EP0307651B1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
EP0307651B1
EP0307651B1 EP88113541A EP88113541A EP0307651B1 EP 0307651 B1 EP0307651 B1 EP 0307651B1 EP 88113541 A EP88113541 A EP 88113541A EP 88113541 A EP88113541 A EP 88113541A EP 0307651 B1 EP0307651 B1 EP 0307651B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
fuel
injection valve
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88113541A
Other languages
German (de)
French (fr)
Other versions
EP0307651A2 (en
EP0307651A3 (en
Inventor
Ernst Dipl.-Ing. Linder
Franz Ing. Grad. Rieger
Gernot Dipl.-Ing. Würfel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6336206&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0307651(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0307651A2 publication Critical patent/EP0307651A2/en
Publication of EP0307651A3 publication Critical patent/EP0307651A3/en
Application granted granted Critical
Publication of EP0307651B1 publication Critical patent/EP0307651B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to a fuel injection valve according to the preamble of claim 1.
  • GB-A-580 477 which forms the generic type, describes an injection valve with a tubular valve body, at the end of which projects into a combustion chamber of an internal combustion engine, an injection opening is provided.
  • a fuel injection jet emerges which, in the form of an umbrella jet, extends into the combustion chamber in a widening manner.
  • This fuel injection jet is ignitable by spark gaps which form between hook-shaped electrodes of a holding body of the injection valve connected to one pole of a voltage source and an annular electrode connected to the opposite pole of the voltage source and embodied by the end of the valve body on the combustion chamber side.
  • the spark gaps do not lie in the fuel injection jet, but rather run radially in a plane that is set back from the injection opening.
  • a non-generic injection nozzle with ignition device in which the nozzle body is axially surmounted by a tubular sleeve forming the ground electrode, which has an annular opening on the end face on the combustion chamber side.
  • an indentation is attached to the tube sleeve, which is opposed by a central electrode ignition rod, which is welded to the nozzle body, to form the spark gap.
  • the object of the invention is to further develop the generic fuel injection valve so that the fuel injection jet can be ignited quickly, the shape and arrangement of the electrodes influence the injection jet only as little as is functionally required and the service life of the fuel injection valve is extended.
  • the fuel injection valve according to the invention with the characterizing features of the main claim has the advantage that a clear, defined, optimal assignment of the spark gap to the injected fuel is possible. If the spark gap is located directly in the fuel injection jet or the spark jumps over the surface of the fuel injection jet, the best ignition conditions are obtained even for less inflammable fuels. The spark gap is very close to the injection opening. In this way, the fuel can be ignited safely even when the combustion chamber is very lean, particularly in stratified charge mode.
  • the electrodes are also injected and cooled by the fuel, which leads to a longer service life, prevents glow ignition and reduces heat dissipation on the valve body.
  • fuel consumption for spark-ignited internal combustion engines is aimed for, as is customary for self-igniting internal combustion engines (diesel engines) operated with a large excess of air.
  • the load control should be controlled via the injection quantity similar to that of a diesel engine, so that if the suction air is throttled away, there are no gas exchange losses, which in conjunction with the more favorable implementation of the stratified charge (less wall heat loss) leads to high efficiency levels, low HC emissions and lower knock sensitivity leads.
  • the fuel is injected directly into the combustion chamber with the fuel injection valve according to the invention.
  • the development according to claim 7 represents a very advantageous embodiment. With this it is achieved that on the one hand the insulating body on the side of the combustion chamber can heat up optimally, so that no soot shunt bridges form and on the other hand the fuel injector far enough from the one that represents a heat source Insulator is removed to maintain an optimal low temperature. Due to a small diameter of the fuel injection valve in the area outside the embedding in the insulating body, the heat absorption continues decreased. The reduction in diameter is advantageously achieved by the valve closing element provided with a wire-shaped shaft. Heat removal and thus cooling is additionally achieved by the fuel flow through the fuel injection valve. According to claim 8 it is achieved that the insulating body heats up sufficiently so that no soot coating forms on it (thermal value). Finally, it is ensured according to claim 9 that the shield jet is sufficiently ventilated so that the insulating body and cylinder head are not wetted.
  • FIG. 1 shows a first exemplary embodiment of the invention
  • FIG. 2 shows an embodiment of the fastening of the valve body in the fuel injection valve
  • FIG. 3 shows the arrangement of the electrodes with respect to the injection point
  • FIG. 4 shows the location of the fuel injection valve according to the invention in the cylinder head of an internal combustion engine
  • FIG. 6 shows a third embodiment with a modification of the fastening of the sleeve according to FIG. 5
  • FIG. 7 shows a section through the embodiment according to FIG 6
  • FIG. 8 shows a fourth embodiment of the invention with a further embodiment of an exchangeable electrode, which is held here on the insulating body
  • FIG. 9 shows a detailed illustration of this electrode according to FIG. 8.
  • the fuel injection valve according to FIG. 1 has a holding body 1 which is provided with stepped bores and has an external thread 2 of size M14 at its end on the injection side, via which it can be screwed into the combustion chamber wall of an internal combustion engine.
  • the injector is very long. For this reason, only a partial section is shown in FIG.
  • the uppermost part of the fuel injection valve is shown in Figure 2.
  • An insulating body 4 is inserted into the interior of the holding body 1 and is axially fixed there in the holding body 1 by means of clamping nuts 5, which are pressed onto a collar. Between the collar 6 and its injection end, the insulating body 4 is cylindrical and leaves a narrow annular gap 7 of the order of 0.2 to 0.35 mm between itself and the inner bore of the holding body 1.
  • the end of the insulating body 4 projects beyond the end of the holding body 1 on the combustion chamber side.
  • a valve body 10 is carried out in an axial bore 9 and stored there.
  • the axial bore 9 merges into a recess 11 which widens towards the combustion chamber.
  • the valve body 10 projects coaxially into this.
  • the distance between the valve body 10 and the insulating body 4 increases continuously in the direction of the combustion chamber in this area.
  • the valve body 10 in turn projects beyond the end of the insulating body 4 in the direction of the combustion chamber and has the injection opening at this end for the injection of fuel.
  • this is an annular gap 12 which arises when a head 14 of a valve closing member 15 lifts off its seat 16 in the direction of the combustion chamber.
  • the seat 16 is conical in shape and tapers inwards. Accordingly, a conical sealing surface 17 is provided on the head 14.
  • the outer head 14 goes inside the longitudinal bore 18 of the valve body 10 adjoining the seat surface 16 into an elongated, wire-shaped shaft 20 About, which leaves an annular space to the wall of the longitudinal bore and has guide surfaces 21 in places.
  • the end of the shaft 20 facing away from the head 14 also has a head 22, via which a spring plate 23 is coupled to the shaft, between which and a connecting part 24 adjoining the insulating body 4, a valve closing spring 26 is clamped.
  • the intermediate part 24 consists of metallic and electrically conductive material and is with the end of the valve body 10 z. B. connected by soldering. Adjacent to the intermediate part 24, a spring chamber 27 is formed in the interior of the fuel injection valve, into which the end of the stem 20 projects and in which the valve closing spring 26 is also arranged. This spring chamber 27 is introduced into a possibly multi-part cylindrical body 29 made of electrically non-conductive material, which has a stepped bore, in the larger bore part 31 of which the cylindrical end of the insulating body 4 and the intermediate part 24 are inserted tightly.
  • An electrically conductive insert 33 is guided through the smaller bore part 32 of the stepped bore which adjoins the large bore part 31 and has a cup-shaped part which projects into the stepped bore part 31 with a large diameter and which forms the spring chamber 27 and the end of the shaft 20 with a spring plate 23 and valve closing spring 26 engages and rests non-positively on the end face 24 and holds it on the insulating body 4.
  • the insert is tubular with a fuel channel 36, via which fuel is conducted into the spring chamber 27 and from there into the annular space between the stem 20 and valve body 10.
  • connection nipple 37 also serves as a pressure piece, which by means of a union nut 38 with the holding body 1 is screwed and, with the interposition of the cylindrical body 29, clamps the insert 33 and the intermediate part 24 together with the collar 6 on the insulating body 4 in the holding body 1.
  • a connector 40 made of insulating material is arranged on the side of the holding body 1, through which a contacting screw 41 is screwed in, the end of which comes into contact with the electrically conductive insert 33.
  • the contacting screw 41 is used to supply a high voltage.
  • the end of the valve body 10 on the combustion chamber side projects beyond the end of the insulating body 4.
  • the fuel injection point 42 which, as described, consists of the controllable annular gap 12.
  • a sleeve 45 is placed on this end 43 of the valve body 10 on the combustion chamber side, adjacent the fuel injection point 42 to the insulating body 4.
  • This sleeve 45 can be releasably or non-releasably connected to the valve body 10. Detachable connections will be described in more detail below.
  • a wire-shaped electrode 46 is fastened to the sleeve 45 and, after an offset, points axially parallel to the axis of the valve body 10, projecting towards the combustion chamber.
  • the axially parallel end piece 47 lies on a concentric to the axis of the valve body 10 with a diameter corresponding to that of the front end of the holding body 1. From this also leads parallel to the axis of the valve body, a wire-shaped electrode 48, which in the circumferential direction of the above circle next to the Axially parallel end 47 of the wire-shaped electrode 46 ends. As can be seen from the section according to FIG. 3, three pairs of wire-shaped electrodes 47, 48 are spaced apart on the circumference of the above-mentioned circle. Between these electrodes 47, 48 there is a spark gap 49 in the circumferential direction of the above-mentioned circle.
  • the wire-shaped electrode 46 is arranged with its axially parallel end piece 47 in such a way that the latter in the area of the injection point escaping fuel jet. Due to the configuration of the head 14, this is a so-called umbrella beam or a fan beam, which moves into the combustion chamber in an expanding manner.
  • the wire-shaped electrodes 46 and 48 form parts of a spark ignition device, with the aid of which a spark is generated during fuel injection, which spark jumps over the surface of the fuel jet. This results in the advantages mentioned at the beginning.
  • the radial distance of the electrodes 46, 48 from the injection point 42 must also be optimized.
  • the spark ignition device is supplied with voltage via the ground contact by means of the holding body 1 screwed into the cylinder head of the internal combustion engine on the one hand and via the contacting screw 41 on the other hand. From this, the electrical voltage is conducted via the insert 33, the intermediate part 24, the valve body 10 soldered into it and via the sleeve 45 to the electrode 46, from where the flashover to the ground electrode 48 can take place.
  • the electrodes 46, 48 they are coated with platinum or parts of the electrodes 46, 48 are made directly from platinum or another erosion-resistant, electrically conductive material.
  • valve body 10 is designed to be very slim and accordingly has a small heat-absorbing surface.
  • valve closing member 15 is provided with a very thin stem 20, which can also itself have resilient properties, as is known from various injection valves.
  • the closing spring 26 is provided, which advantageously prevents the shaft 20 from being overstretched or from failing when the load changes too frequently.
  • valve body 10 There is a relatively long distance between the exit point of the valve body 10 from the axial bore in the insulating body 4 and the end of the insulating body 4, so that the insulating body 4 is here exposed to the hot fuel gases with a large surface area and becomes strong can be heated so as to avoid deposits forming shunt paths. At the same time, however, a sufficient distance from the valve body 10 is maintained so that it only takes on heat as radiant heat from the thin end of the insulating body 4 to a small extent. Furthermore, the valve body 10 is cooled by the supplied fuel, which emerges at the injection point 42. With the drab-shaped electrodes 46, 48, the heat source sparkover is also moved away from the valve body 10 and advantageously in an area that is regularly supplied with fuel during injection. This guarantees reliable ignition of the injected fuel, even in the event of unfavorable fuel-air mixture or ignition conditions in the combustion chamber.
  • FIG. 4 shows a top view of a 2-valve cylinder head with a gas exchange inlet valve 50 and a gas exchange outlet valve 51. These lie within the projection 52 of the engine cylinder diameter on the cylinder head 53. It would be optimal to introduce fuel and ignition in the middle of the combustion chamber, if possible. In this area, however, there is regularly only a narrow web 54 of the cylinder head wall between the gas exchange inlet valve 50 and the gas exchange exhaust valve 51. This web 54 is highly thermally and mechanically loaded and must be optimally cooled, at least for thermal reasons.
  • FIG. 5 shows a part of a fuel injection valve which is constructed in principle like that according to FIGS. 1 to 3.
  • the sleeve 45 ' is now designed as a part which can be pushed onto the end of the valve body 10, the wire-shaped electrodes 46, here a total of four, being attached to the sleeve 45' in the same way.
  • a recess 66 is provided in the valve body 10' in the present case, into which a resilient ring 57 engages, which at the same time engages in a recess 58 on the sleeve 45 '.
  • the recess 66 on the valve body 10 ' is advantageously an annular groove.
  • a modified attachment can also consist in that the sleeve 45 'is divided at its end into resilient tongues which have inwardly facing knobs and snap into corresponding recesses in the valve body 10'. This then has the advantage that, in addition to the axial securing, a rotational position securing is also guaranteed.
  • a rotation lock is also achievable in that the end of the insulating body has 4 slots 60 through which the offset of the electrode 46 is guided. In such configurations, the electrode 46 can be replaced if the erosion is too great, without major repair work on the fuel injector being necessary or having to be thrown away.
  • FIG. 6 Another embodiment of an exchangeable electrode is shown in FIG. 6.
  • the sleeve known from FIG. 1, here as sleeve 45 ′′ is pushed onto the end of the valve body 10 ′′.
  • the sleeve 45 ′′ itself is configured with respect to the electrode 46 in the same way as in FIG. 1.
  • the sleeve 45 ′′ has a punched-out spring tongue 62 which is bent inwards and into a corresponding one which is adapted to the rest position of the spring tongue 62 Recess 63 can be snapped onto the lateral surface of the valve body 10 ′′.
  • FIG. 7 shows a section along the line AA from FIG. 6 with partial top views, from which the position of the wire-shaped electrodes 46 and 48 can be seen.
  • the position of the spark gap 64 between the wire-shaped electrodes 46, 48 can be seen clearly from this figure.
  • One wire-shaped electrode 46 is inserted into a recess on the sleeve 45 ′′ and fixed there by welding, and the other wire-shaped electrode 48 is angled and welded onto the end face 65 of the holding body 1.
  • FIGS. 8 and 9 A final embodiment of the attachment of the wire-shaped electrodes 46, 48 is finally shown in FIGS. 8 and 9.
  • This embodiment again has one or more electrodes 46 that can be replaced together.
  • these electrodes 46 are cranked and fastened to a ring element 75.
  • This has on its outer circumference a spring 76 which springs open in the circumferential direction and by means of which the ring element 75 can be snapped into an annular groove 77 on the inside of the insulating body 4.
  • resilient contact elements 78 On the inside of the ring element 75 project resilient contact elements 78, which come in the installed position of the ring element 75 in electrically conductive contact with the valve body 10. Otherwise, the electrodes 46 are assigned in the same way to wire-shaped electrodes 48 as shown in FIGS. 1 to 7.
  • the annular groove 77 can also be provided on an insulating body 104 which is connected separately to the end face of the holding body 1 instead of at the end of the insulating body 4. This extends beyond the end of the insulating body 4, as shown in FIGS. 1 to 8, towards the combustion chamber side.
  • the ring groove 77 can also be formed by grading the insulating body 104 between the combustion chamber end face of the insulating body 104 and a shoulder of the insulating body 104.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Kraftstoffeinspritzventil nach dem Oberbegriff des Patentanspruchs 1. Die die Gattung bildende GB-A-580 477 beschreibt ein Einspritzventil mit einem rohrförmigen Ventilkörper, an dessen, in einen Brennraum einer Brennkraftmaschine ragenden Ende eine Einspritzöffnung vorgesehen ist. An dieser tritt, gesteuert durch ein Ventilschließglied, ein Kraftstoffeinspritzstrahl aus, der sich, in der Form eines Schirmstrahls, diffusorartig erweiternd in den Brennraum erstreckt. Dieser Kraftstoffeinspritzstrahl ist durch Funkenstrecken entzündbar, die sich zwischen hakenförmigen, mit einem Pol einer Spannungsquelle verbundenen Elektroden eines Haltekörpers des Einspritzventils und einer ringförmigen, mit dem Gegenpol der Spannungsquelle verbundenen und durch das brennraumseitige Ende des Ventilkörpers verkörperten Elektrode bilden. Die Funkenstrecken liegen jedoch nicht in dem Kraftstoffeinspritzstrahl, sondern verlaufen, radial gerichtet, in einer Ebene, die gegenüber der Einspritzöffnung zurückgesetzt ist.The invention relates to a fuel injection valve according to the preamble of claim 1. GB-A-580 477, which forms the generic type, describes an injection valve with a tubular valve body, at the end of which projects into a combustion chamber of an internal combustion engine, an injection opening is provided. At this, controlled by a valve closing member, a fuel injection jet emerges which, in the form of an umbrella jet, extends into the combustion chamber in a widening manner. This fuel injection jet is ignitable by spark gaps which form between hook-shaped electrodes of a holding body of the injection valve connected to one pole of a voltage source and an annular electrode connected to the opposite pole of the voltage source and embodied by the end of the valve body on the combustion chamber side. However, the spark gaps do not lie in the fuel injection jet, but rather run radially in a plane that is set back from the injection opening.

Diese Ausgestaltung hat den Nachteil, daß der eingespritzte Kraftstoff nicht sofort mit den Funkenstrecken in unmittelbaren Kontakt kommen kann, wodurch dessen Entzündung erschwert wird. Zudem bilden sich die Funkenstrecken in unmittelbarer Nähe des Ventilsitzes aus, was zu einer hohen thermischen Belastung desselben führt und langfristig die Funktion des Ventils gefährdet, da die Elektroden nicht austauschbar sind.This configuration has the disadvantage that the injected fuel cannot immediately come into direct contact with the spark gaps, making its ignition more difficult. In addition, the spark gaps form in the immediate vicinity of the Valve seat, which leads to a high thermal load of the same and endangers the function of the valve in the long term, since the electrodes are not interchangeable.

Entsprechendes gilt auch für die US-A-2 008 803, bei der aufgrund der Form der Einspritzöffnung ein konisch ausgebildeter Kraftstoffeinspritzstrahl austreten kann.The same applies to US-A-2 008 803, in which, due to the shape of the injection opening, a conically shaped fuel injection jet can emerge.

Ferner ist aus der DE-C-1 208 121 eine gattungsfremde Einspritzdüse mit Zündeinrichtung bekannt, bei der der Düsenkörper axial von einer die Masseelektrode bildenden Rohrhülse, die auf der brennraumseitigen Stirnseite eine Ringöffnung aufweist, überragt wird. Im Bereich der Ringöffnung ist an der Rohrhülse eine Eindrückung angebracht, der ein Mittelelektrodenzündstab, der an dem Düsenkörper angeschweißt ist, zur Bildung der Funkenstrecke gegenübersteht.Furthermore, from DE-C-1 208 121 a non-generic injection nozzle with ignition device is known, in which the nozzle body is axially surmounted by a tubular sleeve forming the ground electrode, which has an annular opening on the end face on the combustion chamber side. In the area of the ring opening, an indentation is attached to the tube sleeve, which is opposed by a central electrode ignition rod, which is welded to the nozzle body, to form the spark gap.

Aufgabe der Erfindung ist es, das gattungsgemäße Kraftstoffeinspritzventil so weiterzubilden, daß der Kraftstoffeinspritzstrahl rasch entzündbar ist, die Ausformung und Anordnung der Elektroden den Einspritzstrahl nur so gering wie funktionsmäßig erforderlich beeinflussen und die Lebensdauer des Kraftstoffeinspritzventils verlängert wird.The object of the invention is to further develop the generic fuel injection valve so that the fuel injection jet can be ignited quickly, the shape and arrangement of the electrodes influence the injection jet only as little as is functionally required and the service life of the fuel injection valve is extended.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß damit eine eindeutige, definierte, optimale Zuordnung der Funkenstrecke zum eingespritzten Kraftstoff möglich ist. Wenn die Funkenstrecke direkt im Kraftstoffeinspritzstrahl liegt bzw. der Funken über die Oberfläche des Kraftstoffeinspritzstrahles springt, ergeben sich die besten Entflammungsbedingungen auch für schwerer entflammbare Kraftstoffe. Dabei liegt die Funkenstrecke sehr nahe der Einspritzöffnung. Auf diese Weise kann der Kraftstoff auch bei sehr magerer Brennraumfüllung, insbesondere bei Schichtladebetrieb sicher entflammt werden. Die Elektroden werden außerdem vom Kraftstoff angespritzt und gekühlt, was zu höherer Standzeit führt, Glühzündungen verhindert und die Wärmeableitung an dem Ventilkörper reduziert.The fuel injection valve according to the invention with the characterizing features of the main claim has the advantage that a clear, defined, optimal assignment of the spark gap to the injected fuel is possible. If the spark gap is located directly in the fuel injection jet or the spark jumps over the surface of the fuel injection jet, the best ignition conditions are obtained even for less inflammable fuels. The spark gap is very close to the injection opening. In this way, the fuel can be ignited safely even when the combustion chamber is very lean, particularly in stratified charge mode. The electrodes are also injected and cooled by the fuel, which leads to a longer service life, prevents glow ignition and reduces heat dissipation on the valve body.

Mit einem solchen Schichtladebetrieb wird ein Kraftstoffverbrauch für fremdgezündete Brennkraftmaschinen (Otto-Motoren) angestrebt, wie er bei mit hohem Luftüberschuß betriebenen selbstzündenden Brennkraftmaschinen (Diesel-Motoren) üblich ist. Dabei soll die Lastregelung über die Einspritzmenge ähnlich wie beim Dieselmotor gesteuert werden, so daß mit wegfallender Androsselung der Saugluft keine Gaswechselverluste entstehen, was in Verbindung mit der günstigeren Umsetzung der geschichteten Ladung (weniger Wandwärmeverluste) zu hohen Wirkungsgraden, geringen HC-Emissionen und geringerer Klopfempfindlichkeit führt. Zum Erzielen eines niedrigen Kraftstoffverbrauchs wird der Kraftstoff mit dem erfindungsgemäßen Kraftstoffeinspritzventil direkt in den Brennraum eingespritzt. Dadurch entfällt die bei Saugrohreinspritzung unvermeidliche Benetzung der Saugrohrwände mit Kraftstoff und es werden die damit verbundenen Verbrauchsnachteile im instationären Betrieb der Brennkraftmaschine und im Warmlauf vermieden. Die Kombination Kraftstoffeinspritzventil mit Zündeinrichtung beseitigt das Problem, eine zusätzliche Kraftstoffeinspritzstelle am Brennraum schaffen zu müssen, wo aufgrund der heute geforderten großen Gaswechselführungsquerschnitte und damit verbunden den hochthermisch und mechanisch belasteten Brennraumwandstegen zwischen den Gaswechselführungsquerschnitten, welche Stege deshalb zu kühlen sind, nur ein sehr geringes Platzangebot zur Verfügung steht. Außerdem ist dadurch sichergestellt, daß auch bei kleinen Einspritzmengen der Kraftstoff vom Zündfunken erfaßt wird. Dabei ergeben sich zusätzlich die obengenannten optimalen Zündverhältnisse. Diese zeigen sich vorteilhaft auch beim Kaltstart und beim Warmlauf der Brennkraftmaschine.With such a stratified charge operation, fuel consumption for spark-ignited internal combustion engines (Otto engines) is aimed for, as is customary for self-igniting internal combustion engines (diesel engines) operated with a large excess of air. The load control should be controlled via the injection quantity similar to that of a diesel engine, so that if the suction air is throttled away, there are no gas exchange losses, which in conjunction with the more favorable implementation of the stratified charge (less wall heat loss) leads to high efficiency levels, low HC emissions and lower knock sensitivity leads. To achieve a low fuel consumption, the fuel is injected directly into the combustion chamber with the fuel injection valve according to the invention. This eliminates the inevitable wetting of the intake manifold walls with fuel during intake manifold injection and the associated consumption disadvantages in transient operation of the internal combustion engine and during warm-up are avoided. The combination of fuel injector and ignition device eliminated the problem of having to create an additional fuel injection point on the combustion chamber, where due to the large gas exchange guide cross sections required today and the associated high thermal and mechanical load on the combustion chamber wall webs between the gas exchange guide cross sections, which webs are therefore to be cooled, there is very little space available. This also ensures that the fuel is detected by the ignition spark even with small injection quantities. This also results in the optimal ignition conditions mentioned above. These are also advantageous when cold starting and when the internal combustion engine is warming up.

Von besonderem Vorteil ist es, die Elektroden, die auf der Seite des Ventilkörpers liegen, austauschbar zu machen, da diese am stärksten abbrandgefährdet sind. Somit braucht das hochwertige und teure Kraftstoffeinspritzventil selbst nicht ersetzt werden und es ist dieses Ventil auch nicht verschleißgefährdet, wie das beim Gegenstand des die Gattung begründenden Kraftstoffeinspritzventils der Fall ist.It is particularly advantageous to make the electrodes that are on the side of the valve body interchangeable, since they are most at risk of erosion. Thus, the high-quality and expensive fuel injection valve itself does not need to be replaced and this valve is also not at risk of wear, as is the case with the subject matter of the fuel injection valve which is of the generic type.

Vorteilhafte Ausgestaltungen bezüglich der Auswechselbarkeit der Elektroden sind den Unteransprüchen 2 bis 6 zu entnehmen, wobei die Weiterbildung gemäß Anspruch 4 eine besonders einfach zu fertigende und betriebssichere Ausführung darstellt.Advantageous refinements regarding the interchangeability of the electrodes can be found in subclaims 2 to 6, the further development according to claim 4 being a particularly simple to manufacture and reliable embodiment.

Eine sehr vorteilhafte Ausgestaltung stellt die Weiterbildung nach Anspruch 7 dar. Mit dieser wird erreicht, daß einerseits der Isolierkörper auf der Seite des Brennraumes sich optimal erwärmen kann, so daß sich keine Ruß-Nebenschlußbrücken bilden und andererseits das Kraftstoffeinspritzventil weit genug von dem eine Wärmequelle darstellenden Isolierkörper entfernt ist, um eine optimale niedrige Temperatur einzuhalten. Durch einen kleinen Durchmesser des Kraftstoffeinspritzventils im außerhalb der Einbettung im Isolierkörper liegenden Bereich wird weiterhin die Wärmeaufnahme verringert. Die Durchmesserverringerung wird dabei vorteilhaft durch das mit einem drahtförmigen Schaft versehene Ventilschließglied gemäß Anspruch 11 erzielt. Ein Wärmeabtransport und damit eine Kühlung wird durch den Kraftstofffluß durch das Kraftstoffeinspritzventil zusätzlich erreicht. Nach Anspruch 8 wird erreicht, daß sich der Isolierkörper ausreichend erwärmt, so daß sich kein Rußbelag auf ihm bildet (Wärmewert). Schließlich wird nach Anspruch 9 sichergestellt, daß der Schirmstrahl ausreichend belüftet wird, so daß Isolierkörper und Zylinderkopf nicht benetzt werden.The development according to claim 7 represents a very advantageous embodiment. With this it is achieved that on the one hand the insulating body on the side of the combustion chamber can heat up optimally, so that no soot shunt bridges form and on the other hand the fuel injector far enough from the one that represents a heat source Insulator is removed to maintain an optimal low temperature. Due to a small diameter of the fuel injection valve in the area outside the embedding in the insulating body, the heat absorption continues decreased. The reduction in diameter is advantageously achieved by the valve closing element provided with a wire-shaped shaft. Heat removal and thus cooling is additionally achieved by the fuel flow through the fuel injection valve. According to claim 8 it is achieved that the insulating body heats up sufficiently so that no soot coating forms on it (thermal value). Finally, it is ensured according to claim 9 that the shield jet is sufficiently ventilated so that the insulating body and cylinder head are not wetted.

Zeichnungdrawing

Vier Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel der Erfindung, Figur 2 eine Ausführung der Befestigung des Ventilkörpers im Kraftstoffeinspritzventil, Figur 3 die Anordnung der Elektroden in bezug auf die Einspritzstelle, Figur 4 die Darstellung des Anbringungsortes des erfindungsgemäßen Kraftstoffeinspritzventils im Zylinderkopf einer Brennkraftmaschine, Figur 5 ein zweites Ausführungsbeispiel der Erfindung, bei dem die dem Ventilkörper des Kraftstoffeinspritzventils zugeordnete Elektrode auf einer auswechselbaren, mit dem Ventilkörper verrasteten Hülse sitzen, Figur 6 ein drittes Ausführungsbeispiel mit einer Abwandlung der Befestigung der Hülse gemäß Figur 5, Figur 7 einen Schnitt durch das Ausführungsbeispiel nach Figur 6, Figur 8 ein viertes Ausführungsbeispiel der Erfindung mit einer weiteren Ausführung einer austauschbaren Elektrode, die hier am Isolierkörper gehalten wird und Figur 9 eine Detaildarstellung dieser Elektrode gemäß Figur 8.Four embodiments of the invention are shown in the drawing and are explained in more detail in the following description. 1 shows a first exemplary embodiment of the invention, FIG. 2 shows an embodiment of the fastening of the valve body in the fuel injection valve, FIG. 3 shows the arrangement of the electrodes with respect to the injection point, FIG. 4 shows the location of the fuel injection valve according to the invention in the cylinder head of an internal combustion engine, and FIG second embodiment of the invention, in which the electrode assigned to the valve body of the fuel injection valve is seated on an exchangeable sleeve which is locked with the valve body, FIG. 6 shows a third embodiment with a modification of the fastening of the sleeve according to FIG. 5, FIG. 7 shows a section through the embodiment according to FIG 6, FIG. 8 shows a fourth embodiment of the invention with a further embodiment of an exchangeable electrode, which is held here on the insulating body, and FIG. 9 shows a detailed illustration of this electrode according to FIG. 8.

Beschreibungdescription

Das Kraftstoffeinspritzventil gemäß Figur 1 weist einen Haltekörper 1 auf, der mit Stufenbohrungen versehen ist und an seinem einspritzseitigen Ende ein Außengewinde 2 der Größe M14 aufweist, über das er in die Brennraumwand einer Brennkraftmaschine einschraubbar ist. Das Einspritzventil ist sehr lang gestreckt ausgeführt. Aus diesem Grund ist in der Figur 1 nur ein Teilabschnitt wiedergegeben. Der oberste Teil des Kraftstoffeinspritzventils ist in Figur 2 dargestellt. Ins Innere des Haltekörpers 1 ist ein Isolierkörper 4 eingesetzt und dort mittels Spannmuttern 5, die auf einen Bund gepreßt sind, im Haltekörper 1 axial fixiert. Zwischen dem Bund 6 und seinem einspritzseitigen Ende ist der Isolierkörper 4 zylindrisch ausgebildet und läßt einen schmalen Ringspalt 7 in der Größenordnung von 0,2 bis 0,35 mm zwischen sich und der Innenbohrung des Haltekörpers 1 frei. Das Ende des Isolierkörpers 4 überragt das brennraumseitige Ende des Haltekörpers 1. Im Isolierkörper 4, der aus Materialien besteht, wie sie für Kerzensteine von Zündkerzen üblich sind, ist in einer axialen Bohrung 9 ein Ventilkörper 10 durchgeführt und dort gelagert. Brennraumseitig etwa über die Länge des Ringspalts 7 geht die axiale Bohrung 9 in eine sich zum Brennraum hin erweiternde Ausnehmung 11 über. In diese ragt der Ventilkörper 10 koaxial hinein. Der Abstand zwischen Ventilkörper 10 und dem Isolierkörper 4 nimmt in diesem Bereich in Richtung Brennraum hin kontinuierlich zu. Dabei überragt der Ventilkörper 10 wiederum das Ende des Isolierkörpers 4 in Richtung Brennraum und weist an diesem Ende die Einspritzöffnung zur Einspritzung von Kraftstoff auf. Im vorgesehenen Beispiel handelt es sich dabei um einen Ringspalt 12, der dann entsteht, wenn ein Kopf 14 eines Ventilschließgliedes 15 von seiner Sitzfläche 16 in Richtung Brennraum abhebt. Der Sitz 16 ist kegelförmig, sich nach innen verjüngend ausgebildet. Entsprechend ist am Kopf 14 eine kegelförmige Dichtfläche 17 vorgesehen. Der außen liegende Kopf 14 geht innerhalb der sich an die Sitzfläche 16 anschließenden Längsbohrung 18 des Ventilkörpers 10 in einen langgestreckten, drahtförmigen Schaft 20 über, der zur Wand der Längsbohrung einen Ringraum freiläßt und stellenweise Führungsflächen 21 aufweist. Das dem Kopf 14 abgewandte Ende des Schaftes 20 weist ebenfalls einen Kopf 22 auf, über den mit dem Schaft ein Federteller 23 gekoppelt ist, zwischen dem und einem sich an den Isolierkörper 4 anschließenden Zwischenteil 24 eine Ventilschließfeder 26 eingespannt ist. Diese hält den Kopf 14 so lange in Schließstellung, solange der Kraftstoffdruck nicht in der Lage ist, am Ventilschließglied 15 angreifend dieses in Öffnungsstellung zu bringen. Das Zwischenteil 24 besteht aus metallisch und elektrisch leitfähigem Material und ist mit dem Ende des Ventilkörpers 10 z. B. durch Lötung verbunden. Angrenzend an das Zwischenteil 24 wird im Innern des Kraftstoffeinspritzventils ein Federraum 27 gebildet, in den das Ende des Schaftes 20 ragt und in dem auch die Ventilschließfeder 26 angeordnet ist. Dieser Federraum 27 ist in einen gegebenenfalls mehrteiligen zylindrischen Körper 29 aus elektrisch nicht leitendem Material eingebracht, der eine Stufenbohrung aufweist, in deren im Durchmesser größeren Bohrungsteil 31 das zylindrische Ende des Isolierkörpers 4 und das Zwischenteil 24 dicht eingesetzt sind. Durch den kleineren, sich an den großen Bohrungsteil 31 anschließenden Bohrungsteil 32 der Stufenbohrung ist ein elektrisch leitender Einsatz 33 geführt, der einen in den Stufenbohrungsteil 31 mit großem Durchmesser ragenden topfförmigen Teil aufweist, der unter Bildung des Federraumes 27 das Ende des Schaftes 20 mit Federteller 23 und Ventilschließfeder 26 umgreift und kraftschlüssig am Zwischenteil 24 stirnseitig aufliegt und diesen am Isolierkörper 4 hält. In dem Stufenbohrungsteil 32 mit kleinerem Durchmesser ist der Einsatz rohrförmig ausgebildet mit einem Kraftstoffkanal 36, über den Kraftstoff in den Federraum 27 und von dort in den Ringraum zwischen Schaft 20 und Ventilkörper 10 geleitet wird. Am Ende liegt der Einsatz stirnseitig am Ende des Stufenbohrungsteils 32 mit kleinerem Durchmesser an, von dem weiterführend die Kraftstoffleitung 36 über einen Anschlußnippel 37 nach außen führt. Dieser Anschlußnippel 37 dient zugleich als Druckstück, das mittels einer Überwurfmutter 38 mit dem Haltekörper 1 verschraubt ist und unter Zwischenschalten des zylindrischen Körpers 29 den Einsatz 33 und das Zwischenteil 24 zusammen mit dem Bund 6 am Isolierkörper 4 im Haltekörper 1 verspannt.The fuel injection valve according to FIG. 1 has a holding body 1 which is provided with stepped bores and has an external thread 2 of size M14 at its end on the injection side, via which it can be screwed into the combustion chamber wall of an internal combustion engine. The injector is very long. For this reason, only a partial section is shown in FIG. The uppermost part of the fuel injection valve is shown in Figure 2. An insulating body 4 is inserted into the interior of the holding body 1 and is axially fixed there in the holding body 1 by means of clamping nuts 5, which are pressed onto a collar. Between the collar 6 and its injection end, the insulating body 4 is cylindrical and leaves a narrow annular gap 7 of the order of 0.2 to 0.35 mm between itself and the inner bore of the holding body 1. The end of the insulating body 4 projects beyond the end of the holding body 1 on the combustion chamber side. In the insulating body 4, which consists of materials such as are customary for spark plug caps, a valve body 10 is carried out in an axial bore 9 and stored there. On the combustion chamber side, approximately over the length of the annular gap 7, the axial bore 9 merges into a recess 11 which widens towards the combustion chamber. The valve body 10 projects coaxially into this. The distance between the valve body 10 and the insulating body 4 increases continuously in the direction of the combustion chamber in this area. The valve body 10 in turn projects beyond the end of the insulating body 4 in the direction of the combustion chamber and has the injection opening at this end for the injection of fuel. In the example provided, this is an annular gap 12 which arises when a head 14 of a valve closing member 15 lifts off its seat 16 in the direction of the combustion chamber. The seat 16 is conical in shape and tapers inwards. Accordingly, a conical sealing surface 17 is provided on the head 14. The outer head 14 goes inside the longitudinal bore 18 of the valve body 10 adjoining the seat surface 16 into an elongated, wire-shaped shaft 20 About, which leaves an annular space to the wall of the longitudinal bore and has guide surfaces 21 in places. The end of the shaft 20 facing away from the head 14 also has a head 22, via which a spring plate 23 is coupled to the shaft, between which and a connecting part 24 adjoining the insulating body 4, a valve closing spring 26 is clamped. This keeps the head 14 in the closed position as long as the fuel pressure is not able to attack the valve closing member 15 to bring it into the open position. The intermediate part 24 consists of metallic and electrically conductive material and is with the end of the valve body 10 z. B. connected by soldering. Adjacent to the intermediate part 24, a spring chamber 27 is formed in the interior of the fuel injection valve, into which the end of the stem 20 projects and in which the valve closing spring 26 is also arranged. This spring chamber 27 is introduced into a possibly multi-part cylindrical body 29 made of electrically non-conductive material, which has a stepped bore, in the larger bore part 31 of which the cylindrical end of the insulating body 4 and the intermediate part 24 are inserted tightly. An electrically conductive insert 33 is guided through the smaller bore part 32 of the stepped bore which adjoins the large bore part 31 and has a cup-shaped part which projects into the stepped bore part 31 with a large diameter and which forms the spring chamber 27 and the end of the shaft 20 with a spring plate 23 and valve closing spring 26 engages and rests non-positively on the end face 24 and holds it on the insulating body 4. In the stepped bore part 32 with a smaller diameter, the insert is tubular with a fuel channel 36, via which fuel is conducted into the spring chamber 27 and from there into the annular space between the stem 20 and valve body 10. In the end, the insert rests on the end face at the end of the stepped bore part 32 with a smaller diameter, from which the fuel line 36 leads outwards via a connecting nipple 37. This connection nipple 37 also serves as a pressure piece, which by means of a union nut 38 with the holding body 1 is screwed and, with the interposition of the cylindrical body 29, clamps the insert 33 and the intermediate part 24 together with the collar 6 on the insulating body 4 in the holding body 1.

Wie der Figur 2 zu entnehmen ist, ist seitlich am Haltekörper 1 ein Stutzen 40 aus Isolierstoff angeordnet, durch den eine Kontaktierungsschraube 41 eingeschraubt ist, die mit ihrem Ende an den elektrisch leitenden Einsatz 33 zur Anlage kommt. Die Kontaktierungsschraube 41 dient der Zufuhr einer Hochspannung.As can be seen in FIG. 2, a connector 40 made of insulating material is arranged on the side of the holding body 1, through which a contacting screw 41 is screwed in, the end of which comes into contact with the electrically conductive insert 33. The contacting screw 41 is used to supply a high voltage.

Wie oben ausgeführt, überragt das brennraumseitige Ende des Ventilkörpers 10 das Ende des Isolierkörpers 4. Am äußersten Ende befindet sich die Kraftstoffeinspritzstelle 42, die wie beschrieben, aus dem steuerbaren Ringspalt 12 besteht. Ferner ist auf diesem brennraumseitigen Ende 43 des Ventilkörpers 10 eine Hülse 45 aufgesetzt, angrenzend an die Kraftstoffeinspritzstelle 42 zum Isolierkörper 4 hin. Diese Hülse 45 kann mit dem Ventilkörper 10 lösbar oder nicht lösbar verbunden sein. Lösbare Verbindungen werden im folgenden noch näher beschrieben werden. An der Hülse 45 ist eine drahtförmige Elektrode 46 befestigt, die nach einer Kröpfung achsparallel zur Achse des Ventilkörpers 10, diesen überragend zum Brennraum hinweist. Das achsparallele Endstück 47 liegt dabei auf einem zur Achse des Ventilkörpers 10 konzentrischen Kreis mit einem Durchmesser entsprechend dem des stirnseitigen Endes des Haltekörpers 1. Von diesem führt ebenfalls parallel zur Achse des Ventilkörpers eine drahtförmige Elektrode 48 ab, die in Umfangsrichtung des obengenannten Kreises neben dem achsparallelen Ende 47 der drahtförmigen Elektrode 46 endet. Wie dem Schnitt gemäß Figur 3 zu entnehmen ist, sind am Umfang des obengenannten Kreises drei Paare drahtförmiger Elektroden 47, 48 in Abstand verteilt angeordnet. Zwischen diesen Elektroden 47, 48 liegt jeweils eine Funkenstrecke 49 in Umfangsrichtung des obenerwähnten Kreises. Die drahtförmige Elektrode 46 ist mit ihrem achsparallelen Endstück 47 so angeordnet, daß letzteres im Bereich des an der Einspritzstelle austretenden Kraftstoffstrahles liegt. Dieser ist aufgrund der Konfiguration des Kopfes 14 ein sogenannter Schirmstrahl oder ein Fächerstrahl, der sich diffusorartig erweiternd in den Brennraum bewegt. Die drahtförmigen Elektroden 46 und 48 bilden Teile einer Funkenzündeinrichtung, mit deren Hilfe bei Kraftstoffeinspritzung ein Funken erzeugt wird, der über die Oberfläche des Kraftstoffstrahles springt. Damit ergeben sich die eingangs genannten Vorteile. Auch der radiale Abstand der Elektroden 46, 48 von der Einspritzstelle 42 ist zu optimieren. Die Spannungsversorgung der Funkenzündeinrichtung erfolgt über den Massekontakt vermittels des in den Zylinderkopf der Brennkraftmaschine eingeschraubten Haltekörpers 1 einerseits und über die Kontaktierungsschraube 41 andererseits. Von dieser wird die elektrische Spannung über den Einsatz 33, den Zwischenteil 24, den in diesen eingelöteten Ventilkörper 10 und über die Hülse 45 zur Elektrode 46 geleitet, von wo aus der Überschlag zur Masseelektrode 48 erfolgen kann. Zur Erhöhung der Standfestigkeit der Elektroden 46, 48 sind diese mit Platin beschichtet oder es sind Teile der Elektroden 46, 48 direkt aus Platin oder einem anderen abbrandfesten, elektrisch leitenden Werkstoff gefertigt.As stated above, the end of the valve body 10 on the combustion chamber side projects beyond the end of the insulating body 4. At the extreme end is the fuel injection point 42, which, as described, consists of the controllable annular gap 12. Furthermore, a sleeve 45 is placed on this end 43 of the valve body 10 on the combustion chamber side, adjacent the fuel injection point 42 to the insulating body 4. This sleeve 45 can be releasably or non-releasably connected to the valve body 10. Detachable connections will be described in more detail below. A wire-shaped electrode 46 is fastened to the sleeve 45 and, after an offset, points axially parallel to the axis of the valve body 10, projecting towards the combustion chamber. The axially parallel end piece 47 lies on a concentric to the axis of the valve body 10 with a diameter corresponding to that of the front end of the holding body 1. From this also leads parallel to the axis of the valve body, a wire-shaped electrode 48, which in the circumferential direction of the above circle next to the Axially parallel end 47 of the wire-shaped electrode 46 ends. As can be seen from the section according to FIG. 3, three pairs of wire-shaped electrodes 47, 48 are spaced apart on the circumference of the above-mentioned circle. Between these electrodes 47, 48 there is a spark gap 49 in the circumferential direction of the above-mentioned circle. The wire-shaped electrode 46 is arranged with its axially parallel end piece 47 in such a way that the latter in the area of the injection point escaping fuel jet. Due to the configuration of the head 14, this is a so-called umbrella beam or a fan beam, which moves into the combustion chamber in an expanding manner. The wire-shaped electrodes 46 and 48 form parts of a spark ignition device, with the aid of which a spark is generated during fuel injection, which spark jumps over the surface of the fuel jet. This results in the advantages mentioned at the beginning. The radial distance of the electrodes 46, 48 from the injection point 42 must also be optimized. The spark ignition device is supplied with voltage via the ground contact by means of the holding body 1 screwed into the cylinder head of the internal combustion engine on the one hand and via the contacting screw 41 on the other hand. From this, the electrical voltage is conducted via the insert 33, the intermediate part 24, the valve body 10 soldered into it and via the sleeve 45 to the electrode 46, from where the flashover to the ground electrode 48 can take place. To increase the stability of the electrodes 46, 48, they are coated with platinum or parts of the electrodes 46, 48 are made directly from platinum or another erosion-resistant, electrically conductive material.

Mit einer solchen Kombination von Kraftstoffeinspritzventil und Zündeinrichtung können die eingangs erwähnten Vorteile erzielt werden. Der Ventilkörper 10 ist sehr schlank ausgebildet und weist dementsprechend eine geringe wärmeaufnehmende Oberfläche auf. Dies ist dadurch erreichbar, daß das Ventilschließglied 15 mit einem sehr dünnen Schaft 20 versehen ist, der zudem auch selbst federnde Eigenschaften aufweisen kann, wie dies von verschiedenen Einspritzventilen bekannt ist. Zusätzlich aber ist die Schließfeder 26 vorgesehen, womit vorteilhaft eine Überdehnung des Schaftes 20 oder ein Versagen desselben bei zu häufigem Lastwechsel vermieden wird. Zwischen Austrittsstelle des Ventilkörpers 10 aus der axialen Bohrung im Isolierkörper 4 und Ende des Isolierkörpers 4 liegt eine relativ lange Wegstrecke, so daß der Isolierkörper 4 hier mit großer Oberfläche den heißen Brenngasen ausgesetzt ist und sich stark erwärmen kann, um so Nebenschlußstrecken bildende Ablagerungen zu vermeiden. Zugleich ist aber ein ausreichender Abstand zum Ventilkörper 10 eingehalten, so daß dieser von dem dünnen Ende des Isolierkörpers 4 nur in geringem Maße Wärme als Strahlungswärme übernimmt. Weiterhin wird der Ventilkörper 10 durch den zugeführten Kraftstoff, der an der Einspritzstelle 42 austritt, gekühlt. Mit den drabtförmigen Elektroden 46, 48 wird ferner die Wärmequelle Funkenüberschlag vom Ventilkörper 10 weg verlegt und dabei vorteilhafterweise in einen Bereich, der regelmäßig bei Einspritzung mit Kraftstoff versorgt wird. Dies garantiert eine sichere Zündung des eingespritzten Kraftstoffs, auch bei ansonsten im Brennraum ungünstigen Kraftstoff-Luftmischungsverhältnissen bzw. Entflammungsverhältnissen.The advantages mentioned at the outset can be achieved with such a combination of fuel injection valve and ignition device. The valve body 10 is designed to be very slim and accordingly has a small heat-absorbing surface. This can be achieved in that the valve closing member 15 is provided with a very thin stem 20, which can also itself have resilient properties, as is known from various injection valves. In addition, however, the closing spring 26 is provided, which advantageously prevents the shaft 20 from being overstretched or from failing when the load changes too frequently. There is a relatively long distance between the exit point of the valve body 10 from the axial bore in the insulating body 4 and the end of the insulating body 4, so that the insulating body 4 is here exposed to the hot fuel gases with a large surface area and becomes strong can be heated so as to avoid deposits forming shunt paths. At the same time, however, a sufficient distance from the valve body 10 is maintained so that it only takes on heat as radiant heat from the thin end of the insulating body 4 to a small extent. Furthermore, the valve body 10 is cooled by the supplied fuel, which emerges at the injection point 42. With the drab-shaped electrodes 46, 48, the heat source sparkover is also moved away from the valve body 10 and advantageously in an area that is regularly supplied with fuel during injection. This guarantees reliable ignition of the injected fuel, even in the event of unfavorable fuel-air mixture or ignition conditions in the combustion chamber.

Das beschriebene Kraftstoffeinspritzventil ist sehr lang gestreckt und schlank ausgeführt, um auch bei ungünstigen Einbauverhältnissen wie z. B. bei 4-Ventilmotoren bei der Brennkraftmaschine an dem optimalen Platz an der Brennraumwand befestigt werden zu können. In Figur 4 ist eine Draufsicht auf einen 2-Ventilzylinderkopf gezeigt mit einem Gaswechseleinlaßventil 50 und einem Gaswechselauslaßventil 51. Diese liegen innerhalb der Projektion 52 des Motorzylinderdurchmessers auf dem Zylinderkopf 53. Optimal wäre eine Einbringung von Kraftstoff und Zündung desselben möglichst in Brennraummitte. In diesem Bereich liegt jedoch regelmäßig ein nur schmaler Steg 54 der Zylinderkopfwand zwischen dem Gaswechseleinlaßventil 50 und Gaswechselauslaßventil 51. Dieser Steg 54 ist thermisch und mechanisch hochbelastet und muß zumindest aus thermischen Gründen optimal gekühlt werden. Dies erlaubt keinen Durchtritt von Vorrichtungen wie Zündkerze oder Einspritzventil. Für eine Anbringung dieser Vorrichtungen bietet sich dann lediglich der Kreisausschnitt 55 an, der auch spiegelbildlich zum in der Figur 4 eingezeichneten Kreisausschnitt 55 liegen kann. Mit dem gestrichelten Kreis ist eine Kolbenausnehmung 59 angedeutet, die jeweils dem Kreisausschnitt 55 zuzuordnen ist bzw. der Einspritzstelle und der Zündstelle. Bisher waren Einspritzventil und Zündkerze getrennt angeordnet, und zwar spiegelbildlich zueinander ober- und unterhalb der die Gaswechselquerschnitte verbindenden Linie 61. Dies führte zu ungünstigen Entflammungsbedingungen, die sich insbesondere im Leerlauf bei Niedriglast negativ bemerkbar gemacht haben. Mit dem erfindungsgemäßen Kraftstoffeinspritzventil ist nun eine kompakte Einbringung von Einspritzventil und Zündeinrichtung im Bereich des Kreisausschnitts 55 möglich und somit können optimale Betriebsbedingungen für eine insbesondere mager betriebene Brennkraftmaschine erzielt werden. Dabei werden die bei der vorstehend erwähnten getrennten Einbringung von Zündeinrichtung und Einspritzventil schlechten Kaltstartverhältnisse verbessert, zugleich auch die Leerlaufeigenschaften. Weiterhin wird ein zu hoher Anteil unverbrannter Kohlenwasserstoffe vermieden und die Klopfneigung verringert. Insbesondere ist aber durchweg eine qualitative Regelung in allen Betriebsbereichen störungsfrei durchführbar, das heißt, es braucht die angesaugte Luftmenge zur Laststeuerung nicht gedrosselt werden.The fuel injector described is very long and slim, so that even in unfavorable installation conditions such. B. in 4-valve engines in the internal combustion engine at the optimal place on the combustion chamber wall. FIG. 4 shows a top view of a 2-valve cylinder head with a gas exchange inlet valve 50 and a gas exchange outlet valve 51. These lie within the projection 52 of the engine cylinder diameter on the cylinder head 53. It would be optimal to introduce fuel and ignition in the middle of the combustion chamber, if possible. In this area, however, there is regularly only a narrow web 54 of the cylinder head wall between the gas exchange inlet valve 50 and the gas exchange exhaust valve 51. This web 54 is highly thermally and mechanically loaded and must be optimally cooled, at least for thermal reasons. This does not allow devices such as spark plugs or injection valves to pass through. For the attachment of these devices, only the circular section 55 is appropriate, which can also be a mirror image of the circular section 55 shown in FIG. The dashed circle indicates a piston recess 59, which can be assigned to the circular section 55 or the injection point and the ignition point. Previously, the injection valve and spark plug had been arranged separately, mirroring each other above and below of line 61 connecting the gas exchange cross sections. This led to unfavorable ignition conditions, which had a particularly negative effect when idling at low load. With the fuel injection valve according to the invention, a compact introduction of the injection valve and ignition device in the region of the circular section 55 is now possible, and thus optimal operating conditions can be achieved for an internal combustion engine operated in particular in a lean manner. The poor cold start conditions in the aforementioned separate introduction of ignition device and injection valve are improved, and at the same time the idling properties. Furthermore, an excessive proportion of unburned hydrocarbons is avoided and the tendency to knock is reduced. In particular, however, a qualitative control can be carried out without interruption in all operating areas, that is, the amount of air sucked in does not need to be throttled for load control.

In Figur 5 ist ein Teil eines Kraftstoffeinspritzventils wiedergegeben, das im Prinzip wie das nach Figuren 1 bis 3 aufgebaut ist. Bezüglich der gemeinsamen Teile wird deshalb auf die Figurenbeschreibung dieser Figuren verwiesen. Abweichend ist nun hier die Hülse 45' als ein auf das Ende des Ventilkörpers 10 aufschiebbares Teil ausgebildet, wobei an der Hülse 45' in gleicher Weise die drahtförmigen Elektroden 46, hier insgesamt vier, befestigt sind. Zur Lagesicherung der Hülse 45' ist im vorliegenden Falle im Ventilkörper 10' eine Ausnehmung 66 vorgesehen, in die ein federnder Ring 57 eingreift, der zugleich in eine Ausnehmung 58 an der Hülse 45' eingreift. Die Ausnehmung 66 am Ventilkörper 10' ist dabei vorteilhaft eine Ringnut. Eine abgewandelte Befestigung kann auch darin bestehen, daß die Hülse 45' an ihrem Ende in federnde Zungen aufgeteilt ist, die nach innen weisende Noppen haben und in entsprechende Ausnehmungen des Ventilkörpers 10' einrasten. Dies hat dann den Vorteil, daß neben der axialen Sicherung auch eine Drehlagesicherung gewährleistet ist. Eine Drehlagesicherung ist auch dadurch erreichbar, daß das Ende des Isolierkörpers 4 Schlitze 60 aufweist, durch die die Kröpfung der Elektrode 46 geführt ist. Bei solchen Ausgestaltungen kann bei einem zu großen Abbrand die Elektrode 46 ausgetauscht werden, ohne daß große Reparaturarbeiten am Kraftstoffeinspritzventil notwendig werden oder dieses gar weggeworfen werden müßte.FIG. 5 shows a part of a fuel injection valve which is constructed in principle like that according to FIGS. 1 to 3. With regard to the common parts, reference is therefore made to the description of the figures in these figures. Deviating from this, the sleeve 45 'is now designed as a part which can be pushed onto the end of the valve body 10, the wire-shaped electrodes 46, here a total of four, being attached to the sleeve 45' in the same way. To secure the position of the sleeve 45 ', a recess 66 is provided in the valve body 10' in the present case, into which a resilient ring 57 engages, which at the same time engages in a recess 58 on the sleeve 45 '. The recess 66 on the valve body 10 'is advantageously an annular groove. A modified attachment can also consist in that the sleeve 45 'is divided at its end into resilient tongues which have inwardly facing knobs and snap into corresponding recesses in the valve body 10'. This then has the advantage that, in addition to the axial securing, a rotational position securing is also guaranteed. A rotation lock is also achievable in that the end of the insulating body has 4 slots 60 through which the offset of the electrode 46 is guided. In such configurations, the electrode 46 can be replaced if the erosion is too great, without major repair work on the fuel injector being necessary or having to be thrown away.

Eine andere Ausgestaltung einer auswechselbaren Elektrode zeigt Figur 6. Auch hier ist die von Figur 1 bekannte Hülse, hier als Hülse 45'', auf das Ende des Ventilkörpers 10'' aufgeschoben. Die Hülse 45'' selbst ist in bezug auf die Elektrode 46 gleich ausgestaltet wie bei Figur 1. Nur weist jetzt die Hülse 45'' eine ausgestanzte Federzunge 62 auf, die nach innen gebogen ist und in eine entsprechende, der Ruhelage der Federzunge 62 angepaßte Ausnehmung 63 an der Mantelfläche des Ventilkörpers 10'' einrastbar ist. Mit dieser Federzunge 62 und der angepaßten Ausnehmung 63 ist es möglich, die Hülse 45'' sowohl lagegerecht in axialer Richtung zu sichern als auch eine gewünschte Drehstellung beizubehalten. Figur 7 zeigt einen Schnitt entlang der Linie AA von Figur 6 mit Teildraufsichten, denen die Lage der drahtförmigen Elektroden 46 und 48 entnehmbar ist. Deutlich ist dieser Figur die Lage der Funkenstrecke 64 zwischen den drahtförmigen Elektroden 46, 48 entnehmbar. Die eine drahtförmige Elektrode 46 ist in eine Ausnehmung an der Hülse 45'' eingesetzt und dort durch Schweißen fixiert und die andere drahtförmige Elektrode 48 ist abgewinkelt auf die Stirnseite 65 des Haltekörpers 1 aufgeschweißt.Another embodiment of an exchangeable electrode is shown in FIG. 6. Here, too, the sleeve known from FIG. 1, here as sleeve 45 ″, is pushed onto the end of the valve body 10 ″. The sleeve 45 ″ itself is configured with respect to the electrode 46 in the same way as in FIG. 1. Only now the sleeve 45 ″ has a punched-out spring tongue 62 which is bent inwards and into a corresponding one which is adapted to the rest position of the spring tongue 62 Recess 63 can be snapped onto the lateral surface of the valve body 10 ″. With this spring tongue 62 and the adapted recess 63, it is possible to both secure the sleeve 45 '' in the axial direction and to maintain a desired rotational position. FIG. 7 shows a section along the line AA from FIG. 6 with partial top views, from which the position of the wire-shaped electrodes 46 and 48 can be seen. The position of the spark gap 64 between the wire-shaped electrodes 46, 48 can be seen clearly from this figure. One wire-shaped electrode 46 is inserted into a recess on the sleeve 45 ″ and fixed there by welding, and the other wire-shaped electrode 48 is angled and welded onto the end face 65 of the holding body 1.

Eine letzte Ausführungsform der Befestigung der drahtförmigen Elektroden 46, 48 zeigen schließlich die Figuren 8 und 9. Dieses Ausführungsbeispiel weist wiederum eine bzw. mehrere zusammen auswechselbare Elektroden 46 auf. Diese Elektroden 46 sind wie in den vorstehenden Ausführungsbeispielen gekröpft ausgeführt und an einem Ringelement 75 befestigt. Dieses hat an seinem Außenumfang einen in Umfangsrichtung auffedernden Ring 76, mit dem das Ringelement 75 in eine Ringnut 77 auf der Innenseite des Isolierkörpers 4 einschnappbar ist. Auf der Innenseite des Ringelements 75 stehen federnde Kontaktelemente 78 ab, die in Einbaustellung des Ringelements 75 in elektrisch leitenden Kontakt mit dem Ventilkörper 10 kommen. Ansonsten sind die Elektroden 46 in gleicher Weise drahtförmigen Elektroden 48 wie in Figur 1 bis 7 gezeigt zugeordnet. Zur Verbesserung der Befestigungsverhältnisse kann die Ringnut 77 statt am Ende des Isolierkörpers 4 auch auf einem separat mit der Stirnseite des Haltekörpers 1 verbundenen Isolierkörper 104 vorgesehen sein. Dieser überragt das Ende des wie in Figuren 1 bis 8 ausgestalteten Isolierkörpers 4 zur Brennraumseite hin. Die Ringnut 77 kann auch durch Stufung des Isolierkörpers 104 zwischen brennraumseitiger Stirnseite des Isolierkörpers 104 und einer Schulter des Isolierkörpers 104 gebildet sein.A final embodiment of the attachment of the wire-shaped electrodes 46, 48 is finally shown in FIGS. 8 and 9. This embodiment again has one or more electrodes 46 that can be replaced together. As in the previous exemplary embodiments, these electrodes 46 are cranked and fastened to a ring element 75. This has on its outer circumference a spring 76 which springs open in the circumferential direction and by means of which the ring element 75 can be snapped into an annular groove 77 on the inside of the insulating body 4. On the inside of the ring element 75 project resilient contact elements 78, which come in the installed position of the ring element 75 in electrically conductive contact with the valve body 10. Otherwise, the electrodes 46 are assigned in the same way to wire-shaped electrodes 48 as shown in FIGS. 1 to 7. To improve the fastening conditions, the annular groove 77 can also be provided on an insulating body 104 which is connected separately to the end face of the holding body 1 instead of at the end of the insulating body 4. This extends beyond the end of the insulating body 4, as shown in FIGS. 1 to 8, towards the combustion chamber side. The ring groove 77 can also be formed by grading the insulating body 104 between the combustion chamber end face of the insulating body 104 and a shoulder of the insulating body 104.

Auch mit dieser Ausgestaltung lassen sich die vorerwähnten Vorteile eines Kraftstoffeinspritzventils in Kombination mit einer Zündeinrichtung verwirklichen.The above-mentioned advantages of a fuel injection valve in combination with an ignition device can also be realized with this configuration.

Claims (12)

  1. Fuel injection valve with a tubular valve element (10) at whose one end which projects into a combustion space of an internal combustion engine a fuel outlet with at least one injection opening (12) which is controlled by a valve closing element (15) is provided, out of which injection opening (12) a jet of injected fuel emerges when the valve closing element (15) lifts off from a seat face (16) of the valve element (10) in the direction of the combustion space, which jet of injected fuel is formed as an umbrella jet which extends into the combustion space widening in a diffuser-like manner, having an electrically insulating element (4) in which insulating element the valve element (10) is held, said valve element (10) itself being attached in a securing element (1) which consists of electrically conductive material and by means of which the fuel injection valve can be connected to the internal combustion engine and whose end section which is adjacent to the one end of the valve element (10) projecting out of the insulating element (4) has at least one first electrode (48) which is connected to the one pole of a voltage source and whose other pole can be connected to the valve element (10) as a counterpole in order to form a spark gap (49) which lies in the vicinity of the fuel emerging at the injection opening (12), at a radial distance from the longitudinal axis of the valve element (10), characterized in that at least one second electrode (46) is provided which, like the first electrode (48) is in the form of wire, the second electrode (46) is arranged on an interchangeable ring element (45, 45', 45''; 75) which can be brought into releasable electrical contact with the valve element (10), and the electrodes (48, 46) are arranged in the region of the spark gap at a constant radial distance from the longitudinal axis of the valve element (4) in the injection area of the jet of injected fuel.
  2. Fuel injection valve according to Claim 1, characterized in that the annular element is constructed as a sleeve (45') and between the latter and the valve element (10) a sprung ring (57) is provided which can be engaged in each case in a recess (66, 58) on the valve element and/or sleeve.
  3. Fuel injection valve according to Claim 1, characterized in that the ring element is a sleeve which has sprung ends with inwardly projecting locking elements which can be each snapped into a corresponding recess on the valve element (10').
  4. Fuel injection valve according to Claim 1, characterized in that the ring element is a sleeve (45'') with at least one inwardly punched-out spring tongue (62) which can be snapped into a corresponding recess (63) on the valve element (10'').
  5. Fuel injection valve according to Claim 4, characterized in that the free end of the spring tongue (62) points towards the injection opening (42) and the recess (63) of the relaxed form of the spring tongue is adapted for securing the sleeve (45'') both axially and radially.
  6. Fuel injection valve according to Claim 1, characterized in that the ring element (67, 75) is connected on the outer circumference to a sprung ring (76) which can be snapped into an internal annular groove (77) on the insulating element (4, 104).
  7. Fuel injection valve according to one of the preceding claims, characterized in that the insulating element (4) surrounds in an annular shape part of the end, projecting out of it, of the valve element (10) at a distance which increases towards the injection opening (12) of the valve element (10), and is of cylindrical construction at the outer circumferance and is surrounded there over part of its length by the securing element (1) at a substantially smaller distance than the aforesaid increasing distance.
  8. Fuel injection valve according to Claim 7, characterized in that the insulating element (4) projects over the securing element (1) to the side of the injection opening (12).
  9. Fuel injection valve according to Claim 8, characterized in that the injection opening (12) projects at least 3 mm deeper into the combustion space than the insulating element (4).
  10. Fuel injection valve according to one of the preceding claims, characterized in that at least part of the wire-shaped electrodes (46, 47, 48) consists of platinum or platinum coating.
  11. Fuel injection valve according to one of the preceding claims, characterized in that the fuel injection valve has an outwardly opening valve closing element (15) whose sealing face (17) is constructed to taper inwards in a conical shape and comes to rest on a corresponding sealing face (16) on the valve element (10) under the action of the closing force of a sprung element (26).
  12. Fuel injection valve according to Claim 11, characterized in that the valve closing element (15) consists of a head (14) which has the conical sealing face (17) and is located on the combustion space side with respect to the valve seat (16), and of an elongated, wire-shaped shaft (20) which is mounted in the fuel injection valve.
EP88113541A 1987-09-17 1988-08-20 Fuel injection valve Expired - Lifetime EP0307651B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3731211 1987-09-17
DE19873731211 DE3731211A1 (en) 1987-09-17 1987-09-17 FUEL INJECTION VALVE

Publications (3)

Publication Number Publication Date
EP0307651A2 EP0307651A2 (en) 1989-03-22
EP0307651A3 EP0307651A3 (en) 1990-03-14
EP0307651B1 true EP0307651B1 (en) 1995-07-19

Family

ID=6336206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113541A Expired - Lifetime EP0307651B1 (en) 1987-09-17 1988-08-20 Fuel injection valve

Country Status (5)

Country Link
US (1) US4967708A (en)
EP (1) EP0307651B1 (en)
JP (1) JPH01104961A (en)
BR (1) BR8804783A (en)
DE (2) DE3731211A1 (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
US20030012985A1 (en) 1998-08-03 2003-01-16 Mcalister Roy E. Pressure energy conversion systems
GB2240587A (en) * 1990-02-03 1991-08-07 Lucas Ind Plc I.c. engine fuel injection nozzle
JPH0719142A (en) * 1993-06-30 1995-01-20 Ngk Spark Plug Co Ltd Spark plug with fuel injection valve
US5377633A (en) * 1993-07-12 1995-01-03 Siemens Automotive L.P. Railplug direct injector/ignitor assembly
DE69410582T2 (en) * 1993-11-29 1998-11-26 Toyota Motor Co Ltd Fuel injection device with integrated spark plug for engine with direct injection
SE502604C2 (en) * 1994-10-27 1995-11-20 Saab Automobile Fuel injection device with spark plug function
US5648188A (en) * 1995-06-07 1997-07-15 International Business Machines Corporation Real time alignment system for a projection electron beam lithographic system
ATE237752T1 (en) * 1996-07-08 2003-05-15 Sven Corneer DEVICE FOR INTEGRATED INJECTION AND IGNITION IN AN INTERNAL COMBUSTION ENGINE
DE19828848A1 (en) * 1998-06-27 1999-12-30 Bosch Gmbh Robert Fuel injection valve with integrated spark plug for direct injection of fuel into combustion chamber of IC engine and its ignition
SE9902018L (en) * 1999-06-01 2000-12-02 Saab Automobile Arrangements for fuel injection and ignition of fuel-air mixture in an internal combustion engine cylinder
TW494182B (en) * 1999-10-18 2002-07-11 Orbital Eng Pty Direct injection of fuels in internal combustion engines
AUPQ588500A0 (en) * 2000-02-28 2000-03-23 Orbital Engine Company (Australia) Proprietary Limited Combined fuel injection and ignition means
AU2001268256A1 (en) * 2000-06-08 2002-01-02 Knite, Inc. Combustion enhancement system and method
DE10214167A1 (en) * 2002-03-28 2003-10-09 Bosch Gmbh Robert The fuel injector-spark plug combination
DE102004024535A1 (en) * 2004-05-18 2005-12-15 Robert Bosch Gmbh Fuel injection valve with integrated ignition device
DE102006029210A1 (en) * 2006-06-26 2007-12-27 Ford Global Technologies, LLC, Dearborn Fuel injector for e.g. diesel engine, has electrode pairs arranged such that spark gap possesses conical fuel injection beam that is left from nozzle, where spark gap is formed during extraneous ignition
EP1942264B1 (en) 2007-01-02 2010-10-20 Ford Global Technologies, LLC Cylinder head for internal combustion engine and method to manufacture such cylinder head
DE102007024878A1 (en) 2007-05-29 2008-12-04 GM Global Technology Operations, Inc., Detroit Spark plug and cylinder head for it
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
WO2011025512A1 (en) 2009-08-27 2011-03-03 Mcallister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
WO2011071608A2 (en) 2009-12-07 2011-06-16 Mcalister Roy E Adaptive control system for fuel injectors and igniters
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8561598B2 (en) 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8069836B2 (en) * 2009-03-11 2011-12-06 Point-Man Aeronautics, Llc Fuel injection stream parallel opposed multiple electrode spark gap for fuel injector
JP5718921B2 (en) 2009-08-27 2015-05-13 マクアリスター テクノロジーズ エルエルシー Configuration of fuel charge in a combustion chamber with multiple drivers and / or ionization control
SG181526A1 (en) 2009-12-07 2012-07-30 Mcalister Technologies Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
EP2534347B1 (en) 2010-02-13 2016-05-04 McAlister, Roy Edward Methods and systems for adaptively cooling combustion chambers in engines
EP2534364A4 (en) 2010-02-13 2014-04-23 Mcalister Technologies Llc Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
WO2012112615A1 (en) 2011-02-14 2012-08-23 Mcalister Technologies, Llc Torque multiplier engines
US8683988B2 (en) 2011-08-12 2014-04-01 Mcalister Technologies, Llc Systems and methods for improved engine cooling and energy generation
US8919377B2 (en) 2011-08-12 2014-12-30 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8851047B2 (en) 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US8838367B1 (en) 2013-03-12 2014-09-16 Mcalister Technologies, Llc Rotational sensor and controller
US9377105B2 (en) 2013-03-12 2016-06-28 Mcalister Technologies, Llc Insert kits for multi-stage compressors and associated systems, processes and methods
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
WO2014144581A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Internal combustion engine and associated systems and methods
US9255560B2 (en) 2013-03-15 2016-02-09 Mcalister Technologies, Llc Regenerative intensifier and associated systems and methods
GB201521184D0 (en) * 2015-12-01 2016-01-13 Delphi Internat Operations Luxembourg S À R L Gaseous fuel injectors
US10554304B2 (en) 2016-09-29 2020-02-04 Intel Corporation Mechanism for MIPI communication using optical interface

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1310970A (en) * 1919-07-22 stsottd
US642167A (en) * 1899-07-07 1900-01-30 Frederick Richard Simms Electric-sparking plug for explosive-engines.
US1596240A (en) * 1924-09-08 1926-08-17 Myron J Dikeman Ignition flash plug
FR640927A (en) * 1927-04-28 1928-07-24 Method and device for the use of heavy liquid fuels in engines and their application to the conversion of gasoline engines
US2008803A (en) * 1932-04-18 1935-07-23 Stephan Engineering Corp Fuel atomizing and igniting means
US2255203A (en) * 1940-02-28 1941-09-09 Wright Aeronautical Corp Fuel injection spark plug
US2459286A (en) * 1944-05-27 1949-01-18 Gen Motors Corp Combination spark plug and fuel injector
GB580477A (en) * 1944-05-27 1946-09-09 Gen Motors Corp Improvements in and relating to spark plugs for internal combustion engines
DE809273C (en) * 1947-07-23 1951-07-26 Smitsvonk Nv Spark plug with fuel injector
US3173409A (en) * 1961-10-23 1965-03-16 Glenn B Warren Internal combustion engine operating on stratified combustion principle and combined fuel injection and igniting device for use therewith
US3204139A (en) * 1963-02-04 1965-08-31 Gen Motors Corp Means for introducing a pressurized fluid into an internal combustion engine combustion chamber through the spark plug opening
DE1476299A1 (en) * 1965-07-10 1970-05-06 Bosch Gmbh Robert Threaded tube with head screw and sealing washer
DE1526717A1 (en) * 1966-09-06 1970-02-26 Maschf Augsburg Nuernberg Ag Injection nozzle for internal combustion engines
DE2119690B2 (en) * 1971-04-22 1979-01-04 Agfa-Gevaert Ag, 5090 Leverkusen Film cassette
DE2549931A1 (en) * 1975-11-07 1977-05-18 Bosch Gmbh Robert SPARK PLUG ELECTRODE
US4095580A (en) * 1976-10-22 1978-06-20 The United States Of America As Represented By The United States Department Of Energy Pulse-actuated fuel-injection spark plug
JPS60135662A (en) * 1983-12-22 1985-07-19 Nissan Motor Co Ltd Ignition device for internal-combustion engine
US4736718A (en) * 1987-03-19 1988-04-12 Linder Henry C Combustion control system for internal combustion engines

Also Published As

Publication number Publication date
DE3731211A1 (en) 1989-03-30
BR8804783A (en) 1989-04-25
US4967708A (en) 1990-11-06
EP0307651A2 (en) 1989-03-22
DE3854174D1 (en) 1995-08-24
EP0307651A3 (en) 1990-03-14
DE3731211C2 (en) 1990-12-13
JPH01104961A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
EP0307651B1 (en) Fuel injection valve
EP0102507B1 (en) Apparatus for injecting fuel into the combustion chambers of internal-combustion engines of the self-igniting kind
EP1456530B1 (en) Fuel injection valve spark plug combination
EP1143126B1 (en) Precombustion chamber with spark plug and additional fuel for igniting very lean mixtures, especially for gas engines
DE102018130539B4 (en) Pre-chamber spark plug assembly
DE112015000466B4 (en) IGNITER AND METHOD FOR GENERATION OF PLASMA DISCHARGE RADIATION
DE3309256A1 (en) DEVICE FOR STARTING A DIESEL ENGINE WITH PLASMA SPARK PLUGS
EP1456529A1 (en) Combined fuel injection valve/ignition plug
DE2746361A1 (en) PULSE ACTUATED FUEL INJECTION SPARK PLUG
DE2611057A1 (en) COMBUSTION MACHINE
DE3136852A1 (en) FLAME GLOW CANDLE FOR INTERNAL COMBUSTION ENGINES
DE112021002882T5 (en) ENGINE WITH MULTIPLE FUEL INJECTORS OUTSIDE A PRE-CHAMBER
DE69720929T2 (en) DEVICE FOR INTEGRATED INJECTION AND IGNITION IN AN INTERNAL COMBUSTION ENGINE
DE19645385C2 (en) Arrangement of a spark plug to form a spark that jumps between two electrodes in the cylinder of a direct-injection Otto engine
DE10340043B4 (en) spark plug
DE10117641A1 (en) glow plug
DE2758734A1 (en) METHOD FOR REDUCING THE GENERATION OF POLLUTANTS BY AN INDUSTRIAL ENGINE AND ITS IMPLEMENTATION
EP0448830A2 (en) Flame glowplug for an injected air compressing combustion engine
EP0888655A1 (en) Sparking plug connector for an internal combustion engine
DE3407951C2 (en)
DE3833803A1 (en) DEVICE FOR INJECTING FUEL INTO THE COMBUSTION CHAMBER OF AN INTERNAL COMBUSTION ENGINE
DE19627524A1 (en) Sparking plug for use on fuel-injected IC engines
EP0294586A2 (en) Fuel injection nozzle for internal combustion engines
DE10153629B4 (en) Method of injecting fuel
EP1006630B1 (en) Combustion chamber for vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900730

17Q First examination report despatched

Effective date: 19910111

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3854174

Country of ref document: DE

Date of ref document: 19950824

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950922

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020805

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020823

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030925

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO