EP0314719B1 - Binary compression heat pump with solution circuit - Google Patents

Binary compression heat pump with solution circuit Download PDF

Info

Publication number
EP0314719B1
EP0314719B1 EP88903782A EP88903782A EP0314719B1 EP 0314719 B1 EP0314719 B1 EP 0314719B1 EP 88903782 A EP88903782 A EP 88903782A EP 88903782 A EP88903782 A EP 88903782A EP 0314719 B1 EP0314719 B1 EP 0314719B1
Authority
EP
European Patent Office
Prior art keywords
solution
pressure
resorber
condenser
degasser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88903782A
Other languages
German (de)
French (fr)
Other versions
EP0314719A1 (en
Inventor
Vinko Mucic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCH THERMO-CONSULTING-HEIDELBERG GmbH
Original Assignee
TCH THERMO-CONSULTING-HEIDELBERG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCH THERMO-CONSULTING-HEIDELBERG GmbH filed Critical TCH THERMO-CONSULTING-HEIDELBERG GmbH
Priority to AT88903782T priority Critical patent/ATE53114T1/en
Publication of EP0314719A1 publication Critical patent/EP0314719A1/en
Application granted granted Critical
Publication of EP0314719B1 publication Critical patent/EP0314719B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the invention relates to a two-substance compression heat pump or refrigeration machine with a degasser and a resorber which are connected to form a solution circuit in which a two-substance working medium, preferably formed by an ammonia / water mixture, is circulated.
  • a two-fluid compression heat pump or refrigeration machine (DE-PS 35 36 953) of this type is known, which already has a significantly improved performance figure compared to the corresponding machines working without additional degassing of the poor solution supplied to the temperature changer.
  • the invention has for its object to further increase the performance figure of the known two-fluid compression heat pump (or refrigerator).
  • this object is achieved in that in the first line branch of the solution circuit which promotes the poor solution from the degasifier to the resorber, at least two pumps which increase the pressure in the poor solution gradually to the resorber pressure are switched on and the additional degasifier in the one running between the two pumps, is arranged on an intermediate pressure section of the first line branch, and that the gaseous working fluid component additionally expelled from the poor solution in the further degasser at the level of the intermediate pressure by means of a separate compressor or by feeding into a medium pressure stage of the gaseous working fluid component from the main degasser to the resorber multi-stage compressor is promoted to the resorber.
  • the poor solution is additionally degassed by transferring heat from the rich solution and the poorer solution in the resorber is able to absorb a comparatively larger proportion of gaseous working fluid component and thus also a comparatively larger amount of absorption heat is generated.
  • the additional degassing of the poor solution at the medium pressure can either be carried out at the pressure level of the degasser instead of the additional degassing provided in the known heat pump or refrigerator, or - preferably - in addition to the degassing at the low degasser pressure level .
  • the heat pump according to the invention illustrated in FIG. 1, designated in its entirety by 10, has a degasser 12 in which, at a low pressure level PE, gaseous working fluid component is expelled from a rich two-substance working solution by supplying thermal energy at a low temperature level. If the preferred ammonia-water mixture is used as the working medium, the degasser 12 is therefore Gaseous ammonia is expelled from the solution.
  • the thermal energy of low temperature levels required for degassing the rich solution can be taken, for example, from the ambient atmosphere or from a stream. If available, waste heat from another technical work process can of course also be used.
  • the degasifier 12 is supplied with water taken from a river via a line 14 and - after the removal of thermal energy for the degassing of the rich solution - is removed again via a line 16 with a correspondingly lower temperature.
  • the resulting poor solution of the working fluid in the degasser 12 is pumped via a first line branch 18 to a resorber 20 while increasing the pressure to a pressure p R , while the gaseous working fluid component is fed to the resorber via a line 22 with the multi-stage turbo-compressor 24 switched on.
  • the heat of absorption occurring in the resorber 20 during the absorption of the gaseous working medium in the poor solution at a high temperature level can then be used, for example, to produce hot water from colder water supplied via a line 26.
  • the hot water discharged from the resorber 12 via a line 28 can then be used, for example, for heating purposes.
  • the solution, which is rich again due to absorption of the gaseous working medium, is returned from the resorber 20 via a second line branch 30 to the degasifier 12 by reducing the pressure to the pressure level PE in a throttle element 32.
  • the poor solution emerging from the degasser 12 is further degassed in a further degasser 34 connected downstream in the line branch 18 at the pressure level p E , by using the pressure flowing through the line branch 30 and still at the pressure level p R contained rich solution contained heat is transferred to the poor solution.
  • the additionally expelled gaseous working medium component, ie the additional ammonia, is fed via line 22a into the section of line 22 located in front of turbo-compressor 24.
  • two pumps 36a and 36b are provided, by means of which the pressure in the poor solution first of all from the pressure PE prevailing in the degasifier to an intermediate pressure p z and then from this intermediate pressure to the resorber pressure p Ft is increased.
  • a temperature changer 38 is connected to the sections of the two line branches 18 and 30 located at the absorber pressure p R.
  • the heat pump 10 - except for the two-stage pressure increase of the poor solution by means of two separate pumps 36a and 36b - corresponds to known two-material compression heat pumps.
  • a further degassing of the poor solution by means of heat contained in the rich solution at the pressure level of the intermediate pressure p z is provided in a further development of the known heat pumps.
  • a further degasifier 40 is switched on in the section of the poor solution line 18 which runs between the pumps 36a and 36b and the section of the rich solution line 30 which runs between the resorber 20 and the throttle element 32, in which a further degasser 40 is connected
  • a further portion of gaseous working medium component ie ammonia
  • Compressor 24 is promoted. In the section of the lines 22 connected downstream of the compressor 24 and leading to the resorber 20, a quantity of gaseous working medium composed of the sum of the partial quantities expelled in the degassers 12, 34 and 40 flows, but the drive power for the turbo-compressor 24 driving motor 42 only with respect to the partial quantities from the degassers 12 and 34 for the total pressure difference between the resorber pressure p R and the degasser pressure p E , with respect to the partial quantity expelled in the degasifier 40, however, only for the pressure difference between the resorber pressure p R and the intermediate pressure p z must be interpreted.
  • the changes in the state variables of the working fluid in the heat pump process of the above-described heat pump are schematically illustrated in a p, diagram. If the amount of gaseous working fluid component expelled by the external amount of heat Q E supplied in the degasser 12 is assumed to be additional in the degasser 34 and in the degasser 40 without additional external energy being supplied from the poor solution Quantities x and y are expelled from the gaseous working fluid component, for which heat energy still contained in the rich solution after exiting the resorber is used.
  • the gaseous amount y corresponds approximately to the amount y ', which would have been degassed with the heat of the rich solution in the additional degassing to degasser pressure PE .
  • the quantity y does not need to be compressed from the pressure p E , but only from the pressure p z > p E to the absorber pressure p R , which improves the performance figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A binary compression heat pump or refrigerating machine comprises a degasser (12) connected in a solution circuit to a resorber (20) through a branch line (18) with at least one incorporated solution pump (36) and a second branch line (30) with an incorporated restrictor (32). Between the two branch lines (18, 30), heat from the hot solution flowing from the resorber (20) to the degasser (12) is transferred by means of a heat-exchanger (38) to the cool solution flowing from the degasser (12) to the resorber (20). In addition, the heat contained in the hot solution leaving the heat-exchanger is used to further degas the cool solution entering the heat-exchanger. The gaseous components of the working fluid expelled from the hot solution in the degasser are conveyed through a compressor (24) under higher pressure to the resorber where they are reabsorbed in the cool solution. At least two pumps (36a; 36b) which increase the pressure in the cool solution in stages to the resorber pressure are incorporated in the first branch line (18) of the solution circuit which conveys the solution from the degasser (12) to the resorber (20). The auxiliary degasser for further degassing the cool solution is arranged in the section of the first branch line (18) between the two pumps at an intermediate pressure and in the section of the second branch line (30) between the heat-exchanger (38) and the restrictor (32). The additional gaseous working medium components expelled from the weak solution in the auxiliary degasser (40) at the intermediate pressure are conveyed to the resorber (20) through a separate compressor or by feeding into middle pressure stage of the multistage compressor (24) which conveys the gaseous working medium components from the main degasser to the resorber.

Description

Die Erfindung betrifft eine Zweistoff-Kompressions-Wärmepumpe bzw. Kältemaschine mit einem Entgaser und einem Resorber die zu einem Lösungskreislauf zusammengeschaltet sind in welchem ein vorzugsweise von einem Ammoniak-Wasser-Gemisch gebildetes Zweistoff-Arbeitsmittel umgewälzt wird. wobei im Entgaser auf niedrigem Druckniveau unter Zufuhr von Wärmeenergie auf niedrigem Temperaturniveau gasförmige Arbeitsmittelkomponente ausgetrieben und die dabei entstehende arme Lösung unter Druckerhöhung mittels einer Pumpe in einem ersten Leitungszweig zum Resorber gefördert wird, wo die im Entgaser ausgetriebene gasförmige Arbeitsmittelkomponente nach Erhöhung ihres Drucks auf den Resorberdruck mittels eines Kompressors unter Abfuhr der dabei auf einem erhöhten Temperaturniveau anfallenden Resorptionswärme in der armen Lösung resorbiert wird und die so entstandene reiche Lösung in einem zweiten Leitungszweig unter Druckerniedrigung mittels eines Drosselorgans zum Entgaser zurückströmt, und wobei in den auf Resorberdruck befindlichen Abschnitten des ersten und des zweiten Leitungszweiges ein Temperaturwechsler eingeschaltet ist, in welchem in der aus dem Resorber austretenden reichen Lösung enthaltene Wärme auf die dem Resorber zuströmende arme Lösung übertragen und in der aus dem Temperaturwechsler austretenden reichen Lösung enthaltene Wärme außerdem zur weiteren Entgasung der dem Temperaturwechsler zugeführten armen Lösung benutzt wird, wobei der zusätzliche Entgaser für die weitere Entgasung der armen Lösung einerseits in dem zwischen dem Temperaturwechsler und dem Drosselorgan verlaufenden Abschnitt des zweiten Leitungszweiges angeordnet ist.The invention relates to a two-substance compression heat pump or refrigeration machine with a degasser and a resorber which are connected to form a solution circuit in which a two-substance working medium, preferably formed by an ammonia / water mixture, is circulated. gaseous working fluid component being expelled in the degasifier at a low pressure level while supplying thermal energy at a low temperature level, and the resulting poor solution is conveyed to the resorber by increasing the pressure by means of a pump in a first line branch, where the gaseous working fluid component expelled in the degasifier is raised to the resorber pressure by means of a compressor while dissipating the heat of absorption that arises at an elevated temperature level in the poor solution and the rich solution thus produced flows back to the degasifier in a second line branch under pressure reduction by means of a throttle element, and in the sections of the first and the ones that are at the absorber pressure second line branch, a temperature changer is switched on, in which heat contained in the rich solution emerging from the resorber transfers to the poor solution flowing to the resorber en and in the rich solution emerging from the temperature changer heat is also used for further degassing of the poor solution supplied to the temperature changer, the additional degasser for further degassing the poor solution on the one hand in the section of the second line branch running between the temperature changer and the throttle element is arranged.

Es ist eine Zweistoff-Kompressions-Wärmepumpe bzw. Kältemaschine (DE-PS 35 36 953) dieser Art bekannt, welche gegenüber den ohne zusätzliche Entgasung der dem Temperaturwechsler zugeführten armen Lösung arbeitenden entsprechenden Maschinen bereits eine deutlich verbesserte Leistungsziffer aufweist.A two-fluid compression heat pump or refrigeration machine (DE-PS 35 36 953) of this type is known, which already has a significantly improved performance figure compared to the corresponding machines working without additional degassing of the poor solution supplied to the temperature changer.

Der Erfindung liegt die Aufgabe zugrunde, die Leistungsziffer der bekannten Zweistoff-Kompressions-Wärmepumpe (oder Kältemaschine) weiter zu erhöhen.The invention has for its object to further increase the performance figure of the known two-fluid compression heat pump (or refrigerator).

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß in den die arme Lösung vom Entgaser zum Resorber fördernden ersten Leitungszweig des Lösungskreislaufs wenigstens zwei den Druck in der armen Lösung stufenweise auf den Resorberdruck erhöhende Pumpen eingeschaltet und der zusätzliche Entgaser andererseits in dem zwischen den beiden Pumpen verlaufenden, auf einem Zwischendruck befindlichen Abschnitt des ersten Leitungszweiges angeordnet ist, und daß die im weiteren Entgaser auf dem Niveau des Zwischendrucks aus der armen Lösung zusätzlich ausgetriebene gasförmige Arbeitsmittelkomponente durch einen gesonderten Kompressor oder durch Einspeisung in eine mittlere Druckstufe des die gasförmige Arbeitsmittelkomponente vom Hauptentgaser zum Resorber fördernden mehrstufigen Kompressors zum Resorber gefördert wird. Dabei wird also ausgenutzt, daß bei einem gegenüber dem niedrigen Entgaser-Druck erhöhten Druck die arme Lösung durch Übertragung von Wärme aus der reichen Lösung zusätzlich entgast und die somit noch ärmere Lösung im Resorber einen vergleichsweise größeren Anteil von gasförmiger Arbeitsmittelkomponente zu resorbieren vermag und somit auch eine vergleichsweise größere Menge von Resorptionswärme anfällt. Festzuhalten ist jedenfalls, daß die zusätzliche Entgasung der armen Lösung auf dem mittleren Druck entweder anstelle der bei der bekannten Wärmepumpe bzw. Kältemaschine vorgesehenen zusätzlichen Entgasung auf dem Druckniveau des Entgasers oder - vorzugsweise - zusätzlich zu der Entgasung auf dem niedrigen Entgaser-Druckniveau durchgeführt werden kann. Da die zusätzlich aus der armen Lösung ausgetriebene gasförmige Arbeitsmittelkomponente auf einem mittleren Druckniveau anfällt, ist klar, daß die zusätzlich erforderliche Antriebsleistung des Kompressors für die Förderung dieser zusätzlich ausgetriebenen gasförmigen Arbeitsmittelkomponente zum Resorber nur entsprechend dem Druckunterschied zwischen dem Zwischendruck und dem Resorberdruck bemessen werden muß.According to the invention, this object is achieved in that in the first line branch of the solution circuit which promotes the poor solution from the degasifier to the resorber, at least two pumps which increase the pressure in the poor solution gradually to the resorber pressure are switched on and the additional degasifier in the one running between the two pumps, is arranged on an intermediate pressure section of the first line branch, and that the gaseous working fluid component additionally expelled from the poor solution in the further degasser at the level of the intermediate pressure by means of a separate compressor or by feeding into a medium pressure stage of the gaseous working fluid component from the main degasser to the resorber multi-stage compressor is promoted to the resorber. This takes advantage of the fact that, at a pressure that is higher than the low degasser pressure, the poor solution is additionally degassed by transferring heat from the rich solution and the poorer solution in the resorber is able to absorb a comparatively larger proportion of gaseous working fluid component and thus also a comparatively larger amount of absorption heat is generated. In any case, it should be noted that the additional degassing of the poor solution at the medium pressure can either be carried out at the pressure level of the degasser instead of the additional degassing provided in the known heat pump or refrigerator, or - preferably - in addition to the degassing at the low degasser pressure level . Since the additional gaseous working medium component expelled from the poor solution is obtained at a medium pressure level, it is clear that the additionally required drive power of the compressor for conveying this additionally expelled gaseous working medium component to the resorber only has to be dimensioned according to the pressure difference between the intermediate pressure and the resorber pressure.

In vorteilhafter Weiterbildung der Erfindung empfiehlt es sich, in den dem weiteren Entgaser arme Lösung auf dem Zwischendruck zuführenden Abschnitt des ersten Leitungszweiges und den auf Resorberdruck befindlichen Abschnitt des zweiten Leitungszweiges des Lösungskreislaufs einen weiteren Temperaturwechsler einzuschalten.In an advantageous further development of the invention, it is advisable to switch on a further temperature changer in the section of the first line branch which supplies the further degasifier at the intermediate pressure and the section of the second line branch of the solution circuit which is at resorber pressure.

Es hat sich gezeigt, daß die Leistungsziffer der Wärmepumpe oder Kältemaschine dann optimiert wird, wenn die zusätzliche Entgasung der armen Lösung bei einem Zwischendruck erfolgt, welcher im wesentlichen gleich der Wurzel aus dem Produkt der im Haupt-Entgaser und im Resorber herrschenden Drücke ist.It has been shown that the performance figure of the heat pump or refrigerator is optimized when the additional degassing of the poor solution takes place at an intermediate pressure which is essentially equal to the root of the product of the pressures prevailing in the main degasser and in the resorber.

Die Erfindung ist in der folgenden Beschreibung eines Ausführungsbeispiels in Verbindung mit der Zeichnung näher erläutert, und zwar zeigt:

  • Fig. 1 einen schematischen Schaltplan einer in der erfindungsgemäßen Weise aufgebauten Zweistoff-Kompressions-Wärmepumpe; und
  • Fig. 2 die in der Wärmepumpe gemäß Figur 1 ablaufenden Zustandsänderungen des Zweistoff-Arbeitsmittels schematisch in einem p, Diagramm.
The invention is explained in more detail in the following description of an embodiment in conjunction with the drawing, which shows:
  • Figure 1 is a schematic circuit diagram of a two-fluid compression heat pump constructed in the manner according to the invention. and
  • Fig. 2 shows the state changes of the two-component working fluid in the heat pump according to FIG. 1 schematically in ap diagram.

Die in Figur 1 veranschaulichte, in ihrer Gesamtheit mit 10 bezeichnete erfindungsgemäße Wärmepumpe weist einen Entgaser 12 auf, in welchem bei einem niedrigen Druckniveau PE durch Zufuhr von Wärmeenergie auf einem niedrigen Temperaturniveau aus einer reichen Zweistoff-Arbeitsmittellösung gasförmige Arbeitsmittelkomponente ausgetrieben wird. Bei Verwendung des bevorzugten Ammoniak-Wasser-Gemischs als Arbeitsmittel wird im Entgaser 12 also Ammoniak gasförmig aus der Lösung ausgetrieben. Die zur Entgasung der reichen Lösung erforderliche Wärmeenergie niedrigen Temperaturniveaus kann dabei beispielsweise der Umgebungsatmosphäre oder einem Fließgewässer entnommen werden. Sofern vorhanden, kann natürlich auch Abwärme eines anderen technischen Arbeitsprozesses verwendet werden. Im vorliegende Fall sei angenommen, daß dem Entgaser 12 über eine Leitung 14 aus einem Fließgewässer entnommenes Wasser zugeführt und - nach Entzug von Wärmeenergie für die Entgasung der reichen Lösung - über eine Leitung 16 mit entsprechend niedrigerer Temperatur wieder abgeführt werde. Die dabei im Entgaser 12 entstehende arme Lösung des Arbeitsmittels wird über einen ersten Leitungszweig 18 unter Druckerhöhung auf einen Druck pR zu einem Resorber 20 gepumpt, während die gasförmige Arbeitsmittelkomponente dem Resorber über eine Leitung 22 mit eingeschaltetem mehrstufigem Turbo-Kompressor 24 zugeführt wird. Die im Resorber 20 bei der Resorption des gasförmigen Arbeitsmittels in der armen Lösung auf hohem Temperaturniveau anfallende Resorptionswärme kann dann beispielsweise zur Erzeugung von Heißwasser aus über eine Leitung 26 zugeführtem kälterem Wasser verwendet werden. Das über eine Leitung 28 aus dem Resorber 12 abgeführte Heißwasser kann dann beispielsweise für Heizzwecke Verwendung finden. Die durch Resorption des gasförmigen Arbeitsmittels wieder reiche Lösung wird aus dem Resorber 20.über einen zweiten Leitungszweig 30 unter Druckabsenkung auf das Druckniveau PE in einem Drosselorgan 32 wieder in den Entgaser 12 zurückgeführt. Entsprechend dem eingangs erläuterten Stand der Technik wird beim dargestellten Ausführungsbeispiel die aus dem Entgaser 12 austretende arme Lösung in einem im Leitungszweig 18 nachgeschalteten weiteren Entgaser 34 auf dem Druckniveau pE weiter entgast, indem aus der im Leitungszweig 30 strömenden, noch auf dem Druckniveau pR befindlichen reichen Lösung enthaltene Wärme auf die arme Lösung übertragen wird. Die dabei zusätzlich ausgetriebene gasförmige Arbeitsmittelkomponente, d.h. das zusätzlich anfallende Ammoniak, wird über die Leitung 22a in den vor dem Turbo-Kompressor 24 liegenden Abschnitt der Leitung 22 geführt.The heat pump according to the invention illustrated in FIG. 1, designated in its entirety by 10, has a degasser 12 in which, at a low pressure level PE, gaseous working fluid component is expelled from a rich two-substance working solution by supplying thermal energy at a low temperature level. If the preferred ammonia-water mixture is used as the working medium, the degasser 12 is therefore Gaseous ammonia is expelled from the solution. The thermal energy of low temperature levels required for degassing the rich solution can be taken, for example, from the ambient atmosphere or from a stream. If available, waste heat from another technical work process can of course also be used. In the present case, it is assumed that the degasifier 12 is supplied with water taken from a river via a line 14 and - after the removal of thermal energy for the degassing of the rich solution - is removed again via a line 16 with a correspondingly lower temperature. The resulting poor solution of the working fluid in the degasser 12 is pumped via a first line branch 18 to a resorber 20 while increasing the pressure to a pressure p R , while the gaseous working fluid component is fed to the resorber via a line 22 with the multi-stage turbo-compressor 24 switched on. The heat of absorption occurring in the resorber 20 during the absorption of the gaseous working medium in the poor solution at a high temperature level can then be used, for example, to produce hot water from colder water supplied via a line 26. The hot water discharged from the resorber 12 via a line 28 can then be used, for example, for heating purposes. The solution, which is rich again due to absorption of the gaseous working medium, is returned from the resorber 20 via a second line branch 30 to the degasifier 12 by reducing the pressure to the pressure level PE in a throttle element 32. In accordance with the prior art explained at the outset, in the exemplary embodiment shown, the poor solution emerging from the degasser 12 is further degassed in a further degasser 34 connected downstream in the line branch 18 at the pressure level p E , by using the pressure flowing through the line branch 30 and still at the pressure level p R contained rich solution contained heat is transferred to the poor solution. The additionally expelled gaseous working medium component, ie the additional ammonia, is fed via line 22a into the section of line 22 located in front of turbo-compressor 24.

Für die Förderung der armen Lösung zum Resorber 20 sind zwei Pumpen 36a und 36b vorgesehen, mittels derer der Druck in der armen Lösung zunächst von dem im Entgaser herrschenden Druck PE auf einen Zwischendruck pz und dann von diesem Zwischendruck auf den Resorber-Druck pFt erhöht wird. Wiederum entsprechend dem Stand der Technik ist in die auf Resorberdruck pR befindlichen Abschnitte der beiden Leitungszweige 18 und 30 ein Temperaturwechsler 38 geschaltet. Im bisher beschriebenen Umfang entspricht die Wärmepumpe 10 - bis auf die zweistufige Druckerhöhung der armen Lösung durch zwei gesonderte Pumpen 36a und 36b - bekannten Zweistoff-Kompressions-Wärmepumpen.For pumping the poor solution to the resorber 20, two pumps 36a and 36b are provided, by means of which the pressure in the poor solution first of all from the pressure PE prevailing in the degasifier to an intermediate pressure p z and then from this intermediate pressure to the resorber pressure p Ft is increased. Again in accordance with the prior art, a temperature changer 38 is connected to the sections of the two line branches 18 and 30 located at the absorber pressure p R. To the extent described so far, the heat pump 10 - except for the two-stage pressure increase of the poor solution by means of two separate pumps 36a and 36b - corresponds to known two-material compression heat pumps.

Zur weiteren Verbesserung der Leistungsziffer ist in Weiterbildung der bekannten Wärmepumpen noch eine weitere Entgasung der armen Lösung mittels in der reichen Lösung enthaltener Wärme auf dem Druckniveau des Zwischendrucks pz vorgesehen. Zu diesem Zweck ist in den zwischen den Pumpen 36a und 36b verlaufenden Abschnitt des arme Lösung führenden ersten Leitungszweiges 18 und den zwischen dem Resorber 20 und dem Drosselorgan 32 verlaufenden Abschnitt des reiche Lösung führenden zweiten Leitungszweigs 30 ein weiterer Entgaser 40 eingeschaltet, in welchem aus der von der Pumpe 36a zugeführten armen Lösung unter Aufnahme von Wärme aus der reichen Lösung ein weiterer Anteil von gasförmiger Arbeitsmittelkomponente (d.h. Ammoniak) mit dem Druck pz ausgetrieben wird, welche über eine Leitung 22b zu einer auf dem Zwischendruck pz befindlichen Druckstufe des Turbo-Kompressors 24 gefördert wird. In dem dem Kompressor 24 nachgeschalteten, zum Resorber 20 führenden Abschnitt der Leitungen 22 strömt also eine sich aus der Summe der in den Entgasern 12, 34 und 40 ausgetriebenen Teilmenge zusammensetzende Menge von gasförmigem Arbeitsmittel, wobei aber die Antriebsleistung für den den Turbo-Kompressor 24 antreibenden Motor 42 nur bezüglich der Teilmengen aus den Entgasern 12 und 34 für die gesamte Druckdifferenz zwischen dem Resorberdruck pR und dem Entgaser-Druck pE, bezüglich der im Entgaser 40 ausgetriebene Teilmenge dagegen nurfürdie Druckdifferenz zwischen dem Resorber- druck pR und dem Zwischendruck pz ausgelegt werden muß.To further improve the performance figure, a further degassing of the poor solution by means of heat contained in the rich solution at the pressure level of the intermediate pressure p z is provided in a further development of the known heat pumps. For this purpose, a further degasifier 40 is switched on in the section of the poor solution line 18 which runs between the pumps 36a and 36b and the section of the rich solution line 30 which runs between the resorber 20 and the throttle element 32, in which a further degasser 40 is connected A further portion of gaseous working medium component (ie ammonia) is expelled from the poor solution supplied by the pump 36a while absorbing heat from the rich solution, with the pressure p z , which via line 22b leads to a pressure stage of the turbo pressure at the intermediate pressure p z. Compressor 24 is promoted. In the section of the lines 22 connected downstream of the compressor 24 and leading to the resorber 20, a quantity of gaseous working medium composed of the sum of the partial quantities expelled in the degassers 12, 34 and 40 flows, but the drive power for the turbo-compressor 24 driving motor 42 only with respect to the partial quantities from the degassers 12 and 34 for the total pressure difference between the resorber pressure p R and the degasser pressure p E , with respect to the partial quantity expelled in the degasifier 40, however, only for the pressure difference between the resorber pressure p R and the intermediate pressure p z must be interpreted.

Die Einschaltung eines weiteren Temperaturwechslers 44 in den zwischen der Pumpe 36a und dem zweiten Entgaser 40 verlaufenden Abschnitt des arme Lösung führenden ersten Leitungszweiges 18 und den zwischen dem weiteren Entgaser 40 und dem Entgaser 34 verlaufenden, reiche Lösung mit Resorber-Druck pR führenden Abschnitt des zweiten Leitungszweigs 30 dient der weiteren Verbesserung der Leistungsziffer der Wärmepumpe 10.The activation of a further temperature changer 44 in the section of the poor solution leading section between the pump 36a and the second degasser 40 and the rich solution with resorber pressure p R leading between the further degasser 40 and the degasser 34 second line branch 30 serves to further improve the performance figure of the heat pump 10.

Berechnungen des vorstehend beschriebenen Systems mit unterschiedlich angenommenen Werten für die Höhe des Zwischendrucks pz haben ergeben, daß die Leistungsziffer der Wärmepumpe optimiert wird, wenn

Figure imgb0001
gewählt wird.Calculations of the system described above with differently assumed values for the level of the intermediate pressure p z have shown that the coefficient of performance of the heat pump is optimized if
Figure imgb0001
is chosen.

In dem in Figur 2 gezeigten Diagramm sind die Änderungen der Zustandsgrößen des Arbeitsmittels im Wärmepumpenprozeß der vorstehend beschriebenen Wärmepumpe schematisch in einem p, -Diagramm veranschaulicht. Wenn die durch die im Entgaser 12 zugeführte äußere Wärmemenge QE ausgetriebene Menge von gasförmiger Arbeitsmittelkomponente mit einem Kilogramm angenommen wird, werden im Entgaser 34 und im Entgaser 40 ohne Zufuhr weiterer äußerer Energie aus der armen Lösung zusätzliche Mengen x bzw. y von gasförmiger Arbeitsmittelkomponente ausgetrieben, wofür in der reichen Lösung nach dem Austritt aus dem Resorber noch enthaltene Wärmeenergie verwendet wird. Die gasförmige Menge y entspricht etwa der Menge y', die bei der Zusatz-Entgasung auf Entgaser-druck PE mit der Wärme der reichen Lösung entgast worden wäre. Die Menge y braucht dabei aber nicht vom Druck pE, sondern nur vom Druck pz > pE auf den Resorberdruck pR komprimiert werden, wodurch die Leistungsziffer verbessert wird.In the diagram shown in FIG. 2, the changes in the state variables of the working fluid in the heat pump process of the above-described heat pump are schematically illustrated in a p, diagram. If the amount of gaseous working fluid component expelled by the external amount of heat Q E supplied in the degasser 12 is assumed to be additional in the degasser 34 and in the degasser 40 without additional external energy being supplied from the poor solution Quantities x and y are expelled from the gaseous working fluid component, for which heat energy still contained in the rich solution after exiting the resorber is used. The gaseous amount y corresponds approximately to the amount y ', which would have been degassed with the heat of the rich solution in the additional degassing to degasser pressure PE . The quantity y does not need to be compressed from the pressure p E , but only from the pressure p z > p E to the absorber pressure p R , which improves the performance figure.

Es ist ersichtlich, daß im Rahmen des Erfindungsgedankens Abwandlungen und Weiterbildungen der beschriebenen - auch als Kältemaschine betreibbaren - Wärmepumpe verwirklichbar sind. So ist eine weitere Verbesserung der Leistungsziffer durch eine weitere Erhöhung der Zahl der Druckstufen in der armen Lösung mit jeweils einer zusätzlichen Entgasung in jeder Druckstufe denkbar. Allerdings steigt der apparatetechnische Aufwand dann im Verhältnis zur erzielbaren Verbesserung der Leistungsziffer unverhältnismäßig, so daß die in Verbindung mit der Wärmepumpe 10 gemäß Figur 1 geschilderte zusätzliche Entgasung auf einem Druckniveau

Figure imgb0002
den optimalen Kompromiß zwischen Investitionsaufwand und Erhöhung der Leistungsziffer der Wärmepumpe darstellen dürfte. Nur in Sonderfällen dürfte die Verbesserung des Wärmepumpenprozesses durch mehrfache Entgasung der armen Lösung auf unterschiedlichen Zwischendrücken in Frage kommen.It can be seen that within the scope of the inventive concept, modifications and further developments of the heat pump described, which can also be operated as a refrigerator, can be implemented. A further improvement in the performance figure is conceivable by a further increase in the number of pressure stages in the poor solution, with an additional degassing in each pressure stage. However, the expenditure in terms of equipment then increases disproportionately in relation to the achievable improvement in the performance figure, so that the additional degassing described in connection with the heat pump 10 according to FIG. 1 is at a pressure level
Figure imgb0002
should represent the optimal compromise between capital expenditure and increasing the heat pump's performance figure. The improvement of the heat pump process through multiple degassing of the poor solution at different intermediate pressures should only be considered in special cases.

Claims (3)

1. Binary solution compressive heat pump or refrigeration machine (10) with an evaporator (12) and a condenser (20) which are connected together in a solution circuit, in which a binary refrigerant formed from an ammonia-water mixture is circulated, wherein gaseous refrigerant is driven out in the evaporator (12) at a low pressure level (pE) with the input of thermal energy at a low temperature level and the poor solution this produced is pumped with pressure increase by means of a pump in a first pipeline branch (18) to the condenser (20) where the gaseous refrigerant driven out in the evaporator (12) is reabsorbed in the poor solution after its pressure is increased to the condenser pressure (PR) by means of a compressor (24) with removal of the resorption heat thereby produced at an elevated temperature level, and the rich solution thus formed flows back to the evaporator (12) in a second pipeline branch (30) with its pressure lowered by means of a throttling member (32), and a temperature exchanger (38) is inserted into the sections of the first and second pipeline branches (18; 30) which are at the condenser pressure (PR), in which heat contained in the rich solution issuing from the condenser (20) is transferred to the poor solution flowing to the condenser and heat contained in the rich solution issuing from the temperature exchanger (38) is used for the further evaporation of the poor solution fed to the temperature exchanger, the additional evaporator for the further evaporation of the poor solution being disposed on the one hand in the section of the second pipeline branch (30) running between the temperature exchanger (38) and the throttling member (32), characterized in that at least two pumps (36a; 36b) increasing the pressure in the poor solution step-wise to the condenser pressure (pR) are inserted into the first branch (18) of the solution circuit carrying the poor solution from the evaporator (12) to the condenser (20), and the additional evaporator (40) is disposed on the other hand in the section of the first pipeline branch running between the two pumps (36a; 36b), which is at an intermediate pressure (pz) and that the gaseous refrigerant additionally expelled from the poor solution in the additional evaporator (40) at the level of the intermediate pressure (pz) is pumped to the condenser (20) by a separate compressor or by being fed into a medium-pressure stage of the multi-stage compressor (24) pumping the gaseous refrigerant from the main evaporator to the condenser.
2. Heat pump or refrigeration machine in accordance with claim 1, characterized in that, in the section of the first pipeline branch carrying poor solution at the intermediate pressure (pz) to the additional evaporator (40), and in the section of the second pipeline branch (30) of the solution circuit, which is at the condenser pressure (pR), an additional temperature exchanger (44) is inserted.
3. Heat pump or refrigeration machine in accordance with claim 1 or 2, characterized in that the additional evaporation of the poor solution takes place at an intermediate pressure (pz) which is substantially equal to the square root of the product of the pressures (PE; pR) prevailing in the main evaporator (12) and in the condenser (20).
EP88903782A 1987-05-18 1988-04-08 Binary compression heat pump with solution circuit Expired - Lifetime EP0314719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88903782T ATE53114T1 (en) 1987-05-18 1988-04-08 TWO-FLUID COMPRESSION HEAT PUMP WITH SOLUTION CIRCUIT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873716642 DE3716642A1 (en) 1987-05-18 1987-05-18 TWO-COMPRESSION COMPRESSION HEAT PUMP OR EXPANSION MACHINE SYSTEM WITH SOLUTION CIRCUIT
DE3716642 1987-05-18

Publications (2)

Publication Number Publication Date
EP0314719A1 EP0314719A1 (en) 1989-05-10
EP0314719B1 true EP0314719B1 (en) 1990-05-23

Family

ID=6327811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88903782A Expired - Lifetime EP0314719B1 (en) 1987-05-18 1988-04-08 Binary compression heat pump with solution circuit

Country Status (6)

Country Link
US (1) US4918945A (en)
EP (1) EP0314719B1 (en)
JP (1) JPH01503325A (en)
DE (1) DE3716642A1 (en)
SU (1) SU1741616A3 (en)
WO (1) WO1988009468A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646500B1 (en) * 1989-04-27 1994-11-25 Alsthom Gec METHOD FOR COOLING ELECTRICAL COMPONENTS, DEVICE FOR CARRYING OUT SAID METHOD AND APPLICATION TO COMPONENTS ON BOARD IN A VEHICLE
ES2018441A6 (en) * 1989-12-11 1991-04-01 Catalana Gas Sa Improvements in burners for glass-ceramic cooker top.
DE4104263C1 (en) * 1991-02-13 1992-04-09 Tch Thermo-Consulting-Heidelberg Gmbh, 6900 Heidelberg, De
EP3355002B1 (en) * 2017-01-26 2019-05-22 AGO AG Energie + Anlagen Sorption heat pump and sorption circuit process
EP3540332B1 (en) * 2018-03-15 2020-07-15 AGO AG Energie + Anlagen Sorption heat pump and sorption circuit process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE867122C (en) * 1950-08-29 1953-02-16 Edmund Dr-Ing E H Altenkirch Method and device for raising the amount of heat withdrawn from a heat carrier at a lower temperature to a higher temperature

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182098A (en) * 1934-09-29 1939-12-05 Mallory & Co Inc P R Duplex solution thermo-compression process
DE876122C (en) * 1942-06-24 1953-05-11 Lorenz C Ag Power feed-through pin for electrical discharge vessels, which also serves as a contact pin
DE953378C (en) * 1950-08-29 1956-11-29 Margarete Altenkirch Geb Schae Method and device for operating a heat pump
US2794328A (en) * 1954-06-29 1957-06-04 Gen Electric Variable temperature refrigeration
DD161075A3 (en) * 1980-04-08 1984-09-19 Schwermasch Liebknecht Veb K METHOD FOR ABBEER USE FOR GENERATING MECHANICAL ENERGY WITH OPTIONAL CELL GENERATION
DE3106567A1 (en) * 1981-02-21 1982-09-09 Battelle-Institut E.V., 6000 Frankfurt "METHOD FOR REDUCING HEAT LOSS IN FACILITIES FOR DRYING SOLIDS"
DE3119989C2 (en) * 1981-05-20 1986-02-06 Mannheimer Versorgungs- und Verkehrsgesellschaft mbH (MVV), 6800 Mannheim Dual or multi-fuel compression heat pump or refrigeration machine with a solution cycle
US4439996A (en) * 1982-01-08 1984-04-03 Whirlpool Corporation Binary refrigerant system with expansion valve control
FR2526136B1 (en) * 1982-04-28 1986-05-30 Rodie Talbere Henri RESORPTION CYCLE PROCESS FOR HEAT PUMPS
US4707996A (en) * 1983-09-29 1987-11-24 Vobach Arnold R Chemically assisted mechanical refrigeration process
DE3536953C1 (en) * 1985-10-17 1987-01-29 Thermo Consulting Heidelberg Resorption-type heat converter installation with two solution circuits
DE3612907A1 (en) * 1986-04-17 1987-11-12 Thermo Consulting Heidelberg PLANT FOR RECOVERY OF WASTE HEAT CONTAINED IN THE EXHAUST OF DRYERS FROM PAPER MACHINES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE867122C (en) * 1950-08-29 1953-02-16 Edmund Dr-Ing E H Altenkirch Method and device for raising the amount of heat withdrawn from a heat carrier at a lower temperature to a higher temperature

Also Published As

Publication number Publication date
JPH01503325A (en) 1989-11-09
DE3716642A1 (en) 1988-12-08
US4918945A (en) 1990-04-24
WO1988009468A1 (en) 1988-12-01
DE3716642C2 (en) 1989-03-30
SU1741616A3 (en) 1992-06-15
EP0314719A1 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
EP0855009B1 (en) Sorption heat converter system with additional components
EP0248296B1 (en) Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
WO2022106119A1 (en) Cooling device for a vehicle
EP0085994A2 (en) Operation of a heat pump or refrigeration machine
EP0314719B1 (en) Binary compression heat pump with solution circuit
EP3540332B1 (en) Sorption heat pump and sorption circuit process
DE1501101C3 (en) Device for generating cold and / or for liquefying gases
EP2473795A2 (en) Heat pump
EP2989397B1 (en) Method and device for cooling an engine
DE2461787A1 (en) Heat pump unit with multiple heat exchanger circulation device - has control devices attached before and after individual heat exchanges
EP0302277B1 (en) Device for the cooling of fuel in a motor vehicle
EP0184181B1 (en) Heat pump
CH392576A (en) Process for operating refrigeration machines
DE513790C (en) Steam chiller, especially for achieving low temperatures
EP1010954A1 (en) Method and device for cooling a gas flow
DE19832682A1 (en) Defrosting unit for evaporator of heat pump of air conditioner has line connecting one expansion valve to second expansion valve
EP0524269B1 (en) High-temperature heat pump transformer
EP0964158A2 (en) Pump operating process for boiling refrigerants or coolants
DE2133227B2 (en) Refrigerating heat pump circuit - uses compressors for skating rink formation and hot water prodn.
DE4243687C1 (en) Vacuum system, especially for secondary metallurgy
DE9303177U1 (en) Separator for a vehicle air conditioning system
DE3023925A1 (en) Helium compressor for cryogenic refrigeration - has separate and detachable cooling water system to give choice of operating modes
DE3031423A1 (en) Cooling system for electrical machines with heat recovery - has coolant in heat exchange with evaporator of closed heat pump circuit
DE3002766A1 (en) Mine-ventilation equipment with refrigeration circuit - has de-gasification vessel between compressor, oil separator and pump
DE3111469A1 (en) Multi-stage compression cold-vapour machine with heat accumulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19891003

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 53114

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920312

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920323

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920413

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920414

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920429

Year of fee payment: 5

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920519

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930408

Ref country code: GB

Effective date: 19930408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930430

Ref country code: LI

Effective date: 19930430

Ref country code: BE

Effective date: 19930430

BERE Be: lapsed

Owner name: TCH THERMO-CONSULTING-HEIDELBERG G.M.B.H.

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930408

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88903782.6

Effective date: 19931110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050408