EP0099066B2 - Process for manufacturing a composite article from chromium and copper - Google Patents

Process for manufacturing a composite article from chromium and copper Download PDF

Info

Publication number
EP0099066B2
EP0099066B2 EP83106620A EP83106620A EP0099066B2 EP 0099066 B2 EP0099066 B2 EP 0099066B2 EP 83106620 A EP83106620 A EP 83106620A EP 83106620 A EP83106620 A EP 83106620A EP 0099066 B2 EP0099066 B2 EP 0099066B2
Authority
EP
European Patent Office
Prior art keywords
powder
copper
temperature
process according
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP83106620A
Other languages
German (de)
French (fr)
Other versions
EP0099066A1 (en
EP0099066B1 (en
Inventor
Horst Dr. Kippenberg
Heinrich Dr. Hässler
Manfred Hühnlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25803079&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0099066(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19823226604 external-priority patent/DE3226604A1/en
Priority claimed from DE19833322866 external-priority patent/DE3322866A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0099066A1 publication Critical patent/EP0099066A1/en
Application granted granted Critical
Publication of EP0099066B1 publication Critical patent/EP0099066B1/en
Publication of EP0099066B2 publication Critical patent/EP0099066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Definitions

  • the invention relates to a method for producing a composite material from chrome and copper as a contact material for medium-voltage vacuum circuit breakers.
  • the composite material CrCu with about 40 to 60% Cr has already proven itself as a contact material for vacuum circuit breakers.
  • the component Cu ensures sufficient electrical and thermal conductivity, while the framework material Cr both reduces burn-off and, with its low melting point of about 2 173 K compared to tungsten, eliminates the risk of harmful thermal electron emission.
  • the Cr greatly reduces the tendency of the contact pieces to weld and has good gettering properties.
  • a method for producing multilayer contact pieces for vacuum medium-voltage circuit breakers is also known, in which a pressed or sintered body made of, in particular, chromium is impregnated in a non-porous manner under vacuum, for which purpose the pressed or sintered body in a crucible is completely impregnated from iron or stainless steel with oxygen-free copper and then the impregnating crucible is at least partially removed. If a compact is made for this, impregnation at a temperature of 1150 ° C is possible.
  • porous blanks produced by pressing or pouring metal powder which either consist of pure Cr powder or in which one or more other powder additives are mixed with the Cr powder to achieve a liquid phase during sintering.
  • the subsequent sintering in a high vacuum or pure protective gas at temperatures from 1 573 K to 1 773 K leads to the desired formation of sinter bridges between the powder grains, so that the structural strength increases, which enables problem-free handling of the porous sintered blanks after the sintering process.
  • the blanks are then placed in impregnation molds or placed on impregnation pads, receive an amount of impregnation metal, in this case copper, corresponding to the pore volume, and are again heated in a high vacuum or pure protective gas above the melting temperature of the impregnation metal.
  • impregnation metal in this case copper
  • infiltration of the porous framework occurs due to capillary forces.
  • the invention is therefore based on the object to develop a new method with which it is possible to produce a high-quality contact material made of chrome and copper, which meets the requirements of vacuum medium-voltage circuit breakers up to 36 kV operating voltage and breaking currents above 30 kA, and in which the aforementioned sources of error as well as the use of Cu powder with a high oxygen content are avoided.
  • the object is achieved in that a method of the type mentioned is carried out in the sequence of method steps a) to g) with the parameters for pressure, temperature and holding time specified therein.
  • Cr powder is poured into a degassed mold, a piece of low-oxygen copper is placed on the Cr powder, then the mold is closed with a porous lid, then the mold is degassed in a high vacuum oven at room temperature until a pressure of less than 10- 2 Pa is reached, then increased the oven temperature to the highest possible temperature below the melting temperature of copper, this temperature is approximately maintained for one hour constant, which reached a constant internal furnace pressure of less than 10- 2 Pa, and then, without intermediate cooling, the furnace temperature is further increases to a final value of 100 K to 200 K above the melting temperature of the copper and maintain this temperature for about 20 to 30 minutes, after which the porosity contained in the Cr powder fill is completely filled with the liquid copper.
  • the furnace temperature just below the melting point of copper in a technical implementation can be 1273 K +28 K, an internal furnace pressure in the range of 10 -3 Pa preferably being achieved.
  • Chromium-produced or electrolytically produced chromium can be used for the process according to the invention.
  • the Cr powder should have a particle size distribution of 50 ⁇ m to 200 ⁇ m, but preferably with proportions of at least 150 gm; in the second case the particle size can be below this, in the range from 25 ⁇ m.
  • the Cr powder produced therefrom is filled into a previously degassed graphite mold with a particle size of at least 150 ⁇ m.
  • the crucible has e.g. B. a diameter of 85 mm and a length of 250 mm and is filled to a height of about 180 mm with Cr powder.
  • Oxygen-poor copper is placed on the Cr powder as a solid piece that fills the remaining crucible contents.
  • the crucible is closed with a porous graphite lid and initially while degassed in a high vacuum oven at room temperature until a pressure in the range of 10- 3 Pa, is thus achieved less than 10- 2 Pa.
  • the Cr powder produced can have a particle size distribution which is smaller than in the case of chromium produced by thermothermal means, for example with particle sizes from 25 ⁇ m.
  • the individual process substeps are carried out in accordance with the first example.
  • the blank produced according to the above examples is cooled under vacuum.
  • the Cr-Cu composite block can be broken down into contact pieces of the required geometry. If metallographic cuts of the material are produced, it can be seen that the composite material produced with the method according to the invention has practically no strength-increasing sintered bridges and practically no pores. With the new process, contact pieces can be reproducibly produced on Cr-Cu basis, which have suitable properties for medium-voltage vacuum circuit breakers.
  • further elements can be used as additives in a manner known per se: for example, titanium and zircon as alloy components for copper can be used to improve the getter properties; on the other hand, iron, cobalt or nickel can be added to the Cr powder to thereby improve the wetting properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines Verbundwerkstoffes aus Chrom und Kupfer als Kontaktwerkstoff für Mittelspannungs-Vakuum-Leistungsschalter.The invention relates to a method for producing a composite material from chrome and copper as a contact material for medium-voltage vacuum circuit breakers.

Als Kontaktmaterial für Vakuum-Leistungsschalter hat sich bereits der Verbundwerkstoff CrCu mit etwa 40 bis 60 % Cr gut bewährt. Dabei gewährleistet die Komponente Cu eine hinreichende elektrische und thermische Leitfähigkeit, während das Gerüstmaterial Cr sowohl abbrandmindernd als auch mit seinem im Vergleich zu Wolfram niedrigen Schmelzpunkt von etwa 2 173 K die Gefahr einer schädlichen thermischen Elektronenemission beseitigt. Außerdem setzt das Cr die Verschweißneigung der Kontaktstücke stark herab und besitzt gute Gettereigenschaften.The composite material CrCu with about 40 to 60% Cr has already proven itself as a contact material for vacuum circuit breakers. The component Cu ensures sufficient electrical and thermal conductivity, while the framework material Cr both reduces burn-off and, with its low melting point of about 2 173 K compared to tungsten, eliminates the risk of harmful thermal electron emission. In addition, the Cr greatly reduces the tendency of the contact pieces to weld and has good gettering properties.

Für die Herstellung des Verbundwerkstoffes CrCu kommen aufgrund der Mischungslücke im System Cr-Cu für den gewünschten Konzentrationsbereich von etwa 40 bis 60 % Cr-Gehalt nur pulvermetallurgische Verfahren in Betracht. Am gebräuchlichsten ist das Herstellen von Preßkörpern aus Cr-Pulver oder CrCu-Pulvermischungen, deren Poren nach der Sinterung mit flüssigem Cu aufgefüllt werden. Derartige Sintertränkverfahren sowie auch die übrigen bekannten pulvermetallurgischen Verfahren sind wegen der Oxidationsneigung des Chroms schwierig zu beherrschen. Insbesondere besteht die Gefahr, durch schlechte Benetzbarkeit einzelner Kornflächen oder Passivschichtbildung Poren- oder Tränkfehler zu erhalten. Auch wenn diese nur in der Größenordnung von 5 bis 50 µm liegen, kann durch sie eine Beeinträchtigung des Schaltverhaltens bewirkt werden. In der Praxis ergibt sich daraus eine gewisse Streubreite im Ausschaltvermögen.Due to the miscibility gap in the Cr-Cu system, only powder metallurgical processes can be considered for the production of the composite material CrCu for the desired concentration range of about 40 to 60% Cr content. The most common is the production of compacts from Cr powder or CrCu powder mixtures, the pores of which are filled with liquid Cu after sintering. Such sintering impregnation processes and also the other known powder metallurgy processes are difficult to master because of the tendency of chromium to oxidize. In particular, there is a risk of poor porosity or impregnation errors due to poor wettability of individual grain areas or the formation of a passive layer. Even if they are only in the order of 5 to 50 µm, they can impair the switching behavior. In practice, this results in a certain spread in the breaking capacity.

Aus der DE-A-25 21 504 ist ein Verfahrenzur Herstellung einer Elektrode für Vakuumschalter oder Vakuumfunkenstrecken bekannt, bei dem in einem Vakuumofen Sinterkörper aus insbesondere Chrom durch Distanzstücke getrennt übereinandergestapelt werden und auf dem Stapel eine Kupferscheibe aufgelegt wird. Nach Evakuierung auf 2 x 10-2 Pa wird zunächst die Anordnung auf 1050 °C, also eine Temperatur unterhalb der eutektischen Temperatur (1075 °C 1348 K) im System Chrom-Kupfer, und anschließend auf 1090 °C, also eine Temperatur oberhalb der eutektischen Temperatur erhitzt. Dadurch soll ein gleichzeitig bzw. unmittelbar aufeinanderfolgendes Tränken der einzelnen Chromscheiben erfolgen, wobei sichergestellt werden muß, daß die Verfahrensführung nahe dem thermodynamischen Gleichgewichtszustand erfolgt. Dieses Verfahren ist als sogenanntes Durchlauftränken bekannt.From DE-A-25 21 504 a method for producing an electrode for vacuum switches or vacuum spark gaps is known, in which sintered bodies made of chromium in particular are stacked separately by spacers in a vacuum furnace and a copper disc is placed on the stack. After evacuation to 2 x 10- 2 Pa, the arrangement is first set to 1050 ° C, i.e. a temperature below the eutectic temperature (1075 ° C 1348 K) in the chrome-copper system, and then to 1090 ° C, i.e. a temperature above the heated eutectic temperature. This is to result in a simultaneous or immediately successive impregnation of the individual chrome disks, it being necessary to ensure that the process is carried out close to the thermodynamic equilibrium state. This process is known as so-called continuous watering.

Aus der DE-B1-25 36 153 ist weiterhin ein Verfahren zum Herstellen mehrschichtiger Kontaktstücke für Vakuum-Mittelspannungs-Leistungsschalter bekannt, bei dem ein Preß- oder Sinterkörper aus insbesondere Chrom unter Vakuum porenfrei getränkt wird, wozu der Preß- oder Sinterkörper in einem Tiegel aus Eisen oder CrNi-Stahl mitsauerstofffreiem Kupfer vollständig getränkt wird und anschließend der Tränktiegel mindestens teilweise entfernt wird. Wird dazu ein Preßkörper hergestellt, ist eine Tränkung bei einer Temperatur von 1150 °C möglich.From DE-B1-25 36 153 a method for producing multilayer contact pieces for vacuum medium-voltage circuit breakers is also known, in which a pressed or sintered body made of, in particular, chromium is impregnated in a non-porous manner under vacuum, for which purpose the pressed or sintered body in a crucible is completely impregnated from iron or stainless steel with oxygen-free copper and then the impregnating crucible is at least partially removed. If a compact is made for this, impregnation at a temperature of 1150 ° C is possible.

In der DE-B1-25 36 153 ist bereits erwähnt, daß alternativ zur Herstellung eines Preß- oder Sinterkörpers auch Chrompulver in den Tiegel eingeschüttet werden könnte, so daß der Sinter- und Tränkprozeß in einem einzigen Wärmbehandlungsvorgang ablaufen kann. Die spezifische Verfahrensführung ist dabei aber nicht beschrieben.DE-B1-25 36 153 already mentions that, as an alternative to producing a pressed or sintered body, chrome powder could also be poured into the crucible, so that the sintering and impregnation process can take place in a single heat treatment process. The specific procedure is not described.

Bei anderen bekannten Verfahren werden z. B. poröse Rohlinge durch Pressen oder Schütten von Metallpulver hergestellt, die entweder aus reinem Cr-Pulver bestehen oder bei denen zum Erzielen einer flüssigen Phase beim Sintern ein oder mehrere weitere Pulverzusätze dem Cr-Pulver zugemischt werden. Das anschließende Sintern im Hochvakuum oder reinem Schutzgas bei Temperaturen von 1 573 K bis 1 773 K führt zu einer gewünschten Ausbildung von Sinterbrücken zwischen den Pulverkörnern, so daß ein Anstieg der Gerüstfestigkeit erfolgt, der eine problemlose Handhabung der porösen Sinterrohlinge nach dem Sinterprozeß erlaubt. In einem weiteren Arbeitsgang werden die Rohlinge dann in Tränkformen eingelegt oder auf Tränkunterlagen aufgelegt, erhalten als Auf- oder Unterlage eine dem Porenvolumen entsprechende Menge an Tränkmetall, in diesem Fall Kupfer, und werden wiederum im Hochvakuum oder reinem Schutzgas über die Schmelztemperatur des Tränkmettals erhitzt. Hierbei tritt durch Kapillarkräfte eine Infiltration des porösen Gerüstes ein.In other known methods such. B. porous blanks produced by pressing or pouring metal powder, which either consist of pure Cr powder or in which one or more other powder additives are mixed with the Cr powder to achieve a liquid phase during sintering. The subsequent sintering in a high vacuum or pure protective gas at temperatures from 1 573 K to 1 773 K leads to the desired formation of sinter bridges between the powder grains, so that the structural strength increases, which enables problem-free handling of the porous sintered blanks after the sintering process. In a further operation, the blanks are then placed in impregnation molds or placed on impregnation pads, receive an amount of impregnation metal, in this case copper, corresponding to the pore volume, and are again heated in a high vacuum or pure protective gas above the melting temperature of the impregnation metal. In this case, infiltration of the porous framework occurs due to capillary forces.

Mit den vorstehend beschriebenen Tränkverfahren zur Herstellung der Cr-Cu-Verbundwerkstoffe lassen sich jedoch trotz sorgfältigster Arbeitsweise keine völlig fehlerfreien Tränkungen erzielen : Dafür sind im wesentlichen drei Gründe verantwortlich:

  • Beim Umchargieren der Öfen zwischen Sinter- und Tränkprozeß kommt es bei den stark getteraktiven Cr-Gerüsten zu einer Neubelegung der Gerüstoberfläche mit dünnen Oxid- bzw. chemiesorbierten Gashäuten, die die Benetzung mit dem flüssigen Tränkmetall erschweren. Aus thermodynamischen Gründen treten diese Oxidationsprozesse bereits unterhalb von etwa 1 000 K selbst im Hochvakuum und in reinem Schutzgas auf, da sich in wirtschaftlich anwendbaren Ofen keine Sauerstoffpartialdrücke unter 10-s Pa erzielen lassen. Als Resultat dieser Erscheinung treten Tränkfehler auf, die sich in Form von Mikrolunkern und Poren äußern.
With the impregnation processes described above for the production of the Cr-Cu composite materials, however, despite the most careful working method, completely impeccable impregnations cannot be achieved: There are essentially three reasons for this:
  • When the furnaces are re-charged between the sintering and impregnation processes, the highly getter-active Cr frameworks are re-coated with thin oxide or chemically sorbed gas skins, which make wetting with the liquid impregnation metal more difficult. For thermodynamic reasons, these oxidation processes already occur below around 1,000 K even in a high vacuum and in a pure protective gas, since no oxygen partial pressures below 10 s Pa can be achieved in economically applicable furnaces. As a result of this phenomenon, impregnation errors occur, which are expressed in the form of microholes and pores.

Durch den Sinterprozeß und die damit verbundene Ausbildung von Sinterbrücken werden schlecht zugängliche Porenbereiche erhalten, die von flüssigem Tränkmetall gar nicht oder nur unvollkommen erreicht werden. Damit ist auch die Möglichkeit, reduzierende Substanzen wie z. B. Kohlenstoff über die flüssige Tränkmetallphase an das Gerüstmetall zu bringen, eingeschränkt, so daß in diesen Restporenbereichen, die von der Sinterbrückenbildung herrühren, Restoxide vorhanden sind, die das Schaltvermögen des Werkstoffes beeinträchtigen.Due to the sintering process and the associated formation of sintered bridges, poorly accessible pore areas are obtained which are not or only incompletely reached by liquid impregnation metal. This is also the possibility of reducing substances such. B. to bring carbon over the liquid impregnated metal phase to the framework metal, so that in these residual pore areas, which result from the formation of sintered bridges, residual oxides are present which impair the switching capacity of the material.

Durch die versteifende Wirkung fester Sinterbrücken wird die Möglichkeit des Gerüstmaterials zur Deformation beträchtlich verringert. Wird das mit Cu oder Legierungen davon imprägnierte Cr-Gerüst von der Infiltrationstemperatur des flüssigen Tränkmetalls abgekühlt, so tritt wegen der unterschiedlichen Wärmeausdehnungen zwischen Cr und Cu ein Volumendefizit auf, das durch einen gemeinsamen gleichmäßigen Schrumpfvon Gerüst- und Tränkmetall nicht aufgefangen werden kann. Diese bekannte Erscheinung kann ebenfalls zu Fehlstellen und im Lichtmikroskop unsichtbaren Mikroporositäten führen, die die Qualität des Werkstoffes für Hochleistungsschaltaufgaben verschlechtern können.The stiffening effect of solid sintered bridges considerably reduces the possibility of the framework material for deformation. If the Cr framework impregnated with Cu or alloys thereof is cooled from the infiltration temperature of the liquid impregnation metal, a volume deficit arises because of the different thermal expansions between Cr and Cu, which cannot be compensated for by a common, uniform shrinkage of framework and impregnation metal. This known phenomenon can also lead to imperfections and microporosities which are invisible in the light microscope and which can deteriorate the quality of the material for high-performance switching tasks.

Es ist versucht worden, diese Störungen zu vermeiden. So kann z. B. Cr-Pulver und Cu-Pulver gemischt werden, dadurch unterbleibt eine direkte Berührung der Cr-Körnerweitgehend und es bilden sich im anschließenden Sinterprozeß keine oder nur vereinzelte deformationsbehindernde Sinterbrücken aus. Obwohl dieser Fertigungsprozeß die sterische Behinderung der Cr-Partikel aufhebt, kann mit einem derartigen Werkstoff keine ausreichende Schaltleistung erzielt werden. Ursache dafür ist die Wechselwirkung zwischen dem üblicherweise mit etwa 500 ppm sauerstoffverunreinigtem Cu-Pulver und dem getteraktiven Cr-Pulver. Bereits unterhalb 1 273 K, d. h. also 1 000 °C, wird dabei bei einsetzender Cu20-Dissoziation das oxidationsfreudige Cr-Pulver aufoxidiert. Wegen der hohen Oxidationswärme des Cr kommt es zur Ausbildung stabiler Oberflächenoxide, die durch eine normale Vakuumentgasung nicht mehr entfernt werden können.Attempts have been made to avoid these disturbances. So z. B. Cr powder and Cu powder are mixed, this avoids direct contact of the Cr grains as far as possible and there are no or only isolated deformation-preventing sinter bridges in the subsequent sintering process. Although this manufacturing process eliminates the steric hindrance of the Cr particles, a sufficient switching capacity cannot be achieved with such a material. The reason for this is the interaction between the Cu powder, which is usually contaminated with about 500 ppm of oxygen, and the getter-active Cr powder. Even below 1 273 K, that is to say 1 000 ° C, the oxidation-friendly Cr powder is oxidized when Cu 2 0 dissociation sets in. Due to the high heat of oxidation of the Cr, stable surface oxides are formed which cannot be removed by normal vacuum degassing.

Der Erfindung liegt daher die Aufgabe zugrunde, ein neues Verfahren zu entwickeln, mit dem es möglich ist, einen hochwertigen Kontaktwerkstoff aus Chrom und Kupfer herzustellen, der den Anforderungen von Vakuum-Mittelspannungs-Leistungsschaltern bis 36 kV Betriebsspannung und Ausschaltströmen oberhalb 30 kA genügt, und bei dem die vorerwähnten Fehlerquellen sowie zusätzlich die Verwendung von Cu-Pulver mit hohem Sauerstoffgehalt vermieden werden.The invention is therefore based on the object to develop a new method with which it is possible to produce a high-quality contact material made of chrome and copper, which meets the requirements of vacuum medium-voltage circuit breakers up to 36 kV operating voltage and breaking currents above 30 kA, and in which the aforementioned sources of error as well as the use of Cu powder with a high oxygen content are avoided.

Gemäß der Erfindung ist die Aufgabe dadurch gelöst, daß ein Verfahren der eingangs genannten Art in der Abfolge der Verfahrensschritte a) bis g) mit den dort angegebenen Parametern für Druck, Temperatur und Haltezeit erfolgt. Im einzelnen wird dabei Cr-Pulver in eine entgaste Form geschüttet, auf das Cr-Pulver ein Stück aus sauerstoffarmem Kupfer gelegt, anschließend die Form mit einem porösen Deckel verschlossen, dann die Form in einem Hochvakuumofen bei Raumtemperatur entgast, bis ein Druck von weniger als 10-2 Pa erreicht ist, danach die Ofentemperatur auf eine möglichst hohe Temperatur unterhalb der Schmelztemperatur von Kupfer erhöht, diese Temperatur etwa eine Stunde konstant gehalten, wonach ein konstanter Ofeninnendruck von weniger als 10-2 Pa erreicht ist, und anschließend ohne Zwischenabkühlen die Ofentemperaturweiter erhöht bis zu einem Endwert von 100 K bis 200 K oberhalb der Schmelztemperatur des Kupfers und diese Temperatur ca. 20 bis 30 Minuten beibehalten, wonach die in der Cr-Pulverschüttung enthaltene Porosität vollständig vom flüssigen Kupfer ausgefüllt ist.According to the invention, the object is achieved in that a method of the type mentioned is carried out in the sequence of method steps a) to g) with the parameters for pressure, temperature and holding time specified therein. Specifically, Cr powder is poured into a degassed mold, a piece of low-oxygen copper is placed on the Cr powder, then the mold is closed with a porous lid, then the mold is degassed in a high vacuum oven at room temperature until a pressure of less than 10- 2 Pa is reached, then increased the oven temperature to the highest possible temperature below the melting temperature of copper, this temperature is approximately maintained for one hour constant, which reached a constant internal furnace pressure of less than 10- 2 Pa, and then, without intermediate cooling, the furnace temperature is further increases to a final value of 100 K to 200 K above the melting temperature of the copper and maintain this temperature for about 20 to 30 minutes, after which the porosity contained in the Cr powder fill is completely filled with the liquid copper.

Die Ofentemperatur dicht unterhalb des Schmelzpunktes von Kupfer kann bei einer technischen Durchführung bei 1273 K +28 K liegen, wobei vorzugsweise ein Ofeninnendruck im Bereich von 10-3 Pa erreicht wird.The furnace temperature just below the melting point of copper in a technical implementation can be 1273 K +28 K, an internal furnace pressure in the range of 10 -3 Pa preferably being achieved.

Mit der erfindungsgemäßen Lehre wird ein Verfahren aufgezeigt, mit dem das beim Stand der Technik bereits erwähnte, sogenannte "Pulvertränken" erstmalig in wirtschaftlicher Weise durchgeführt werden kann. Durch die spezifische Parameterwahl ist eine vergleichsweise schnelle Verfahrensführung möglich, wobei ein hochwertige Kontaktwerkstoff zur Verwendung als Schaltkontakte in Vakuum-Mittelspannungs-Leistungsschaltern erzeugt wird.With the teaching according to the invention, a method is shown with which the so-called "powder drinking" already mentioned in the prior art can be carried out for the first time in an economical manner. The specific choice of parameters enables a comparatively fast procedure to be carried out, a high-quality contact material for use as switch contacts in vacuum medium-voltage circuit breakers being produced.

Für das erfindungsgemäße Verfahren kann aluminotermisch oder elektrolytisch hergestelltes Chrom verwendet werden. Im ersten Fall sollte das Cr-Pulvereine Teilchengrößenverteilung von 50 µm bis 200 µm haben, vonugsweise aber mit Anteilen von mindestens 150 gm ; im zweiten Fall kann die Teilchengröße darunter und zwar im Bereich ab 25 µm liegen.Chromium-produced or electrolytically produced chromium can be used for the process according to the invention. In the first case, the Cr powder should have a particle size distribution of 50 μm to 200 μm, but preferably with proportions of at least 150 gm; in the second case the particle size can be below this, in the range from 25 µm.

Weiterhin hat es sich als zweckmäßig erwiesen, eine Arbeitsform aus Graphit zu verwenden, weil Kohlenstoff im flüssigen Kupfer in geringer Menge löslich ist und daher über einen Transport in der flüssigen Phase als Reduktionsmittel für Cr-Oxidverunreinigungen Anwendung findet.Furthermore, it has proven to be expedient to use a working form made of graphite, because carbon is soluble in the liquid copper in a small amount and is therefore used as a reducing agent for Cr oxide impurities via a transport in the liquid phase.

Besonders vorteilhaft bei der Erfindung ist, daß kein festigkeitssteigernder Sinterprozeß mit Ausbildung von stabilen Sinterbrücken durchgeführt, sondern daß unmittelbar von der in einer Form befindlichen Cr-Pulverschüttung ausgegangen wird. Ohne Umschargieren des Ofens und zusätzliche Handhabung von Sinterrohlingen kann das Porenvolumen der Pulverschüttung vollständig mit flüssigem Kupfer aufgefüllt werden, so daß sich ein praktisch porenfreier Verbundwerkstoff ergibt.It is particularly advantageous in the invention that no strength-increasing sintering process with the formation of stable sintering bridges is carried out, but that the Cr powder fill located in a mold is used directly. The pore volume of the powder filling can be completely filled with liquid copper without re-loading the furnace and additional handling of sintered blanks, so that a practically non-porous composite material results.

Anhand nachfolgender Ausführungsbeispiele wird die Erfindung im einzelnen beschrieben:The invention is described in detail using the following exemplary embodiments:

Bei Verwendung von aluminothermisch hergestelltem Chrom mit einem maximalen Sauerstöffgehalt von 500 ppm wird das daraus erzeugte Cr-Pulver mit einer Teilchengröße mit Anteilen von mindestens 150 µm in eine vorher entgaste Graphitform eingefüllt. Der Tiegel besitzt z. B. einen Durchmesser von 85 mm und eine Länge von 250 mm und wird bis zu einer Höhe von etwa 180 mm mit Cr-Pulver gefüllt. Auf das Cr-Pulver wird sauerstoffarmes Kupfer als massives Stück aufgelegt, das den restlichen Tiegelinhalt füllt. Der Tiegel wird mit einem porösen Graphitdeckel verschlossen und im Hochvakuumofen zunächst solange bei Raumtemperatur entgast, bis ein Druck im Bereich von 10-3 Pa, also weniger als 10-2 Pa erreicht ist. Anschließend wird mit dem Aufheizen begonnen, das immer dann unterbrochen wird, wenn der Druck auf über 10-2 Pa ansteigt. Bei einer Temperatur von etwa

Figure imgb0001
also unterhalb der Schmelztemperatur von Kupfer (TSm - 1 356 K), ist die eigentliche Entgasungstemperatur erreicht, die für eine Stunde, mindestens jedoch aber bis wieder ein Ofeninnendruck weniger als 10-2 Pa erreicht ist, beibehalten wird. Anschließend wird ohne Zwischenabkühlen die Temperatur weiter erhöht, bis zu einem Endwert, der 100 K bis 200 K oberhalb des Schmelzpunktes von Kupfer liegt. Die Temperatur kann z. B. 1 473 K sein, wobei bei dieser Temperatur nach etwa 30 Minuten ein praktisch vollständiges Ausfüllen der Poren in der Cr-Schüttung mit flüssigem Kupfer erreicht ist. Bei einem anderen Ausführungsbeispiel wird elektrolytisch hergestelltes Chrom verwendet, das einen maximalen Sauarstoffgehalt von ebenfalls 500 ppm hat. Das daraus erzeugte Cr-Pulver kann aber in diesem Fall eine Teilchengrößenverteilung haben, die kleiner als bei aluminothermisch hergestelltem Chrom ist, beispielsweise mit Teilchengrößen ab 25 µm. Ansonsten werden die einzelnen Verfahrensteilschritte entsprechend dem ersten Beispiel durchgeführt. Nach vollständiger Porenfüllung wird der gemäß obigen Beispielen hergestellte Rohling unter Vakuum abgekühlt. Nach dem Erkalten kann der Cr-Cu-Verbundblock in Kontaktstücke der erforderlichen Geometrie zerlegt werden. Werden metallographische Anschliffe des Werkstoffes hergestellt, so ist erkennbar, daß der mit dem erfindungsgemäßen Verfahren hergestellte Verbundwerkstoff praktisch keine festigkeitssteigernden Sinterbrücken und praktisch keine Poren aufweist. Mit dem neuen Verfahren können somit reproduzierbar auf Cr-Cu-Basis Kontaktstücke erzeugt werden, welche geeignete Eigenschaften für Mittelspannungs-Vakuum-Leistungsschalter haben.When using aluminothermally produced chromium with a maximum oxygen content of 500 ppm, the Cr powder produced therefrom is filled into a previously degassed graphite mold with a particle size of at least 150 μm. The crucible has e.g. B. a diameter of 85 mm and a length of 250 mm and is filled to a height of about 180 mm with Cr powder. Oxygen-poor copper is placed on the Cr powder as a solid piece that fills the remaining crucible contents. The crucible is closed with a porous graphite lid and initially while degassed in a high vacuum oven at room temperature until a pressure in the range of 10- 3 Pa, is thus achieved less than 10- 2 Pa. Then starting the heating, which is always interrupted when the pressure rises above 10- 2 Pa. At a temperature of about
Figure imgb0001
ie below the melting temperature of copper (TSM - 1356 K), the actual degassing temperature is reached which is maintained for one hour, however, but to a furnace internal pressure is reached less than 10- 2 Pa again at least. The temperature is then increased further without intermediate cooling until a final value which is 100 K to 200 K above the melting point of copper. The temperature can e.g. B. 1 473 K, at this temperature after about 30 minutes a practically complete filling of the pores in the Cr bed is achieved with liquid copper. In another embodiment, electrolytically produced chromium is used, which also has a maximum oxygen content of 500 ppm. In this case, however, the Cr powder produced can have a particle size distribution which is smaller than in the case of chromium produced by thermothermal means, for example with particle sizes from 25 μm. Otherwise, the individual process substeps are carried out in accordance with the first example. After complete pore filling, the blank produced according to the above examples is cooled under vacuum. After cooling, the Cr-Cu composite block can be broken down into contact pieces of the required geometry. If metallographic cuts of the material are produced, it can be seen that the composite material produced with the method according to the invention has practically no strength-increasing sintered bridges and practically no pores. With the new process, contact pieces can be reproducibly produced on Cr-Cu basis, which have suitable properties for medium-voltage vacuum circuit breakers.

Bei dem auf Cr-Cu-Basis beschriebenen Ausführungsbeispielen sind in an sich bekannter Weise weitere Elemente als Zusätze verwendbar: Beispielsweise können einerseits durch Titan und Zirkon als Legierungsbestandteile zum Kupfer die Gettereigenschaften verbessert werden ; andererseits können Eisen, Kobalt oder Nickel dem Cr-Pulver zugesetzt werden, um dadurch die Benetzungseigenschaften zu verbessern.In the exemplary embodiments described on the basis of Cr-Cu, further elements can be used as additives in a manner known per se: for example, titanium and zircon as alloy components for copper can be used to improve the getter properties; on the other hand, iron, cobalt or nickel can be added to the Cr powder to thereby improve the wetting properties.

Die Handhabung der genannten Zusätze bei Cr-Cu-Verbundwerkstoffen ist im Zusammenhang mit der Erfindung beherrschbar und ändert nichts Grundsätzliches am beschriebenen Herstellungsverfahren.The handling of the additives mentioned for Cr-Cu composites is manageable in connection with the invention and does not change anything fundamentally in the production process described.

Claims (7)

1. Process for the production of a composite material of chromium and copper as contact material for medium voltage-vacuum-power switches, comprising the following process steps:
a) Cr-powder is poured into a degassed working mould,
b) a piece of oxygen-poor copper is placed on the Cr powder,
c) the working mould is then closed with a porous cover,
d) then the working mould is degassed in a high-vacuum furnace at room temperature until a pressure of less than 10-2 Pa is reached,
e) the furnace temperature is then increased to the highest possible temperature below the melting temperature of copper (TSMCu = 1083°C = 1356 K),
f) this furnace temperature is held constant for about an hour, after which a constant internal furnace pressure of less than 10-2 Pa is reached,
g) then, without intermediate cooling, the furnace temperature is again increased to a final value of 100 K to 200 K above the melting temperature of the copper and this temperature is maintained for about 20 to 30 minutes, after which the porosity comprised in the Cr-powder mass is completely filled with the liquid copper.
2. Process according to claim 1, characterised in that the furnace temperature in process step e) is
Figure imgb0003
3. Process according to claim 1, characterised in that the pressure in process step d) and f) is in the region of 10-3 Pa.
4. Process according to claim 1, characterised in that when aluminothermally-produced chromium is used the Cr powder produced therefrom has a particle size distribution of between 50 µm and 20 µm.
5. Process according to claim 4, characterised in that Cr powder with a particle size with components of at least 150 µm is used.
6. Process according to claim 1, characterised in that when electrolytically produced chromium is used the Cr powder produced therefrom has a particle size distribution of between 25 µm and 200 µm.
7. Process according to one of claims 1 to 6, characterised in that a working mould made of graphite is used.
EP83106620A 1982-07-16 1983-07-06 Process for manufacturing a composite article from chromium and copper Expired - Lifetime EP0099066B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19823226604 DE3226604A1 (en) 1982-07-16 1982-07-16 Process for the preparation of a composite material based on Cr/Cu for medium-voltage vacuum power switches
DE3226604 1982-07-16
DE3322866 1983-06-24
DE19833322866 DE3322866A1 (en) 1983-06-24 1983-06-24 Process for the production of a composite material of chromium and copper

Publications (3)

Publication Number Publication Date
EP0099066A1 EP0099066A1 (en) 1984-01-25
EP0099066B1 EP0099066B1 (en) 1986-05-07
EP0099066B2 true EP0099066B2 (en) 1992-07-22

Family

ID=25803079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106620A Expired - Lifetime EP0099066B2 (en) 1982-07-16 1983-07-06 Process for manufacturing a composite article from chromium and copper

Country Status (3)

Country Link
US (1) US4503010A (en)
EP (1) EP0099066B2 (en)
DE (1) DE3363383D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001613B1 (en) * 1986-01-10 1990-03-17 미쯔비시 덴끼 가부시기가이샤 Contact material for vacuum circuit braker
JPH0760623B2 (en) * 1986-01-21 1995-06-28 株式会社東芝 Contact alloy for vacuum valve
JP2640142B2 (en) * 1989-06-05 1997-08-13 三菱電機株式会社 Contact material for vacuum switch tube and its manufacturing method
US5024899A (en) * 1990-10-22 1991-06-18 Lang Richard D Resilient metallic friction facing material
SE9100396D0 (en) * 1991-02-08 1991-02-08 Sandvik Ab SET FOR PREPARATION OF A COMPONENT BODY
US5701993A (en) * 1994-06-10 1997-12-30 Eaton Corporation Porosity-free electrical contact material, pressure cast method and apparatus
DE19537657A1 (en) * 1995-10-10 1997-04-17 Abb Patent Gmbh Method and device for producing a contact piece
JP3663038B2 (en) * 1997-09-01 2005-06-22 芝府エンジニアリング株式会社 Vacuum valve
US7832857B2 (en) * 2008-08-18 2010-11-16 Levinson Dennis J Microbial cellulose contact lens
AT11814U1 (en) * 2010-08-03 2011-05-15 Plansee Powertech Ag METHOD FOR THE POWDER METALLURGIC MANUFACTURE OF A CU-CR MATERIAL
RU2751865C1 (en) * 2020-12-22 2021-07-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for obtaining carbon-graphite composite material
RU2751861C1 (en) * 2020-12-22 2021-07-19 Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for obtaining carbon-graphite composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353933A (en) * 1966-03-11 1967-11-21 Mallory & Co Inc P R Tungsten powder bodies infiltrated with copper-titanium alloys
GB1194674A (en) * 1966-05-27 1970-06-10 English Electric Co Ltd Vacuum Type Electric Circuit Interrupting Devices
DE2240493C3 (en) * 1972-08-17 1978-04-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Penetration composite metal as a contact material for vacuum switches and process for its manufacture
DE2357333C3 (en) * 1973-11-16 1980-04-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Penetration composite metal as contact material for vacuum switches
GB1459475A (en) * 1974-05-23 1976-12-22 English Electric Co Ltd Manufacture of contact ekements for vacuum interrupters
DE2619459C3 (en) * 1976-05-03 1978-11-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Sintered composite material as a contact material for vacuum medium-voltage circuit breakers
JPS598015B2 (en) * 1978-05-31 1984-02-22 三菱電機株式会社 Vacuum shield contact

Also Published As

Publication number Publication date
EP0099066A1 (en) 1984-01-25
DE3363383D1 (en) 1986-06-12
US4503010A (en) 1985-03-05
EP0099066B1 (en) 1986-05-07

Similar Documents

Publication Publication Date Title
EP0115292B1 (en) Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches
DE3729033C2 (en)
EP0099066B2 (en) Process for manufacturing a composite article from chromium and copper
DE4019441A1 (en) METHOD FOR PRODUCING PRESSING BODIES
EP0480922B1 (en) PROCESS FOR PRODUCING A CuCr CONTACT MATERIAL FOR VACUUM SWTICHES
DE2522832A1 (en) PROCESS FOR PRODUCING CHROME-COPPER CONTACTS FOR VACUUM SWITCHES AND CONTACTS PRODUCED BY THIS PROCESS
DE2346179A1 (en) COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES
DE4019439A1 (en) METHOD FOR PRODUCING PRESSING BODIES
DE2709278B2 (en) Sintered impregnating material for electrical contact pieces and process for its production
EP0474628B1 (en) Process for producing a cucr contact material for vacuum switches and appropriate contact material
DE3406535C2 (en)
WO2006111175A1 (en) Method for producing contact makers for vacuum switching chambers
DE69825227T2 (en) vacuum switch
DE10010723B4 (en) Method for producing a contact material semifinished product for contact pieces for vacuum switching devices and contact material semi-finished products and contact pieces for vacuum switching devices
DE69411803T2 (en) Electrode and method of making an electrode material
DE3543586A1 (en) CONTACT MATERIAL FOR VACUUM SWITCHES
DE3226604A1 (en) Process for the preparation of a composite material based on Cr/Cu for medium-voltage vacuum power switches
DE69614489T2 (en) Contact material for vacuum switch and process for its manufacture
DE3322866A1 (en) Process for the production of a composite material of chromium and copper
DE69111701T2 (en) Contact for a vacuum switch.
DE102013226257A1 (en) Process for the production of contact material pieces for vacuum interrupters
DE69011421T2 (en) Sintered contact material for vacuum switches and method for manufacturing the same.
DE102006021772A1 (en) Method of making copper-chrome contacts for vacuum switches and associated switch contacts
DE1539126A1 (en) Method and device for evacuating electrical vacuum discharge devices
DE2712555C3 (en) Process for making an interpenetrating composite metal from tungsten, silver and copper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19840705

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3363383

Country of ref document: DE

Date of ref document: 19860612

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DODUCO KG DR. EUGEN DUERRWAECHTER

Effective date: 19870131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900727

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901024

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910731

Ref country code: CH

Effective date: 19910731

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

PLAE Information related to rejection of opposition modified

Free format text: ORIGINAL CODE: 0009299REJO

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27O Opposition rejected

Effective date: 19911022

D27O Information related to the rejection of opposition deleted
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19920722

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB LI SE

EN3 Fr: translation not filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930915

Year of fee payment: 11

EUG Se: european patent has lapsed

Ref document number: 83106620.4

Effective date: 19920210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO