EP0311142B1 - Radiation cross-linking of ptc conductive polymers - Google Patents
Radiation cross-linking of ptc conductive polymers Download PDFInfo
- Publication number
- EP0311142B1 EP0311142B1 EP88117360A EP88117360A EP0311142B1 EP 0311142 B1 EP0311142 B1 EP 0311142B1 EP 88117360 A EP88117360 A EP 88117360A EP 88117360 A EP88117360 A EP 88117360A EP 0311142 B1 EP0311142 B1 EP 0311142B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- linking
- ptc
- cross
- mrads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001940 conductive polymer Polymers 0.000 title claims description 15
- 238000004132 cross linking Methods 0.000 title claims description 8
- 230000005855 radiation Effects 0.000 title description 11
- 239000002184 metal Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/027—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
Definitions
- US-A-3 351 882 discloses the preparation of electrical devices by embedding electrodes having a considerable area and an irregular surface, e.g. a metal mesh, in a resistor composed of a PTC conductive polymer, followed by cross-linking of the conductive polymer.
- the stated purpose of using electrodes of considerable area is to avoid excessive current concentrations and consequent damage to the conductive polymer.
- the stated purposes of the radiation are (a) to cross-link the conductive polymer adjacent the electrodes, so that the electrodes are firmly gripped, and (b) to cross-link the bulk of the conductive polymer so that it will resist softening.
- the cross-linking can be effected by radiation, and the patent discloses subjecting the entire resistor to a dose of 500,000 to 1,000,000 Gy (50 to 100 megarads) of radiation of one or two million electron volt electrons.
- a dose of 20,000 to 150,000 Gy (2-15 megarads) is sufficient to prevent softening of PTC conductive polymers, and higher doses are regarded as disadvantageous because they reduce crystallinity.
- the radiation dose is, therefore at least 600,000 Gy (60 Mrads), particularly at least 800,000 Gy (80 Mrads), with yet higher dosages, e.g. at least 1,200,000 Gy 120 Mrads or at least 1,600,000 Gy (160 Mrads), being preferred when satisfactory PTC characteristics are maintained and the desire for improved performance outweighs the cost of radiation.
- the present invention provides a process for the preparation of an electrical device comprising (1) a cross-linked PTC conductive polymer element comprising a polymeric component consisting essentially of one or more polymers, and (2) two substantially planar, parallel, metal electrodes which can be connected to a power source to cause current to flow through the PTC element, which process comprises cross-linking the PTC element by irradiating it after the electrodes have been secured thereto, characterized in that the electrodes are metal foil electrodes and the essential parts of the PTC element are irradiated to a dosage of at least 600,000 Gy (60 Mrads).
- an electrode being “substantially planar”
- the present invention is particularly useful for circuit protection devices, but is also applicable to heaters, particularly laminar heaters.
- each of the electrodes is substantially planar and is a metal foil. Since the metal foil electrodes are applied to the PTC element before it is irradiated, there is a danger that gases evolved during irradiation will be trapped.
- PTC conductive polymers suitable for use in this invention are disclosed in the patents and applications referenced above. Their resistivity at 23°C is preferably less than 1250 ohm.cm, eg. less than 750 ohm.cm, particularly less than 500 ohm.cm, with values less than 50 ohm.cm being preferred for circuit protection devices.
- the polymeric component should be one which is cross-linked and not significantly degraded by radiation.
- the polymeric component is preferably free of thermosetting polymers and often consists essentially of one or more crystalline polymers. Suitable polymers include polyolefins, eg.
- the conductive filler is preferably carbon black.
- the composition may also contain a non-conductive filler, eg. alumina trihydrate.
- the composition can, but preferably does not, contain a radiation cross-linking aid. The presence of a cross-linking aid can substantially reduce the radiaton dose required to produce a particular degree of cross-linking, but its residue generally has an adverse effect on electrical characteristics.
- Shaping of the conductive polymer will generally be effected by a melt-shaping technique, eg. by melt-extrusion or molding.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thermistors And Varistors (AREA)
- Conductive Materials (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
- Conductive polymer compositions exhibiting PTC behavior, and electrical devices comprising them, have been described in published documents and in our earlier specificatons. Reference may be made, for example, to U. S. Patents Nos. 2,952,761, 2,978,665, 3,243,753, 3,351,882, 3,571,777, 3,757,086, 3,793,716, 3,823,217, 3,858,144, 3,861,029, 4,017,715, 4,072,848, 4,085,286, 4,117,312, 4,177,376, 4,177,446, 4,188,276, 4,237,441, 4,242,573, 4,246,468, 4,250,400, 4,255,698, 4,272,471, 4,276,466 and 4,314,230; J. Applied Polymer Science 19, 813-815 (1975), Klason and Kubat; Polymer Engineering and Science 18, 649-653 (1978), Narkis et al; German OLS 2,634,999, 2,746,602, 2,755,076, 2,755,077, 2,821,799 and 3,030,799; European Published Applications Nos. 0028142, 0030479, 0038713, 0038714, 0038715 and 0038718; pending European Applications No. 81,301,767.0, 81,301,768.8 and 81,302,201.9; and pending U.S. Applications Nos. 176,300, 184,647, 254,352, 272,854 and 300,709. The disclosures of these patents, publications and applications are incorporated herein by reference.
- It is known to cross-link PTC conductive polymers by radiation, and in practice the dosages employed have been relatively low, e.g. 100,000 to 200,000 Gy (10-20 Mrads). Higher dosages have, however, been proposed for some purposes. Thus OLS 2,634,999 recommends a dose of 200,000 to 450,000 Gy (20-45 Mrads); U.K. Specification No. 1,071,032 describes irradiated compositions comprising a copolymer of ethylene and a vinyl ester or an acrylate monomer and 50-400% by weight of a filler, e.g. carbon black, the radiation dose being about 20,000 to about 1,000,000 Gy (about 2 to about 100 Mrads), preferably about 20,000 to about 200,000 Gy (about 2 to about 20 Mrads), and the use of such compositions as tapes for grading the insulation on cables; and US-A-3 351 882 discloses the preparation of electrical devices by embedding electrodes having a considerable area and an irregular surface, e.g. a metal mesh, in a resistor composed of a PTC conductive polymer, followed by cross-linking of the conductive polymer. The stated purpose of using electrodes of considerable area is to avoid excessive current concentrations and consequent damage to the conductive polymer. The stated purposes of the radiation are (a) to cross-link the conductive polymer adjacent the electrodes, so that the electrodes are firmly gripped, and (b) to cross-link the bulk of the conductive polymer so that it will resist softening. The cross-linking can be effected by radiation, and the patent discloses subjecting the entire resistor to a dose of 500,000 to 1,000,000 Gy (50 to 100 megarads) of radiation of one or two million electron volt electrons. As shown by US-A-3 858 144 and 3 861 029, a dose of 20,000 to 150,000 Gy (2-15 megarads) is sufficient to prevent softening of PTC conductive polymers, and higher doses are regarded as disadvantageous because they reduce crystallinity.
- The higher the voltage applied to an electrical device comprising a PTC conductive polymer, the more likely it is that intermittent application of the voltage will cause the device to fail. This has been a serious problem, for example, in the use of circuit protection devices where the voltage dropped over the device in the "tripped" (i.e. high resistance) condition is more than about 200 volts. [Voltages given herein are DC values or RMS values for AC power sources.] We have now discovered that the likelihood of such failure can be substantially reduced by irradiating the conductive polymer so that it is very highly cross-linked.
- Our experiments indicate that the higher the radiation dose, the greater the number of "trips" (i.e. conversions to the tripped state) a device will withstand without failure. The radiation dose is, therefore at least 600,000 Gy (60 Mrads), particularly at least 800,000 Gy (80 Mrads), with yet higher dosages, e.g. at least 1,200,000 Gy 120 Mrads or at least 1,600,000 Gy (160 Mrads), being preferred when satisfactory PTC characteristics are maintained and the desire for improved performance outweighs the cost of radiation.
- The present invention provides a process for the preparation of an electrical device comprising (1) a cross-linked PTC conductive polymer element comprising a polymeric component consisting essentially of one or more polymers, and (2) two substantially planar, parallel, metal electrodes which can be connected to a power source to cause current to flow through the PTC element, which process comprises cross-linking the PTC element by irradiating it after the electrodes have been secured thereto, characterized in that the electrodes are metal foil electrodes and the essential parts of the PTC element are irradiated to a dosage of at least 600,000 Gy (60 Mrads).
- When reference is made herein to an electrode being "substantially planar", we mean an electrode whose shape and position in the device are such that substantially all the current enters (or leaves) the electrode through a surface which is substantially planar.
- The present invention is particularly useful for circuit protection devices, but is also applicable to heaters, particularly laminar heaters.
- In this invention, each of the electrodes is substantially planar and is a metal foil. Since the metal foil electrodes are applied to the PTC element before it is irradiated, there is a danger that gases evolved during irradiation will be trapped.
- PTC conductive polymers suitable for use in this invention are disclosed in the patents and applications referenced above. Their resistivity at 23°C is preferably less than 1250 ohm.cm, eg. less than 750 ohm.cm, particularly less than 500 ohm.cm, with values less than 50 ohm.cm being preferred for circuit protection devices. The polymeric component should be one which is cross-linked and not significantly degraded by radiation. The polymeric component is preferably free of thermosetting polymers and often consists essentially of one or more crystalline polymers. Suitable polymers include polyolefins, eg. polyethylene, and copolymers of at least one olefin and at least one olefinically unsaturated monomer containing a polar group. The conductive filler is preferably carbon black. The composition may also contain a non-conductive filler, eg. alumina trihydrate. The composition can, but preferably does not, contain a radiation cross-linking aid. The presence of a cross-linking aid can substantially reduce the radiaton dose required to produce a particular degree of cross-linking, but its residue generally has an adverse effect on electrical characteristics.
- Shaping of the conductive polymer will generally be effected by a melt-shaping technique, eg. by melt-extrusion or molding.
Claims (2)
- A process for the preparation of an electrical device comprising (1) a cross-linked PTC conductive polymer element comprising a polymeric component consisting essentially of one or more polymers, and (2) two substantially planar, parallel, metal electrodes which can be connected to a power source to cause current to flow through the PTC element, which process comprises cross-linking the PTC element by irradiating it after the electrodes have been secured thereto, characterized in that the electrodes are metal foil electrodes and the essential parts of the PTC element are irradiated to a dosage of at least 600,000 Gy (60 Mrads).
- A process according to claim 1 characterized in that the essential parts of the device are irradiated to a dosage of at least 800,000 Gy (80 Mrads).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88117360T ATE98807T1 (en) | 1981-04-02 | 1982-04-02 | CROSSLINKING OF PTC-CONDUCTIVE POLYMERS BY RADIATION. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25049181A | 1981-04-02 | 1981-04-02 | |
US250491 | 1981-04-02 | ||
US254352 | 1981-04-15 | ||
US06/254,352 US4426633A (en) | 1981-04-15 | 1981-04-15 | Devices containing PTC conductive polymer compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301765.2 Division | 1982-04-02 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0311142A2 EP0311142A2 (en) | 1989-04-12 |
EP0311142A3 EP0311142A3 (en) | 1989-04-26 |
EP0311142B1 true EP0311142B1 (en) | 1993-12-15 |
Family
ID=26940917
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301765A Expired EP0063440B1 (en) | 1981-04-02 | 1982-04-02 | Radiation cross-linking of ptc conductive polymers |
EP88117360A Expired - Lifetime EP0311142B1 (en) | 1981-04-02 | 1982-04-02 | Radiation cross-linking of ptc conductive polymers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301765A Expired EP0063440B1 (en) | 1981-04-02 | 1982-04-02 | Radiation cross-linking of ptc conductive polymers |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP0063440B1 (en) |
JP (1) | JPH053101A (en) |
DE (2) | DE3280447T2 (en) |
GB (1) | GB2096393B (en) |
HK (1) | HK83689A (en) |
SG (1) | SG89388G (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802709A (en) | 1995-08-15 | 1998-09-08 | Bourns, Multifuse (Hong Kong), Ltd. | Method for manufacturing surface mount conductive polymer devices |
US5849137A (en) | 1995-08-15 | 1998-12-15 | Bourns Multifuse (Hong Kong) Ltd. | Continuous process and apparatus for manufacturing conductive polymer components |
US6020808A (en) | 1997-09-03 | 2000-02-01 | Bourns Multifuse (Hong Kong) Ltd. | Multilayer conductive polymer positive temperature coefficent device |
US6228287B1 (en) | 1998-09-25 | 2001-05-08 | Bourns, Inc. | Two-step process for preparing positive temperature coefficient polymer materials |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4724417A (en) * | 1985-03-14 | 1988-02-09 | Raychem Corporation | Electrical devices comprising cross-linked conductive polymers |
DK87287A (en) | 1986-02-20 | 1987-08-21 | Raychem Corp | METHOD AND APPARATUS FOR USING ION EXCHANGE MATERIAL |
US4907340A (en) * | 1987-09-30 | 1990-03-13 | Raychem Corporation | Electrical device comprising conductive polymers |
US4924074A (en) * | 1987-09-30 | 1990-05-08 | Raychem Corporation | Electrical device comprising conductive polymers |
EP0815568B1 (en) * | 1995-03-22 | 2005-05-25 | Tyco Electronics Corporation | Electrical device |
DE19548741A1 (en) | 1995-12-23 | 1997-06-26 | Abb Research Ltd | Process for the production of a material for PTC resistors |
US5814264A (en) * | 1996-04-12 | 1998-09-29 | Littelfuse, Inc. | Continuous manufacturing methods for positive temperature coefficient materials |
TW343423B (en) * | 1996-08-01 | 1998-10-21 | Raychem Corp | Method of making a laminate comprising a conductive polymer composition |
DE10310722A1 (en) | 2003-03-10 | 2004-09-23 | Tesa Ag | Electrically heatable adhesive composition, useful for adhesive tape in automotive applications such as electrically heated mirrors, comprises an adhesive component and an electrically conductive filler |
KR20060127854A (en) * | 2003-10-21 | 2006-12-13 | 타이코 일렉트로닉스 레이켐 케이. 케이. | Ptc element and fluorescent lamp starter circuit |
DE102007007617A1 (en) | 2007-02-13 | 2008-08-14 | Tesa Ag | Intrinsically heatable hot melt tacky fabrics |
DE102008034748A1 (en) | 2008-07-24 | 2010-01-28 | Tesa Se | Flexible heated surface element |
DE102008063849A1 (en) | 2008-12-19 | 2010-06-24 | Tesa Se | Heated surface element and method for its attachment |
DE102009010437A1 (en) | 2009-02-26 | 2010-09-02 | Tesa Se | Heated surface element |
CN102412094B (en) * | 2010-09-20 | 2014-12-31 | 胜德国际研发股份有限公司 | Protective circuit |
US10373745B2 (en) | 2014-06-12 | 2019-08-06 | LMS Consulting Group | Electrically conductive PTC ink with double switching temperatures and applications thereof in flexible double-switching heaters |
US11332632B2 (en) | 2016-02-24 | 2022-05-17 | Lms Consulting Group, Llc | Thermal substrate with high-resistance magnification and positive temperature coefficient ink |
WO2020016853A1 (en) | 2018-07-20 | 2020-01-23 | LMS Consulting Group | Thermal substrate with high-resistance magnification and positive temperature coefficient |
US10822513B1 (en) | 2019-04-26 | 2020-11-03 | 1-Material Inc | Electrically conductive PTC screen printable ink composition with low inrush current and high NTC onset temperature |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3351882A (en) * | 1964-10-09 | 1967-11-07 | Polyelectric Corp | Plastic resistance elements and methods for making same |
JPS5123543A (en) * | 1974-08-22 | 1976-02-25 | Dainippon Printing Co Ltd | DODENSEI KOBUNSHIZAIRYO |
FR2321751A1 (en) * | 1975-08-04 | 1977-03-18 | Raychem Corp | MATERIALS OF HIGH ELECTRICAL RESISTANCE AT HIGH TEMPS. - comprise crystalline thermoplastic (co)polymer and conducting filler used for heating elements |
FR2368127A1 (en) * | 1976-10-15 | 1978-05-12 | Raychem Corp | COMPOSITIONS WITH A POSITIVE TEMPERATURE COEFFICIENT AND DEVICES INCLUDING |
GB1604735A (en) * | 1978-04-14 | 1981-12-16 | Raychem Corp | Ptc compositions and devices comprising them |
US4200973A (en) * | 1978-08-10 | 1980-05-06 | Samuel Moore And Company | Method of making self-temperature regulating electrical heating cable |
-
1982
- 1982-04-02 GB GB8209923A patent/GB2096393B/en not_active Expired
- 1982-04-02 DE DE3280447T patent/DE3280447T2/en not_active Expired - Lifetime
- 1982-04-02 EP EP82301765A patent/EP0063440B1/en not_active Expired
- 1982-04-02 EP EP88117360A patent/EP0311142B1/en not_active Expired - Lifetime
- 1982-04-02 DE DE8282301765T patent/DE3279970D1/en not_active Expired
-
1988
- 1988-12-28 SG SG893/88A patent/SG89388G/en unknown
-
1989
- 1989-10-19 HK HK836/89A patent/HK83689A/en not_active IP Right Cessation
-
1991
- 1991-07-16 JP JP3175067A patent/JPH053101A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802709A (en) | 1995-08-15 | 1998-09-08 | Bourns, Multifuse (Hong Kong), Ltd. | Method for manufacturing surface mount conductive polymer devices |
US5849137A (en) | 1995-08-15 | 1998-12-15 | Bourns Multifuse (Hong Kong) Ltd. | Continuous process and apparatus for manufacturing conductive polymer components |
US5849129A (en) | 1995-08-15 | 1998-12-15 | Bourns Multifuse (Hong Kong) Ltd. | Continuous process and apparatus for manufacturing conductive polymer components |
US6020808A (en) | 1997-09-03 | 2000-02-01 | Bourns Multifuse (Hong Kong) Ltd. | Multilayer conductive polymer positive temperature coefficent device |
US6223423B1 (en) | 1997-09-03 | 2001-05-01 | Bourns Multifuse (Hong Kong) Ltd. | Multilayer conductive polymer positive temperature coefficient device |
US6228287B1 (en) | 1998-09-25 | 2001-05-08 | Bourns, Inc. | Two-step process for preparing positive temperature coefficient polymer materials |
Also Published As
Publication number | Publication date |
---|---|
SG89388G (en) | 1989-07-14 |
DE3280447T2 (en) | 1994-07-14 |
GB2096393A (en) | 1982-10-13 |
EP0311142A3 (en) | 1989-04-26 |
DE3280447D1 (en) | 1994-01-27 |
EP0063440B1 (en) | 1989-10-04 |
GB2096393B (en) | 1986-01-02 |
JPH053101A (en) | 1993-01-08 |
DE3279970D1 (en) | 1989-11-09 |
EP0063440A2 (en) | 1982-10-27 |
EP0311142A2 (en) | 1989-04-12 |
HK83689A (en) | 1989-10-27 |
EP0063440A3 (en) | 1983-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0311142B1 (en) | Radiation cross-linking of ptc conductive polymers | |
JP2793790B2 (en) | Electrical device containing conductive crosslinked polymer | |
US5140297A (en) | PTC conductive polymer compositions | |
US5227946A (en) | Electrical device comprising a PTC conductive polymer | |
US4845838A (en) | Method of making a PTC conductive polymer electrical device | |
US5195013A (en) | PTC conductive polymer compositions | |
US4514620A (en) | Conductive polymers exhibiting PTC characteristics | |
US4857880A (en) | Electrical devices comprising cross-linked conductive polymers | |
US4955267A (en) | Method of making a PTC conductive polymer electrical device | |
US4545926A (en) | Conductive polymer compositions and devices | |
US4924074A (en) | Electrical device comprising conductive polymers | |
US5049850A (en) | Electrically conductive device having improved properties under electrical stress | |
US4743321A (en) | Devices comprising PTC conductive polymers | |
EP0038713B1 (en) | Conductive polymer compositions containing fillers | |
EP0158410A1 (en) | Laminar Conductive polymer devices | |
US4951384A (en) | Method of making a PTC conductive polymer electrical device | |
US5178797A (en) | Conductive polymer compositions having improved properties under electrical stress | |
JPH03504784A (en) | PTC polymer compositions and appliances | |
JP2572429B2 (en) | Heat-recoverable articles | |
EP0138424A2 (en) | Electrical devices comprising conductive polymers exhibiting ptc characteristics | |
KR890702405A (en) | Electrical device composed of conductive polymer | |
CA1184319A (en) | Radiation cross-linking of ptc conductive polymers | |
Doljack et al. | Radiation cross-linking of PTC conductive polymers | |
GB2033707A (en) | Conductive polymer compositions of an electrical device | |
JP2000109615A (en) | Conductive polymer composition having positive temperature coefficient characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19881019 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 63440 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR IT LI NL SE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19910829 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 63440 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19931215 |
|
REF | Corresponds to: |
Ref document number: 98807 Country of ref document: AT Date of ref document: 19940115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3280447 Country of ref document: DE Date of ref document: 19940127 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88117360.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000406 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000414 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000428 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000622 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010326 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010409 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
BERE | Be: lapsed |
Owner name: RAYCHEM CORP. Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88117360.3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20011101 |