and a pressure of 80 kg / cm.
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 1890°C、 圧力 150 kg/cm で 3時間ホヅトプレスし、 厚さ 3 mmの窒化アルミニウム 5 板状体を得た。 これを 210mmの円板状に切り出し、 内部に厚さ 6 zm、 幅 1 (4) Next, the obtained laminate was degreased in a nitrogen gas at 600 ° C for 5 hours, and subjected to a hot press at 1890 ° C and a pressure of 150 kg / cm for 3 hours to form a 3 mm-thick aluminum nitride 5 plate. I got a body. This is cut out into a 210mm disk, with a thickness of 6 zm and a width of 1
0mmの抵抗発熱体を埋設してなるセラミックヒー夕を得た。 A ceramic heater having a 0 mm resistance heating element embedded therein was obtained.
(5) 次に、 (4) で得られた板状体を、 ダイヤモンド砥石で研磨した後、 マスクを 載置し、 ガラスビーズによるブラスト処理を施し、 かつ熱電対のための有底孔 6 (5) Next, after polishing the plate-like body obtained in (4) with a diamond grindstone, a mask is placed, blasting is performed with glass beads, and bottomed holes for thermocouples 6
(直径: 1.2 mm、 深さ: 2.0 mm) を設けた。(Diameter: 1.2 mm, depth: 2.0 mm).
0 (6) さらに、 前記スルーホール用孔の一部をえぐり取って凹部とし、 この凹部に N i—Auからなる金ろうを用い、 700°Cで加熱リフローしてコバ一ル製の外 部電源接続用の接続端子 9を固着した。 0 (6) Further, a part of the hole for the through hole is cut out to form a concave portion, and a gold solder made of Ni—Au is used in the concave portion, and heated and reflowed at 700 ° C. to form an outer portion made of Kovar. The connection terminal 9 for power supply connection was fixed.
なお、 この接続端子 9の接続は、 タングステンの支持体を 3点で支持する構造 が望ましい。接続信頼性を確保することができるからである。 The connection of the connection terminals 9 is desirably a structure that supports the tungsten support at three points. This is because connection reliability can be ensured.
5 (7) 次に、 温度制御のための実施例 1の熱電対を有底孔 6内に揷入埋設し、 シリ 力ゾルを埋め込み、 100°Cで 1時間乾燥させてセラミックヒー夕の製造を完了 した。 5 (7) Next, the thermocouple of Example 1 for temperature control was inserted and buried in the bottomed hole 6, embedded with a silicon sol, and dried at 100 ° C for 1 hour to produce a ceramic heater. Completed.
(比較例 1 )  (Comparative Example 1)
実施例 1と同様であるが、 第 1図に示すような、 基板全体に直径の異なる渦巻0 きを配置した同心円状の単一の抵抗発熱体パターン 2とした。 セラミック基板 1 の直径は 210mm、 抵抗発熱体パターンは 2. 4mm、 パターン相互間の間隔 - は 2. 4 mm, 抵抗発熱体相互の間の半径方向の幅は、 4. 8 mmである。  As in Example 1, a single concentric resistive heating element pattern 2 having spirals having different diameters arranged on the entire substrate as shown in FIG. The diameter of the ceramic substrate 1 is 210 mm, the resistance heating element pattern is 2.4 mm, the distance between the patterns-is 2.4 mm, and the radial width between the resistance heating elements is 4.8 mm.
(比較例 2 )  (Comparative Example 2)
実施例 1と同様であるが、 第 1図に示したような渦巻き (同心円状) 3パターン、5 外周に 4つの波状パターンとした。 抵抗発熱体パターン 2 aと抵抗発熱体パター ン 2 bとの距離は、 77mm、 抵抗発熱体パターン 2 bと抵抗発熱体パターン 2 cとの距離は 20mm、 そして、 外周部に設けた隣り合う各抵抗発熱体パターン 2 c相互間の距離は 0 . 8 mmである。 抵抗発熱体パターン内の抵抗発熱体相互 間の距離は l mmである。 It is the same as in Example 1, but has three spiral (concentric) patterns as shown in FIG. 1, and four wavy patterns on the outer periphery. The distance between the resistive heating element pattern 2a and the resistive heating element pattern 2b is 77mm, the distance between the resistive heating element pattern 2b and the resistive heating element pattern 2c is 20mm, and the distance between the adjacent Resistance heating element pattern The distance between 2c is 0.8 mm. The distance between the resistance heating elements in the resistance heating element pattern is l mm.
実施例 1、 比較例 1のセラミックヒータについて、 演算部、 電源部、 制御部を 備えた温度調整器 (オムロン社製 E 5 Z E ) を接続して、 1 4 0 °Cまで昇温し、 ついでこのセラミヅクヒ一夕に、 2 5 °Cの温度センサつきウェハを 1 0 0〃mの 距離まで近づけて保持した場合のセラミック基板の表面温度の経時変化を測定し た。 その結果を第 2図、 第 3図に示した。 第 3図は実施例 1、 第 2図は比較例 1 である。  The ceramic heaters of Example 1 and Comparative Example 1 were connected to a temperature controller (Omron E5ZE) equipped with a calculation unit, a power supply unit, and a control unit, and the temperature was raised to 140 ° C. Over time, the change in the surface temperature of the ceramic substrate over time was measured when the wafer with the temperature sensor at 25 ° C. was held close to a distance of 100 μm. The results are shown in FIGS. 2 and 3. FIG. 3 shows Example 1 and FIG. 2 shows Comparative Example 1.
実施例 1では、 4 0秒経過時点で、 1 4 0 °Cにもどっており、 完全に整定して いる。 しかし、 比較例 1では、 4 0秒経過しても整定していない。 結局整定まで 6 0秒要した。  In Example 1, the temperature returned to 140 ° C. after the elapse of 40 seconds, and was completely settled. However, in Comparative Example 1, it was not settled even after 40 seconds had elapsed. It took 60 seconds to settle.
実施例、 比較例についての整定時間、 2 0 0 °Cまで加熱した場合の加熱面温度 の温度差を測定した。 その結果、 下記の第 1表に示す。  The settling time for the example and the comparative example, and the temperature difference of the heated surface temperature when heated to 200 ° C. were measured. The results are shown in Table 1 below.
第 1表 Table 1
Figure imgf000020_0001
以上の結果から、 本発明のセラミックヒータによれば、 抵抗発熱体を複数分割 して制御する場合に、 簡単な制御で加熱面の温度分布を容易にかつ確実に均一ィ匕 できることが確かめられた。
Figure imgf000020_0001
From the above results, according to the ceramic heater of the present invention, it was confirmed that the temperature distribution on the heating surface can be easily and reliably uniformized with a simple control when the resistance heating element is divided into a plurality and controlled. .
産業上の利用可能性 Industrial applicability
本発明のセラミックヒータは、 半導体の製造や半導体の検査を行うための装置 に用いられる。 例えば、 静電チャック、 ウェハプローバ、 サセプ夕などが挙げら れる。 静電チャックとして使用される場合は、 抵抗発熱体に加えて、 静電電極、 INDUSTRIAL APPLICABILITY The ceramic heater of the present invention is used for an apparatus for manufacturing a semiconductor or inspecting a semiconductor. Examples include an electrostatic chuck, a wafer prober, and a susceptor. When used as an electrostatic chuck, in addition to the resistance heating element, an electrostatic electrode,
R F電極が、 ウェハプローバとして使用される場合は、 表面に導電体としてチヤ ックトップ導体層が形成されており、 内部にはガード電極、 グランド電極が導電 体として形成されている。 また、 本発明の半導体装置用セラミック基板は、 10 0°C以上、 望ましくは 200°C以上で使用されることが好適である。 上限の温度 は 800°Cである。 When the RF electrode is used as a wafer prober, a check top conductor layer is formed on the surface as a conductor, and the guard electrode and ground electrode are conductive inside. It is formed as a body. Further, the ceramic substrate for a semiconductor device of the present invention is preferably used at 100 ° C. or higher, preferably 200 ° C. or higher. The upper temperature limit is 800 ° C.

Claims

請求の範囲 The scope of the claims
( 1 ) セラミック基板の表面または内部に、 それぞれから独立した回路を構成して いる複数の抵抗発熱体パターンを有するセラミックヒータにおいて、 隣り合う前 記発熱体パターン相互間に、 緩衝域を設けてなることを特徴とするセラミックヒ 一夕。  (1) In a ceramic heater having a plurality of resistive heating element patterns constituting independent circuits on the surface or inside of a ceramic substrate, a buffer area is provided between the adjacent heating element patterns. A special feature of Ceramic Hi.
(2) 前記緩衝域は、 隣り合う抵抗発熱体パターンどうしの間で起こる熱の干渉を 緩和する領域であることを構成とする請求の範囲 1に記載のセラミックヒ一夕。 (2) The ceramic capacitor according to claim 1, wherein the buffer region is a region for mitigating heat interference occurring between adjacent resistive heating element patterns.
(3) 前記セラミヅク基板は、 円形であることを特徴とする請求の範囲 1に記載の セラミックヒータ。 (3) The ceramic heater according to claim 1, wherein the ceramic substrate is circular.
(4) 前記セラミック基板は、 炭化物セラミックまたは窒化物セラミックであるこ とを特徴とする請求の範囲 1に記載のセラミックヒータ。 (4) The ceramic heater according to claim 1, wherein the ceramic substrate is a carbide ceramic or a nitride ceramic.
(5 ) 前記セラミック基板は、 表面が絶縁層にて被覆されていることを特徴とする 請求の範囲 1に記載のセラミックヒー夕。  (5) The ceramic heater according to claim 1, wherein the surface of the ceramic substrate is covered with an insulating layer.
(6) 前記絶縁層は、 酸化物セラミックを被覆した層であることを特徴とする請求 の範囲 5に記載のセラミックヒ一夕。  (6) The ceramic heater according to claim 5, wherein the insulating layer is a layer coated with an oxide ceramic.
(7) 前記緩衝域は、 セラミツク基板の半径方向の幅で、 基板直径の 0 . 5 %~ 3 5 %の範囲内の大きさであることを特徴とする請求の範囲 1に記載のセラミック ヒータ。  (7) The ceramic heater according to claim 1, wherein the buffer region has a width in a radial direction of the ceramic substrate and a size within a range of 0.5% to 35% of a substrate diameter. .
(8) 前記緩衝域は、 抵抗発熱体パターン内における各抵抗発熱体相互間間隔の約 2倍を超える幅をもつことを特徴とする請求の範囲 1または 7に記載のセラミヅ クヒ一夕。  (8) The ceramic storage device according to (1) or (7), wherein the buffer area has a width that is more than about twice a distance between the respective resistance heating elements in the resistance heating element pattern.
( 9)セラミック基板の表面または内部に、 抵抗発熱体が形成されてなるセラミック ヒータであって、 2以上の回路からなる抵抗発熱体形成領域の間に、 抵抗発熱体 非形成領域が設けられてなるセラミックヒー夕。  (9) A ceramic heater having a resistance heating element formed on the surface or inside of a ceramic substrate, wherein a non-resistance heating element formation area is provided between resistance heating element formation areas comprising two or more circuits. Ceramic ceramic evening.
(10)セラミック基板は、 円板形状であることを特徴とする請求項 9に記載のセラ ミックヒータ。 (10) The ceramic heater according to (9), wherein the ceramic substrate has a disk shape.
(11 )セラミヅク基板は、 炭化物または窒化物セラミックであることを特徴とする 請求項 9に記載のセラミックヒ一夕。 (11) The ceramic substrate is made of a carbide or nitride ceramic. A ceramic holster according to claim 9.
( 12)前記抵抗発熱体非形成領域の半径方向の幅は、 セラミヅク基板の直径の 0.5%〜35%であることを特徴とする請求項 9に記載のセラミックヒータ。  (12) The ceramic heater according to (9), wherein a radial width of the non-resistance heating element-free region is 0.5% to 35% of a diameter of the ceramic substrate.
( 13)抵抗発熱体非形成領域の直径方向の幅は、 抵抗発熱体形成領域を構成する抵 抗発熱体間の直径方向の幅の 2倍を超えることを特徴とする請求項 9に記載のセ ラミックヒー夕。  (13) The diametrical width of the resistance heating element non-formation area is more than twice the diametrical width between the resistance heating elements forming the resistance heating element formation area. Ceramic hero evening.
PCT/JP2001/003777 2000-04-29 2001-05-01 Ceramic heater WO2001084887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-169734 2000-04-29
JP2000169734 2000-04-29

Publications (1)

Publication Number Publication Date
WO2001084887A1 true WO2001084887A1 (en) 2001-11-08

Family

ID=18672549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003777 WO2001084887A1 (en) 2000-04-29 2001-05-01 Ceramic heater

Country Status (1)

Country Link
WO (1) WO2001084887A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257593A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer support member
JP2006279060A (en) * 2006-05-19 2006-10-12 Sumitomo Electric Ind Ltd Ceramic heater for semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025392A (en) * 1987-11-24 1990-01-10 Philips Gloeilampenfab:Nv Glass-ceramics heating device
JPH0677148A (en) * 1992-07-07 1994-03-18 Ngk Insulators Ltd Semiconductor wafer heating device
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof
JPH11297806A (en) * 1998-04-15 1999-10-29 Ulvac Corp Hotplate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025392A (en) * 1987-11-24 1990-01-10 Philips Gloeilampenfab:Nv Glass-ceramics heating device
JPH0677148A (en) * 1992-07-07 1994-03-18 Ngk Insulators Ltd Semiconductor wafer heating device
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof
JPH11297806A (en) * 1998-04-15 1999-10-29 Ulvac Corp Hotplate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257593A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer support member
JP2006279060A (en) * 2006-05-19 2006-10-12 Sumitomo Electric Ind Ltd Ceramic heater for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3381909B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
US6888106B2 (en) Ceramic heater
WO2001084886A1 (en) Ceramic heater
WO2001041508A1 (en) Ceramic heater
JP2003109730A (en) Ceramic heater
JP3565496B2 (en) Ceramic heater, electrostatic chuck and wafer prober
WO2001011922A1 (en) Ceramic heater
JP3729785B2 (en) Ceramic heater
WO2001078455A1 (en) Ceramic board
WO2001084885A1 (en) Ceramic heater
WO2001084887A1 (en) Ceramic heater
JP2002334820A (en) Ceramic heater for heating semiconductor wafer or liquid crystal substrate
JP2002334828A (en) Hot plate unit
JP3625046B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
JP2004303736A (en) Ceramic heater
JP2002260829A (en) Hotplate unit
WO2002099855A1 (en) Ceramic heater for semiconductor producing and inspecting device and hot plate unit using the ceramic heater
JP2006024433A (en) Ceramic heater
JP2002319525A (en) Ceramic heater for semiconductor manufacturing/ inspecting equipment
JP3536256B6 (en) Ceramic heater
JP2002319474A (en) Hot plate unit
JP2002319526A (en) Ceramic heater for semiconductor manufacturing/ inspecting equipment
JP2002100462A (en) Hot plate
JP2005050820A (en) Hot plate
WO2001050818A1 (en) Ceramic heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 581578

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase