EP0314981A1 - Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process - Google Patents

Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process Download PDF

Info

Publication number
EP0314981A1
EP0314981A1 EP88117417A EP88117417A EP0314981A1 EP 0314981 A1 EP0314981 A1 EP 0314981A1 EP 88117417 A EP88117417 A EP 88117417A EP 88117417 A EP88117417 A EP 88117417A EP 0314981 A1 EP0314981 A1 EP 0314981A1
Authority
EP
European Patent Office
Prior art keywords
copper
melting
tellurium
chromium
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88117417A
Other languages
German (de)
French (fr)
Other versions
EP0314981B1 (en
Inventor
Thomas Moser
Joachim Dipl.-Phys. Grosse
Horst Dr. Kippenberg
Rüdiger Dr. Hess
Reiner Dr. Müller
Norbert Prölss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0314981A1 publication Critical patent/EP0314981A1/en
Application granted granted Critical
Publication of EP0314981B1 publication Critical patent/EP0314981B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Definitions

  • the invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught.
  • the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.
  • EP-B-0 115 292 A method of the type mentioned is known from EP-B-0 115 292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0 172 411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.
  • Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force.
  • the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block .
  • Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony.
  • pore formation also occurs when the additives are mixed in powder form not as elemental tellurium or selenium or antimony, but rather as intermetallic compounds Cu2Te or Cu2Se or Cu2Sb. This is due to the gas loading of the finely divided Cu2Te or Cu2Se or Cu3Sb powder.
  • a fine-particle powder has so far been considered essential for homogeneous distribution.
  • the object of the invention is to improve the method of the type mentioned in such a way that a light weight vaporous component can be introduced directly into the material during the melting process.
  • suitable consumable electrodes should be specified that can be used in the context of an arc melting process.
  • a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting.
  • the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.
  • the invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used.
  • the introduction of tellurium in particular in the melting process all effects leading to pore formation are now avoided.
  • massive rods of a CuTe alloy, such as CuTe0.6 can be introduced into a tube electrode, which are then coated with CuCr powder.
  • 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 x 2 mm.
  • the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used.
  • Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.
  • Fig. 1 three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr.
  • This material is known according to DIN 17 666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%.
  • the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material.
  • the profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.
  • the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.
  • FIG. 3 a plurality of individual sections 13 of rods or profiles with a predetermined cross section made of CuTe0.6 material are approximately uniformly embedded in the copper tube 1 with CuCr powder mixture 2. If a melting electrode constructed in this way is used, the highly evaporable component in the melting material is also largely bonded.
  • Fig. 4 there is an outer tube 41 with the cross-sectional dimensions 70 x 2 mm made of CuTe material.
  • a CuCr powder mixture 42 is introduced into the tube 41. Even with a melting electrode constructed in this way, the tellurium remains bound during the melting process and alloys into the melting material.
  • the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass.
  • the table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced.
  • a tube electrode with ⁇ 70 x 2 mm is assumed. To produce other dimensions, the use of tubular electrodes of larger or smaller diameter, for example between 50 and 100 mm, is also possible.
  • the tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube. For copper pipes ⁇ 52 x 2 mm, a tellurium content in the melting material of 0.1 m% is obtained with two rods of CuTe0.6 with a diameter of 10 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Discharge Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

To produce smelting materials based on copper and chromium, an electric arc-smelting process is applied, in which the electrode material melting off from a consumable electrode of predetermined empirical composition is collected in a water-cooled mould for cooling without macroscopic segregation of copper and chromium. For smelting the material with a further readily volatile component, a consumable electrode is used according to the invention, which partially consists of a solid alloy of copper with the readily volatile component, the concentration of the readily volatile component in the alloy being higher than in the empirical composition of the smelting material, and the readily volatile component remains bound in the smelting material during the smelting. In the appropriate consumable electrode, which specifically consists of copper and chromium as well as tellurium and/or selenium and/or antimony as the readily volatile component, the latter is at least partially alloyed in the copper as an intermetallic compound, the copper-tellurium alloy or copper-selenium alloy or copper-antimony alloy being present as a compact part in the electrode structure. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Schmelzwerkstoffen aus Kupfer (Cu), Chrom (Cr) und wenig­stens einer leichtverdampflichen Komponente, wobei ein Licht­bogenschmelzverfahren angewandt wird, bei dem das von einer Abschmelzelektrode vorgegebener Summenzusammensetzung abschmel­zende Elektrodenmaterial in einer wassergekühlten Kokille zwecks Abkühlung ohne makroskopische Entmischung von Kupfer und Chrom aufgefangen wird. Daneben bezieht sich die Erfindung auch auf eine Abschmelzelektrode zur Verwendung bei diesem Ver­fahren, die aus Kupfer (Cu) und Chrom (Cr) sowie Tellur (Te) und/oder Selen (Se) und/oder Antimon (Sb) als leicht verdampf­liche Komponente mit vorgegebener Summenzusammensetzung aller Komponenten besteht.The invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught. In addition, the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.

Ein Verfahren der eingangs genannten Art ist aus der EP-B-0 115 292 bekannt. Nach einem derartigen Verfahren hergestellte Werkstoffe waren zunächst zur Verwendung als Kontaktwerkstoffe für Vakuum-Mittelspannungsleistungsschalter mit Ausschaltströ­men oberhalb 10 kA vorgesehen. Aus der EP-A-0 172 411 ist es darüberhinaus bekannt, einen solchen Werkstoff auch als Kontakt­werkstoff für Vakuumschütze vorzusehen, wobei der Werkstoff zur Herabsetzung der Schweißkraft Zusätze wenigstens eines der Me­talle Tellur (Te), Antimon (Sb), Wismut (Bi) und/oder Zinn (Sn) sowie deren Legierungen aufweisen kann. Das Einbringen der Zu­sätze erfolgt dabei durch nachträgliches Einlegieren oder Ein­diffundieren in die nach dem bekannten Verfahren gefertigten Kontaktstücke, was vergleichsweise langwierig und aufwendig ist.A method of the type mentioned is known from EP-B-0 115 292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0 172 411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.

Speziell Tellur und/oder Selen und/oder Antimon oder auch Wis­mut haben sich als Zusatzkomponenten für Kupfer-Chrom-Kontakt­werkstoffe zur Schweißkraftsenkung als geeignet erwiesen. Die genannten Elemente zeichnen sich jedoch durch einen hohen Dampfdruck aus, so daß Zusätze dieser Elemente beim Lichtbogen­schmelzen leicht verdampfen. Dementsprechend hat sich gezeigt, daß das unmittelbare Einlegieren dieser Zusätze beim Lichtbo­genschmelzen von Kupfer-Chrom nicht möglich ist, da die Zusät­ze - insbesondere wenn sie als feinteiliges Pulver der Elektro­de zugemischt werden - aufgrund ihres hohen Dampfdruckes unter der Lichtbogeneinwirkung verdampfen und zur Porenbildung im Schmelzblock führen. Tellur oder Selen oder Antimon bilden mit Kupfer intermetallische Verbindungen, deren Dampfdruck und da­mit Verdampfungsneigung - wie Messungen gezeigt haben - gegen­über den reinen Komponenten Tellur und Selen oder Antimon her­abgesetzt ist. Es tritt jedoch auch dann Porenbildung auf, wenn die Zusätze nicht als elementares Tellur oder Selen oder Anti­mon, sondern als intermetallische Verbindungen Cu₂Te oder Cu₂Se oder Cu₂Sb in Pulverform zugemischt werden. Dies ist auf die Gasbeladung der feinteiligen Cu₂Te- bzw. Cu₂Se- bzw. Cu₃Sb-­Pulver zurückzuführen. Ein feinteiliges Pulver wird bisher aber für eine homogene Verteilung als zwingend notwendig erachtet.Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force. However, the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block . Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony. However, pore formation also occurs when the additives are mixed in powder form not as elemental tellurium or selenium or antimony, but rather as intermetallic compounds Cu₂Te or Cu₂Se or Cu₂Sb. This is due to the gas loading of the finely divided Cu₂Te or Cu₂Se or Cu₃Sb powder. A fine-particle powder has so far been considered essential for homogeneous distribution.

Da das unmittelbare Einlegieren von Tellur bzw. Selen bzw. Antimon oder deren intermetallischer Cu-Verbindungen beim Schmelzprozess in der beschriebenen Weise nicht möglich ist, wurde bisher entsprechend der EP-A-0 172 411 speziell Tellur im Anschluß an das Lichtbogenschmelzen und gegebenenfalls nach einer entsprechenden Formgebung der CuCr-Rohlinge durch bei­spielsweise Fließpressen in einem separatem Fertigungsschritt eingebracht. Dabei wird ein zusätzlicher Verfahrensschritt in Kauf genommen, der das Herstellungsverfahren verteuert.Since the direct alloying of tellurium or selenium or antimony or their intermetallic Cu compounds in the melting process is not possible in the manner described, according to EP-A-0 172 411 tellurium has been specifically used after the arc melting and, if appropriate, after a appropriate shape of the CuCr blanks introduced, for example, by extrusion in a separate manufacturing step. This involves an additional process step that makes the manufacturing process more expensive.

Aufgabe der Erfindung ist es demgegenüber, das Verfahren der eingangs genannten Art so zu verbessern, daß eine leichtver­ dampfliche Komponente direkt beim Schmelzprozeß in den Werkstoff eingebracht werden kann. Dazu sollen geeignete Abschmelzelek­troden angegeben werden, die im Rahmen eines Lichtbogenschmelz­verfahrens verwendet werden können.In contrast, the object of the invention is to improve the method of the type mentioned in such a way that a light weight vaporous component can be introduced directly into the material during the melting process. For this purpose, suitable consumable electrodes should be specified that can be used in the context of an arc melting process.

Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß zum Er­schmelzen des Werkstoffes mit der leichtverdampflichen Kompo­nente eine solche Abschmelzelektrode verwendet wird, die teil­weise aus einer festen Legierung von Kupfer mit der leichtver­dampflichen Komponente besteht, wobei die Konzentration der leichtverdampflichen Komponente in der Legierung höher ist als in der Summenzusammensetzung des Schmelzwerkstoffes, und daß beim Erschmelzen die leichtverdampfliche Komponente im Schmelz­werkstoff gebunden bleibt. Bei einer Abschmelzelektrode zur Verwendung bei diesem Verfahren, die aus Kupfer und Chrom sowie Tellur und/oder Selen und/oder Antimon besteht, ist die leicht­verdampfliche Komponente zumindest zum Teil als intermetalli­sche Verbindung im Kupfer legiert, wobei die Kupfer-Tellur- bzw. Kupfer-Selen- bzw. Kupfer-Antimon-Legierung im Elektroden­aufbau als Massivteil vorliegt.The object is achieved in that such a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting. In the case of a melting electrode for use in this method, which consists of copper and chromium and tellurium and / or selenium and / or antimony, the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.

Die Erfindung ermöglicht das Einbringen von leichtverdampfli­chen Zusätzen in lichtbogengeschmolzene Kupfer-Chrom-Legierun­gen direkt beim Schmelzprozess und damit die Herstellung poren­freier CuCrTe- bzw. CuCrSe- bzw. CuCrSb-Schmelzblöcke, sofern die entsprechend aufgebauten Abschmelzelektroden verwendet wer­den. Für das Einbringen von insbesondere Tellur beim Schmelz­prozeß werden nunmehr alle zur Porenbildung führenden Effekte vermieden. Beispielsweise können in eine Rohrelektrode massive Stangen einer CuTe-Legierung wie etwa CuTe0,6 eingebracht wer­den, die dann mit CuCr-Pulver umhüllt werden.The invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used. For the introduction of tellurium in particular in the melting process, all effects leading to pore formation are now avoided. For example, massive rods of a CuTe alloy, such as CuTe0.6, can be introduced into a tube electrode, which are then coated with CuCr powder.

Es wurde festgestellt, daß der Dampfdruck von beispielsweise massivem CuTe0,6 wesentlich niedriger ist als der von reinem Tellur bzw. Kupfertellurid. Dadurch findet beim Umschmelzen kein Verdampfen der Te-Komponente statt, wodurch das Tellur im Schmelzwerkstoff gebunden bleibt. Auch die Gasbeladung von tellurhaltigem Pulver entfällt beim erfindungsgemäßen Herstel­lungsverfahren. Es wird somit erreicht, daß erstmalig poren­freie lichtbogengeschmolzene CuCrTe- oder CuCrSe- oder CuCrSb- sowie auch CuCrTeSe- oder CuCrTeSb-Werkstoffe ohne zusätzliche Fertigungsschritte hergestellt werden können.It was found that the vapor pressure of, for example, massive CuTe0.6 is significantly lower than that of pure tellurium or copper telluride. This takes place when remelting no evaporation of the Te component takes place, as a result of which the tellurium remains bound in the melting material. The gas loading of tellurium-containing powder is also eliminated in the manufacturing process according to the invention. It is thus achieved that pore-free arc-melted CuCrTe or CuCrSe or CuCrSb as well as CuCrTeSe or CuCrTeSb materials can be produced for the first time without additional manufacturing steps.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbei­spielen anhand der Zeichnung in Verbindung mit den Patentan­sprüchen.

  • Es zeigen Fig. 1 und 2 zwei Beispiele für eine Abschmelzelek­trode erster Art im Querschnitt,
  • Fig. 3 eine andere Abschmelzelektrode im Längsschnitt und
  • Fig. 4 eine weitere Abschmelzelektrode im Querschnitt.
Further details and advantages of the invention emerge from the following description of the figures of exemplary embodiments with reference to the drawing in conjunction with the patent claims.
  • 1 and 2 show two examples of a melting electrode of the first type in cross section,
  • Fig. 3 shows another melting electrode in longitudinal section and
  • Fig. 4 shows a further consumable electrode in cross section.

Die Figuren sind etwa im Maßstab 1:2 gezeichnet, so daß die jeweiligen Größenverhältnisse vergleichbar sind. Identische Teile haben die gleichen Bezugszeichen, wobei die Figuren teilweise zusammen beschrieben werden.The figures are drawn approximately on a scale of 1: 2, so that the respective proportions are comparable. Identical parts have the same reference numerals, the figures being partially described together.

In den Fig. 1 bis 3 kennzeichnet 1 ein Kupfer-Rohr mit den Quer­schnittsabmessungen von beispielsweise 70 x 2 mm. Für das Ku­pferrohr 1 kann zum Beispiel OFHC (oxigen free high conduc­tive)- bzw. SF (sauerstoffrei)-Material verwendet werden. Be­zugszeichen 2 bedeutet eine CuCr-Pulvermischung in gasarmer Qualität vorgegebener Teilchengrößenverteilung.1 to 3, 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 x 2 mm. For the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used. Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.

In Fig. 1 sind in die Pulvermischung 2 aus CuCr drei Massivstan­gen 3 bis 5 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 eingebettet. Dieser Werkstoff ist gemäß DIN 17 666 unter der Werkstoffnummer 2.1546 mit einem Tellurge­halt von 0,4 bis 0,7 m-% bekannt. Ganz entsprechend sind in Fig. 2 neun Stangen 3 bis 11 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 in der CuCr-Pulver­mischung 2 eingebettet.In Fig. 1, three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr. This material is known according to DIN 17 666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%. Are in accordance with Fig. 2 nine rods 3 to 11 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 embedded in the CuCr powder mixture 2.

Es hat sich gezeigt, daß bei der in Fig. 1 oder Fig. 2 vorge­gebenen Geometrie des Kupferrohres die Anzahl der Stangen zweck­mäßigerweise zwischen einer und zehn variiert werden kann, wo­bei deren Anzahl sowie der Durchmesser und der Tellur- bzw. Selen- bzw. Antimongehalt der einzelnen Stange im Ergebnis die Konzentration des fertigen Werkstoffes bestimmen. Dabei spielt das Profil der einzelnen Stange keine Rolle; die Stangen können beispielsweise als Rund-bzw. Vierkantteil oder auch als Rohr ausgebildet sein.It has been shown that with the geometry of the copper pipe given in FIG. 1 or FIG. 2, the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material. The profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.

Weiterhin kann die Konzentration in der CuCr-Pulvermischung va­riiert werden. Es kommen Pulver ab 25 m-% Cr bis zu reinem Cr-­Pulver in Frage.Furthermore, the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.

In Fig. 3 sind in das Kupferrohr 1 mit CuCr-Pulvermischung 2 in etwa gleichmäßig eine Vielzahl von Einzelabschnitten 13 von Stangen oder Profilen mit vorgegebenem Querschnitt aus CuTe0,6-­Material eingebettet. Bei Verwendung einer so aufgebauten Ab­schmelzelektrode ergibt sich ebenfalls eine weitgehende Bin­dung der leichtverdampflichen Komponente im Schmelzwerkstoff.In FIG. 3, a plurality of individual sections 13 of rods or profiles with a predetermined cross section made of CuTe0.6 material are approximately uniformly embedded in the copper tube 1 with CuCr powder mixture 2. If a melting electrode constructed in this way is used, the highly evaporable component in the melting material is also largely bonded.

In Fig. 4 besteht ein äußeres Rohr 41 mit den Querschnittsab­messungen 70 x 2 mm aus CuTe-Material. In das Rohr 41 ist eine CuCr-Pulvermischung 42 eingebracht. Auch bei einer derartig auf­gebauten Abschmelzelektrode bleibt das Tellur beim Abschmelzen gebunden und legiert in den Schmelzwerkstoff ein.In Fig. 4 there is an outer tube 41 with the cross-sectional dimensions 70 x 2 mm made of CuTe material. A CuCr powder mixture 42 is introduced into the tube 41. Even with a melting electrode constructed in this way, the tellurium remains bound during the melting process and alloys into the melting material.

Speziell bei den Abschmelzelektroden gemäß den Fig. 1 oder Fig. 2 soll die Zusammensetzung des herzustellenden CuCrTe- oder CuCrSe- oder CuCrSb-Schmelzwerkstoffes bei vorgegebenem Stangendurchmesser insbesondere durch die Anzahl der Stangen einerseits und durch den Tellur- bzw. Selen- bzw. Antimongehalt in den Stangen andererseits vorgegeben werden: Fertigungstech­nisch ist es theoretisch möglich, daß Stangen aus Kupfer-Tel­lur-Legierungen als Massivteile einen Tellurgehalt von bis zu 8,2 % Massengehalt aufweisen können. Dies würde bei einer ma­ximalen Zahl von zehn Stangen CuTe8,2 mit ⌀ 10 mm in einem Kupferrohr ⌀ 70 x 2 mm zu einem CuCr50Te4,1-Werkstoff führen, sofern auch das Rohr aus der CuTe-Vorlegierung besteht. Einer Herstellung von Massivlegierungen mit höherem Tellurgehalt steht die im Zweistoffsystem CuTe auftretende Entmischung im flüssigen Zustand entgegen. Ähnliches gilt auch für Kupfer-­Selen-Legierungen, da auch im System CuSe oberhalb von 2,2 m-% eine Entmischung im flüssigen Zustand vorliegt. Damit ist bei maximaler Stangenzahl von zehn ein CuCr50Se1,1-Werkstoff her­stellbar.Especially in the case of the consumable electrodes according to FIG. 1 or 2, the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass. With a maximum number of ten rods of CuTe8.2 with ⌀ 10 mm in a copper tube ⌀ 70 x 2 mm, this would lead to a CuCr50Te4.1 material, provided that the tube also consists of the CuTe pre-alloy. The production of solid alloys with a higher tellurium content is prevented by the segregation in the CuTe two-component system in the liquid state. The same also applies to copper-selenium alloys, since in the CuSe system there is also a segregation in the liquid state above 2.2 m%. This means that a CuCr50Se1.1 material can be produced with a maximum number of ten rods.

In der nachfolgenden Tabelle ist für eine Reihe von Beispielen speziell zur Herstellung von CuCrTe-Schmelzwerkstoffen unter Verwendung einer Abschmelzelektrode nach Fig. 1 oder Fig. 2 zusammengestellt, wie durch die Anzahl der Stangen, deren Tellur­gehalt und durch die Zusammensetzung der Kupfer-Chrom-Pulver­mischung die Konzentration des fertigen Schmelzwerkstoffes be­einflußbar ist. Dabei wird durchweg von einer Rohrelektrode mit ⌀ 70 x 2 mm ausgegangen. Zum Herstellen anderer Abmessungen ist auch die Verwendung von Rohrelektroden größeren bzw. kleineren Durchmessers, beispielsweise zwischen 50 und 100 mm, möglich. Der Tellurgehalt des Schmelzwerkstoffes wird dabei ebenfalls durch Anzahl und Durchmesser der CuTe-Stangen bzw. Durchmesser und Dicke des CuTe-Rohres bestimmt. So ergibt sich bei Cu-Roh­ren ⌀ 52 x 2 mm schon bei zwei Stangen CuTe0,6 mit 10 mm Durchmesser ein Tellurgehalt im Schmelzwerkstoff von 0,1 m-%.The table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced. A tube electrode with ⌀ 70 x 2 mm is assumed. To produce other dimensions, the use of tubular electrodes of larger or smaller diameter, for example between 50 and 100 mm, is also possible. The tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube. For copper pipes ⌀ 52 x 2 mm, a tellurium content in the melting material of 0.1 m% is obtained with two rods of CuTe0.6 with a diameter of 10 mm.

Entsprechende Berechnungen für die Dimensionierung der Rohr­elektrode und der Anzahl der Stangen lassen sich für CuCrSe- bzw. CuCrSb- und auch für CuCrTeSe- und CuCrTeSb-Schmelzwerk­ stoffe durchführen.Corresponding calculations for the dimensioning of the tube electrode and the number of rods can be made for CuCrSe or CuCrSb and also for CuCrTeSe and CuCrTeSb melting plants carry out fabrics.

Das Lichtbogenschmelzen mit den oben beschriebenen Abschmelz­elektroden erfolgt in der in der EP-B-0 115 292 beschriebenen Weise unter Schutzgasatmosphäre; beispielsweise haben sich 100 mb Helium oder Argon als geeignet erwiesen. Tabelle Beispiele für CuCrTe-Schmelzwerkstoffe bei unterschiedlicher Stangenzahl (Elektrodenaufbau: Cu-Rohr 70 x 2 mm) Anzahl Stangen Konzentration der Legierung (m-%) Durchmesser (mm) Pulvermischung (m-%) Konzentration des Schmelzwerkstoffes (m-%) 2 CuTe0,6 10 CuCr72 CuCr50Te0,05 3 CuTe0,6 10 CuCr75 CuCr50Te0,07 4 CuTe0,6 10 CuCr79 CuCr50Te0,10 ... ... ... ... ... ... ... ... ... ... 10 CuTeO,6 10 Cr CuCr50Te0,25 10 CuTe8,2 10 Cr CuCr50Te2,70 The arc melting with the above-described melting electrodes takes place in the manner described in EP-B-0 115 292 under a protective gas atmosphere; for example, 100 mb helium or argon have proven to be suitable. table Examples of CuCrTe melting materials with different numbers of rods ( electrode structure : Cu tube 70 x 2 mm) Number of sticks Concentration of the alloy (m-%) Diameter (mm) Powder mixture (m-%) Concentration of the melting material (m-%) 2nd CuTe0.6 10th CuCr72 CuCr50Te0.05 3rd CuTe0.6 10th CuCr75 CuCr50Te0.07 4th CuTe0.6 10th CuCr79 CuCr50Te0.10 ... ... ... ... ... ... ... ... ... ... 10th CuTeO, 6 10th Cr CuCr50Te0.25 10th CuTe8.2 10th Cr CuCr50Te 2.70

Claims (14)

1. Verfahren zur Herstellung von Schmelzwerkstoffen aus Kupfer (Cu), Chrom (Cr) und wenigstens einer leichtverdampflichen Kom­ponente, wobei ein Lichtbogenschmelzverfahren angewandt wird, bei dem das von einer Abschmelzelektrode vorgegebener Summenzu­sammensetzung abschmelzende Elektrodenmaterial in einer wasser­gekühlten Kokille zwecks Abkühlung ohne makroskopische Ent­mischung von Kupfer und Chrom aufgefangen wird, dadurch gekennzeichnet, daß zum Erschmelzen des Werk­stoffes mit der leichtverdampflichen Komponente eine solche Ab­schmelzelektrode verwendet wird, die teilweise aus einer festen Legierung von Kupfer mit der leichtverdampflichen Komponente besteht, wobei die Konzentration der leichtverdampflichen Kom­ponente in der Legierung höher ist als in der Summenzusammen­setzung des Schmelzwerkstoffes, und daß beim Erschmelzen die leichtverdampfliche Komponente im Schmelzwerkstoff gebunden bleibt.1. A process for the production of melting materials made of copper (Cu), chromium (Cr) and at least one highly evaporable component, an arc melting process being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without macroscopic separation of copper and chromium is collected, characterized in that such a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in the total composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting. 2. Abschmelzelektrode zur Verwendung bei einem Verfahren zur Herstellung von Schmelzwerkstoffen nach Anspruch 1, die aus Kupfer (Cu) und Chrom (Cr) sowie Tellur (Te) und/oder Selen (Se) und/oder Antimon (Sb) als leichtverdampfliche Komponente mit vorgegebener Summenzusammensetzung aller Komponenten be­steht, dadurch gekennzeichnet, daß die leichtverdampfliche Komponente zumindest zum Teil als intermetallische Verbindung im Kupfer legiert ist, wobei die Kupfer-Tellur- bzw. Kupfer-Selen- bzw. Kupfer-Antimon-Legierung im Elektrodenaufbau als Massivteil vorliegt.2. The melting electrode for use in a method for producing melting materials according to claim 1, which consists of copper (Cu) and chromium (Cr) and tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component There is a predetermined total composition of all components, characterized in that the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper-selenium or copper-antimony alloy being present as a solid part in the electrode structure. 3. Abschmelzelektrode nach Anspruch 2, dadurch ge­kennzeichnet, daß die Massivteile beliebige Pro­file aufweisen, beispielsweise als Rund- bzw. Vierkant- oder oder Rohrprofil.3. melting electrode according to claim 2, characterized in that the solid parts have any profile, for example as a round or square or or tubular profile. 4. Abschmelzelektrode nach Anspruch 2, dadurch ge­kennzeichnet, daß der Elektrodenaufbau aus einem Rohr (1) aus Kupfer besteht, in dem in einer Kupfer-Chrom-­Pulvermischung (2) eingebettet die Massivteile (3-5; 5-11; 13) aus der Kupfer-Tellur- bzw. Kupfer-Selen- bzw. Kupfer-Antimon-­Legierung angeordnet sind. (Fig. 1-3)4. melting electrode according to claim 2, characterized in that the electrode structure consists of a tube (1) made of copper, in which in a copper-chrome powder mixture (2) embedded the solid parts (3-5; 5-11; 13) the copper-tellurium or copper-selenium or copper-antimony alloy are arranged. (Fig. 1-3) 5. Abschmelzelektrode nach Anspruch 4, dadurch ge­kennzeichnet, daß das Kupfer-Rohr (1) aus sauer­stoffarmem Kupfer, beispielsweise OFHC- oder SF-Kupfer besteht.5. melting electrode according to claim 4, characterized in that the copper tube (1) consists of low-oxygen copper, for example OFHC or SF copper. 6. Abschmelzelektrode nach Anspruch 4, dadurch ge­kennzeichnet, daß die Massivteile durchgehende Stangen (3-5; 3-11) sind, die parallel und im Abstand gegen­einander in der CuCr-Pulvermischung (2) eingebettet sind. (Fig. 1, 2)6. melting electrode according to claim 4, characterized in that the solid parts are continuous rods (3-5; 3-11) which are embedded in parallel and at a distance from one another in the CuCr powder mixture (2). (Fig. 1, 2) 7. Abschmelzelektrode nach Anspruch 6, dadurch ge­kennzeichnet, daß der Elektrodenaufbau aus einem Rohr (1) mit den Querschnittsabmessungen 70 x 2 mm besteht, in dem ein bis zehn Stangen (3-5; 3-11) einer Kupfer-Tellur- bzw. einer Kupfer-Selen- bzw. einer Kupfer-Antimon-Legierung mit 10 mm Durchmesser über den Querschnitt verteilt sind.7. melting electrode according to claim 6, characterized in that the electrode structure consists of a tube (1) with the cross-sectional dimensions 70 x 2 mm, in which one to ten rods (3-5; 3-11) of a copper tellurium or a copper-selenium or a copper-antimony alloy with a diameter of 10 mm are distributed over the cross-section. 8. Abschmelzelektrode nach Anspruch 7, dadurch ge­kennzeichnet, daß die Stangen (3-5; 3-11) symme­trisch verteilt sind.8. melting electrode according to claim 7, characterized in that the rods (3-5; 3-11) are distributed symmetrically. 9. Abschmelzelektrode nach Anspruch 3, dadurch ge­kennzeichnet, daß die Massivteile als Abschnitte (13) gleichmäßig in der CuCr-Pulvermischung (2) verteilt sind. (Fig. 3)9. melting electrode according to claim 3, characterized in that the solid parts as sections (13) are evenly distributed in the CuCr powder mixture (2). (Fig. 3) 10. Abschmelzelektrode nach Anspruch 3, dadurch ge­kennzeichnet, daß der Elektrodenaufbau aus einem Rohr (41) aus einer Kupfer-Tellur- bzw. Kupfer-Selen-bzw. Kupfer-Antimon-Legierung als äußerem Mantel besteht, in dem eine Kupfer-Chrom-Pulvermischung (42) angeordnet ist. (Fig. 4)10. melting electrode according to claim 3, characterized in that the electrode structure from one Tube (41) made of a copper tellurium or copper selenium or. There is a copper-antimony alloy as an outer jacket in which a copper-chromium powder mixture (42) is arranged. (Fig. 4) 11. Abschmelzelektrode nach Anspruch 2, wobei die leichtver­dampfliche Komponente Tellur ist, dadurch ge­kennzeichnet, daß der Tellurgehalt im Massivteil ≦ 8,2 m-% ist und ein Kupfer-Chrom- oder reines Chrom-Pulver verwendet wird, wodurch ein CuCrTe-Werkstoff mit einem Tellur­gehalt von bis zu 4,1 m-% erzeugbar ist.11. melting electrode according to claim 2, wherein the volatile component is tellurium, characterized in that the tellurium content in the solid part is ≦ 8.2 m% and a copper-chrome or pure chrome powder is used, whereby a CuCrTe material with a tellurium content of up to 4.1 m% can be produced. 12. Abschmelzelektrode nach Anspruch 2, wobei die leichtver­dampfliche Komponente Selen ist, dadurch ge­kennzeichnet, daß der Selengehalt im Massivteil ≦ 2,2 m-% ist und ein Kupfer-Chrom- oder reines Chrompulver verwendet wird, wodurch ein CuCrSe-Werkstoff mit einem Selen­gehalt von bis zu 1,1 m-% erzeugbar ist.12. The melting electrode according to claim 2, wherein the easily evaporable component is selenium, characterized in that the selenium content in the solid part is ≦ 2.2 m% and a copper-chromium or pure chromium powder is used, whereby a CuCrSe material with a selenium content of up to 1.1 m% can be generated. 13. Abschmelzelektrode nach Anspruch 2, wobei die leicht ver­dampfliche Komponente Antimon ist, dadurch ge­kennzeichnet, daß der Antimongehalt im Massivteil ≦ 11 m% ist und ein Kupfer-Chrom- oder reines Chrompulver ver­wendet wird, wodurch ein CuCrSb-Werkstoff mit einem Antimonge­halt von bis zu 5,5 m-% erzeugbar ist.13. consumable electrode according to claim 2, wherein the easily evaporable component is antimony, characterized in that the antimony content in the solid part is ≦ 11 m% and a copper-chromium or pure chrome powder is used, whereby a CuCrSb material with an antimony content of up to 5.5 m% can be generated. 14. Abschmelzelektrode nach Anspruch 7 und Anspruch 11, da­durch gekennzeichnet, daß die Stangen aus einer CuTe-Legierung mit 0,4 bis 0,7 m-% Tellur bestehen.14. A melting electrode according to claim 7 and claim 11, characterized in that the rods consist of a CuTe alloy with 0.4 to 0.7 m% tellurium.
EP88117417A 1987-11-02 1988-10-19 Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process Expired - Lifetime EP0314981B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3737135 1987-11-02
DE3737135 1987-11-02

Publications (2)

Publication Number Publication Date
EP0314981A1 true EP0314981A1 (en) 1989-05-10
EP0314981B1 EP0314981B1 (en) 1991-09-18

Family

ID=6339604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117417A Expired - Lifetime EP0314981B1 (en) 1987-11-02 1988-10-19 Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process

Country Status (7)

Country Link
US (1) US4906291A (en)
EP (1) EP0314981B1 (en)
JP (1) JPH0784628B2 (en)
KR (1) KR960006449B1 (en)
CN (1) CN1018934B (en)
DE (1) DE3864979D1 (en)
IN (1) IN171315B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915155A1 (en) * 1989-05-09 1990-12-20 Siemens Ag Prodn. of copper and chromium melts - by electro-melting in which component is added to electrode powder as hydride
EP2323148A1 (en) * 2009-11-13 2011-05-18 Hitachi Ltd. Electric contact and vacuum interrupter using the same
CN111593224A (en) * 2020-04-22 2020-08-28 陕西斯瑞新材料股份有限公司 Preparation method of consumable electrode bar for copper-chromium arc melting

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368860A1 (en) * 1987-07-28 1990-05-23 Siemens Aktiengesellschaft Contact material for vacuum switches and process for manufacturing same
GB2344110A (en) * 1998-11-27 2000-05-31 George Mcelroy Carloss The production of alloy granules and their use in hydrogen generation
CN102286673B (en) * 2011-08-29 2013-04-17 上海理工大学 Preparation method of CuCr25Me alloy cast blank
CN103706783B (en) * 2013-10-15 2017-02-15 陕西斯瑞新材料股份有限公司 High-fusion-welding-resistance CuCr40Te contact material and preparation method thereof
KR102172848B1 (en) * 2017-02-07 2020-11-02 주식회사 엘지화학 Preparation method of long-life electrode for secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596027A (en) * 1968-07-30 1971-07-27 Tokyo Shibaura Electric Co Vacuum circuit breaker contacts consisting essentially of a copper matrix and solid solution particles of copper-tellurium and copper-selenium
US4088475A (en) * 1976-11-04 1978-05-09 Olin Corporation Addition of reactive elements in powder wire form to copper base alloys
EP0073585A1 (en) * 1981-08-26 1983-03-09 Special Metals Corporation Alloy remelting process
EP0115292A2 (en) * 1983-01-31 1984-08-08 Siemens Aktiengesellschaft Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches
DE3344684A1 (en) * 1983-12-10 1985-06-20 Leybold-Heraeus GmbH, 5000 Köln Closed electric arc furnace for consumable electrodes
EP0172411A1 (en) * 1984-07-30 1986-02-26 Siemens Aktiengesellschaft Vacuum contactor with contact pieces of CuCr and process for the production of such contact pieces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933474A (en) * 1974-03-27 1976-01-20 Norton Company Leech alloying
US4481030A (en) * 1983-06-01 1984-11-06 The United States Of America As Represented By The United States Department Of Energy Tantalum-copper alloy and method for making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596027A (en) * 1968-07-30 1971-07-27 Tokyo Shibaura Electric Co Vacuum circuit breaker contacts consisting essentially of a copper matrix and solid solution particles of copper-tellurium and copper-selenium
US4088475A (en) * 1976-11-04 1978-05-09 Olin Corporation Addition of reactive elements in powder wire form to copper base alloys
EP0073585A1 (en) * 1981-08-26 1983-03-09 Special Metals Corporation Alloy remelting process
EP0115292A2 (en) * 1983-01-31 1984-08-08 Siemens Aktiengesellschaft Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches
DE3344684A1 (en) * 1983-12-10 1985-06-20 Leybold-Heraeus GmbH, 5000 Köln Closed electric arc furnace for consumable electrodes
EP0172411A1 (en) * 1984-07-30 1986-02-26 Siemens Aktiengesellschaft Vacuum contactor with contact pieces of CuCr and process for the production of such contact pieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON PLASMA SCIENCE, Band PS-11, Nr. 3, September 1983, Seiten 223-232, IEEE, New York, US; F.J. ZANNER et al.: "Behavior of sustained high-current arcs on molten alloy electrodes during vacuum consumable arc remelting" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915155A1 (en) * 1989-05-09 1990-12-20 Siemens Ag Prodn. of copper and chromium melts - by electro-melting in which component is added to electrode powder as hydride
EP2323148A1 (en) * 2009-11-13 2011-05-18 Hitachi Ltd. Electric contact and vacuum interrupter using the same
CN111593224A (en) * 2020-04-22 2020-08-28 陕西斯瑞新材料股份有限公司 Preparation method of consumable electrode bar for copper-chromium arc melting

Also Published As

Publication number Publication date
KR960006449B1 (en) 1996-05-16
JPH01149930A (en) 1989-06-13
IN171315B (en) 1992-09-19
DE3864979D1 (en) 1991-10-24
EP0314981B1 (en) 1991-09-18
CN1041975A (en) 1990-05-09
CN1018934B (en) 1992-11-04
JPH0784628B2 (en) 1995-09-13
US4906291A (en) 1990-03-06
KR890008336A (en) 1989-07-10

Similar Documents

Publication Publication Date Title
EP0115292B1 (en) Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches
DE69032065T2 (en) Composite of silver and metal oxide and method of manufacturing the same
DE1025631B (en) Process for refining an elongated metal body according to the zone melting process
DE2346179A1 (en) COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES
EP0314981B1 (en) Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process
DE3518855C2 (en) Melting electrode for the production of niobium-titanium alloys
DE69825227T2 (en) vacuum switch
DE2522754A1 (en) MELTABLE ELECTRODE
EP0099066B2 (en) Process for manufacturing a composite article from chromium and copper
EP3352235B1 (en) Method for producing a semi-finished product for a superconducting wire
EP0172411A1 (en) Vacuum contactor with contact pieces of CuCr and process for the production of such contact pieces
DE1558666B2 (en) ALLOY FOR BURN-PROOF ELECTRICAL CONTACTS
EP1130608B1 (en) Process for the manufacture of a contact material for contacts elements for vacuum switches, contact material and contact elements
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
EP0545145A1 (en) Manufacture of a porous copper-based material as a preform for a machining process
DE3427034C2 (en) Use of an oxygen-free copper deoxidized by boron or lithium for hollow profiles
CH652246A5 (en) SURGE ARRESTERS.
DE4201065C2 (en) Application of the spray compacting process to improve the bending fatigue strength of semi-finished products made of copper alloys
EP0448791B1 (en) High yield strength weld metal alloy and method for its deposition
DE3915155C2 (en)
DE4110600C2 (en) Electrode for a vacuum circuit breaker
EP3572539A1 (en) Method for generating a nbti alloy
DE102009036298A1 (en) Use of powder metallurgy starting material for producing an alloy
DE2747089A1 (en) INTEGRATED AG-SNO ALLOY MATERIAL FOR ELECTRICAL CONTACTS
EP0368860A1 (en) Contact material for vacuum switches and process for manufacturing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890627

17Q First examination report despatched

Effective date: 19901206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3864979

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920124

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921016

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941020

Year of fee payment: 7

EUG Se: european patent has lapsed

Ref document number: 88117417.1

Effective date: 19940510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951017

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951031

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961019

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971029

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019