EP0303035A1 - Cold-rolled strip electroplated with a nickel sheet with a great diffusion depth, and process for its manufacture - Google Patents

Cold-rolled strip electroplated with a nickel sheet with a great diffusion depth, and process for its manufacture Download PDF

Info

Publication number
EP0303035A1
EP0303035A1 EP88110266A EP88110266A EP0303035A1 EP 0303035 A1 EP0303035 A1 EP 0303035A1 EP 88110266 A EP88110266 A EP 88110266A EP 88110266 A EP88110266 A EP 88110266A EP 0303035 A1 EP0303035 A1 EP 0303035A1
Authority
EP
European Patent Office
Prior art keywords
cold
thickness
nickel
cold strip
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88110266A
Other languages
German (de)
French (fr)
Other versions
EP0303035B1 (en
Inventor
Dieter Dr.-Ing. Junkers
Ferdinand Schmidt
Nikolaus Dr.-Ing. Ferenczy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hille and Muller GmbH
Original Assignee
Hille and Muller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hille and Muller GmbH filed Critical Hille and Muller GmbH
Priority to AT88110266T priority Critical patent/ATE66865T1/en
Publication of EP0303035A1 publication Critical patent/EP0303035A1/en
Application granted granted Critical
Publication of EP0303035B1 publication Critical patent/EP0303035B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/941Solid state alloying, e.g. diffusion, to disappearance of an original layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component

Definitions

  • the invention relates to a cold strip with an electrolytically applied nickel coating.
  • Cold strips of this type are used in a wide variety of fields of application where modern manufacturing processes place high demands on the material in terms of mechanical properties, surface, processability and the like, which can only be met by cold-rolled products.
  • Cold strip according to DIN 1624 has smooth, dense and glossy or evenly slightly roughened surfaces after cold forming by means of the correspondingly prepared rollers.
  • Cold rolled strip is free of pores and cracks in the surface types RP and RPG, so that it can be surface-finished, in particular nickel-plated, without any problems.
  • a deep-drawn cold strip with an electrolytically applied nickel coating is therefore known.
  • thinner galvanic coatings are generally used in the field of coil plating than is usual for piece plating. It can be achieved through suitable measures, such as shielding the anode, flooding, inserting perforated plates in front of the anodes bar that the deposition takes place in a uniform layer thickness and layer thickness differences are reduced to a minimum.
  • suitable measures such as shielding the anode, flooding, inserting perforated plates in front of the anodes bar that the deposition takes place in a uniform layer thickness and layer thickness differences are reduced to a minimum.
  • the thinner layers have a lower corrosion resistance than thicker galvanic layers.
  • the cold-rolled strip or cold-rolled and galvanized strips has a "tendency to stick" when annealed in the closed coil. Such glue points are preferably created during the cold rolling of low-carbon cold strip, the surface of which has a minimal micro-roughness.
  • the object of the invention is to develop a galvanized cold strip and a method for its production which avoid none of the disadvantages mentioned above Tends to stick, is easy to form, has high diffusion depths in the coating and has favorable corrosion behavior, its electrochemical behavior is improved and it can be produced economically.
  • the object is achieved in that the nickel layer has a thickness of 1 to 6 microns and carries an electrolytically applied cobalt layer of a thickness of 0.01 to 1.0 microns, the cold strip after coating with a temperature between 580 ° C. and 710 ° C is heat treated.
  • Such a coated and heat-treated cold strip surprisingly no longer tends to stick and shows a significantly more favorable corrosion behavior than the only nickel-coated strips which have the same total layer thickness.
  • the electrochemical behavior of the cold strip according to the invention has values which are considerably more favorable than the only nickel-plated strips.
  • Nickel coating, cobalt coating and heat treatment complement each other in a combinatorial manner to achieve an overall effect that goes beyond the sum effect, since a composite material is created which can be economically achieved with high-quality properties.
  • Thermal treatment results in a significantly higher diffusion rate, which means that the quality of the formability of the composite system is improved and the penetration of the coating metals into the base material by diffusion shows a depth that is several times the coating thickness (including the nickel layer).
  • the extremely thin cobalt coating a high technical and economic overall success is achieved.
  • DE-OS 1 421 999 describes the cobalt coating of magnetic tapes which are made of plastic.
  • DE-OS 2 048 209 requests patent protection for the production of shiny co-layers with organic additives, preferably in low current density ranges ( ⁇ 0.5 A / dm2).
  • DE-OS 2 060 120 describes the co-deposition from iodide-containing electrolytes.
  • DE-OS 2 134 457 mentions four additives which enable co-deposition even in the presence of Zn impurities.
  • DE-OS 2 417 952 describes co-deposition (mainly co-alloys) with additions of mannitol, sorbitol etc.
  • DE-PS 25 22 130 patented the deposition of satin matt Ni-Co alloys with the help of polysiloxane-polyoxyalkylene block polymers.
  • DE-OS 2 642 666 describes the high-gloss Co and Ni-Co alloy deposition in order to save Ni.
  • DE-OS 2 718 285 has similar objectives as DE-OS 2 642 666.
  • DE-OS 3 112 919 describes the use of Co, Co alloy layers for better adhesion of the subsequent aluminum deposition.
  • the base material is a low-carbon steel strip, which is nickel layer of 1.5 to 5 ⁇ m in thickness and a cobalt layer of 0.1 to 0.5 ⁇ m in thickness, the final heat treatment being carried out at a temperature between 600 ° C and 710 ° C depending on the steel grade.
  • the thickness of the applied nickel layer is preferably 2 ⁇ m and the thickness of the applied cobalt layer is 0.1 ⁇ m.
  • the base material of the cold strip is expediently characterized by a ferritic structure with embedded cementite with average grain sizes between 17.0 and 12.0 ⁇ m, the steel being 0.001 to 0.70% C, 0.170 to 0.350% Mn, 0.005 to 0.020% P, 0.005 to 0.020% S, 0.030 to 0.060% Al, 0.0015 to 0.0070% N, 0.003 to 0.006% B or instead of boron or additionally 0.005 to 0.15% Ti, balance iron with the usual impurities. (All data in% by weight).
  • the base metal preferably has a steel analysis C 0.030 - 0.060% Mn 0.200 - 0.250% P 0.005 - 0.020% S 0.005 - 0.015% Al 0.030 - 0.060% N 0.0015 - 0.0070% Ti 0.005 - 0.015%, Remainder iron with the usual accompanying elements on. After deep drawing, smooth surfaces are achieved due to the very fine grain diameter.
  • the composition of the steel is particularly important in order to achieve the globular shape of the grain and the grain size specified above over the entire ring length in the cold strip, even in the start and end areas.
  • the process according to the invention for producing the cold strip described above is characterized in that a hot strip with a thickness of 1.8 to 2.8 mm is used as the starting material is used, the hot strip is cold rolled with or without intermediate annealing with such coordinated rolling degrees that a relative tip height of maximum 3% with a final thickness after cold rolling between 0.10 and 0.70 mm is reached, that the cold strip is then electrolytically in the alkaline degreasing bath at a temperature of 50 to 70 ° C, a current density of 5 to 60 A / dm2, degreased for 5 to 30 seconds with or without polarity reversal, that after a rinsing process in 50 to 20% by weight sulfuric acid 3 to 8 seconds long is picked up, then electrolytically nickel-plated at a temperature of 50 to 80 ° C, at a current density of 5 to 70 A / dm2 and at a pH value of 3.5 to 3.8, that after a rinsing process thereupon electrolytically a co
  • the cold strip obtained in this way has no tendency to stick, is distinguished by a current flow which is perceptible by chronoamperometric measurements and is of a considerably higher magnitude than is known, and is extremely economical due to the thin coating with expensive cobalt.
  • nickel and cobalt penetrate deeply into the base material through diffusion.
  • the following electrolyte compositions can advantageously be used for the electrolytic deposition of nickel and cobalt: Nickel deposition Electrolyte composition NiSO4 ⁇ 6H2O 150-300 g / l Cl (as NiCl2 ⁇ 6H2O) 15-30 g / l Boric acid 40-42 g / l Cobalt deposition Electrolyte composition CoSO4.7H2O 300-350 g / l CoCl2 ⁇ 6H2O 40 - 60 g / l NaCl 15-25 g / l Boric acid 40-42 g / l.
  • Composition A Composition C C. 0.020 - 0.070 % By weight C. 0.020 % By weight Mn 0.170 - 0.350 % By weight Mn 0.170 % By weight P 0.005 - 0.020 % By weight P 0.005 % By weight S 0.005 - 0.020 % By weight S 0.005 % By weight Al 0.030 - 0.060 % By weight Al 0.030 % By weight B 0.003 - 0.006 % By weight N ⁇ 0.0030 % By weight N ⁇ 0.0070 % By weight Composition B Composition D C. 0.030 - 0.060 % By weight C.
  • Texture Ferritic structure with embedded cementite.
  • the grain size is: 17.0 - 12.0 ⁇ m (expressed as the mean grain size), in the present case as globular grains, in order to achieve smooth surfaces after deep-drawing due to the very fine grain diameter.
  • composition of the steel is of crucial importance in order to achieve this grain shape and grain size over the entire length of the ring, also in the start and end areas.
  • the production of the finished steel strips according to the invention is based on 1.8-2.8 mm thick hot strips.
  • the hot strip is cold rolled with or without intermediate annealing, with coordinated rolling degrees, to a relative tip height of max. To reach 3%.
  • the final thickness after cold rolling is 0.10 - 0.70 mm.
  • the refined material is annealed with a defined protective gas (with up to 100% H2) in order to achieve a stain-free surface.
  • the temperature is 580 - 710 ° C depending on the steel type and applied galvanic layer thickness.
  • the measurement is carried out after preactivation, which removes the natural oxide layer from the surface immediately before the chronoamperometric measurement.
  • the pre-activation voltage applied was approximately -550 mV.
  • the current transfer for the working electrodes constructed according to the invention was 80-80 mA. Due to the rapid formation of oxide, the current decreased very quickly and tends to asymtotically after 3 minutes to 0 mA. With the only nickel-plated working electrodes, the near O value (current) was only reached after 15-20 minutes.
  • the electrode potential of the cold strip produced in accordance with the invention in alkaline electrolyte remains constant at least twice as long as the electrode consisting only of nickel-plated cold strip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To develop a cold-rolled strip and a process for the manufacture thereof, which strip shows a reduced tendency to stick, is readily formable, has great diffusion depths of the coating and advantageous corrosion behaviour, has improved electrochemical properties and can be produced economically, the invention proposes that the nickel layer has a thickness from 1  mu m to 6  mu m and carries an electrolytically applied cobalt layer of thickness from 0.01  mu m to 1.0  mu m, the cold-rolled strip, after coating, having been heat-treated at a temperature of between 580 DEG C and 710 DEG C.

Description

Die Erfindung betrifft ein Kaltband mit elektrolytisch aufge­brachter Nickelbeschichtung. Derartige Kaltbänder werden auf den verschiedensten Anwendungsgebieten eingesetzt, wo neuzeitliche Fertigungsverfahren an den Werkstoff in Bezug auf mechanische Eigenschaften, Oberfläche, Verarbeitbarkeit und dgl. hohe An­sprüche stellen, die nur von kaltgewalzten Erzeugnissen zu er­füllen sind. Kaltband gemäß DIN 1624 hat nach der Kaltverformung durch entsprechende vorbereitete Walzen glatte, dichte und glän­zende oder gleichmäßig schwach aufgerauhte Oberflächen. Kaltband ist in der Oberflächenart RP und RPG poren- und rissefrei, so daß es ohne Probleme oberflächenveredelt, insbesondere vernickelt werden kann. Ein tiefziehfähiges Kaltband mit elektrolytisch aufgebrachter Nickelbeschichtung ist daher bekannt.The invention relates to a cold strip with an electrolytically applied nickel coating. Cold strips of this type are used in a wide variety of fields of application where modern manufacturing processes place high demands on the material in terms of mechanical properties, surface, processability and the like, which can only be met by cold-rolled products. Cold strip according to DIN 1624 has smooth, dense and glossy or evenly slightly roughened surfaces after cold forming by means of the correspondingly prepared rollers. Cold rolled strip is free of pores and cracks in the surface types RP and RPG, so that it can be surface-finished, in particular nickel-plated, without any problems. A deep-drawn cold strip with an electrolytically applied nickel coating is therefore known.

Aus wirtschaftlichen Gründen werden im Bereich der Bandgalvani­sierung grundsätzlich dünnere galvanische Beschichtungen ange­wendet, als sie bei der Stückgalvanisierung üblich sind. Durch geeignete Maßnahmen, wie Abschirmungen der Anode, Flutung, Ein­setzen von perforierten Platten vor den Anoden ist es erreich­ bar, daß die Abscheidungen in gleichmäßiger Schichtstärke erfol­gen und Schichtstärkenunterschiede auf ein Minimum reduziert werden. Nachteilig ist aber, daß die dünneren Schichten eine ge­ringere Korrosionsbeständigkeit haben als dickere galvanische Schichten. Darüber hinaus ist nachteilig, daß das kaltgewalzte Band oder kaltgewalzte und galvanisierte Bänder beim Glühen im geschlossenen Coil eine "Klebeneigung" hat. Bevorzugt entstehen solche Klebestellen beim Kaltwalzen von kohlenstoffarmem Kalt­band, dessen Oberfläche eine minimale Mikrorauhigkeit aufweist. Nach dem Aufwickeln und der Wärmebehandlung bilden sich spora­disch oder großflächig und kontinuierlich Klebestellen, wo die aufeinanderliegenden Flächen hartnäckig und schwer trennbar an­einander haften. Beim Abwickeln von Abhaspel erfolgt ein Tren­nen/Aufreißen der Klebestellen, wodurch die hochwertige Ober­fläche beschädigt oder zerstört wird. Außerdem können durch die Klebestellen, neben oder Ausschußbildung, erhebliche Betriebsstö­rungen entstehen.For economic reasons, thinner galvanic coatings are generally used in the field of coil plating than is usual for piece plating. It can be achieved through suitable measures, such as shielding the anode, flooding, inserting perforated plates in front of the anodes bar that the deposition takes place in a uniform layer thickness and layer thickness differences are reduced to a minimum. However, it is disadvantageous that the thinner layers have a lower corrosion resistance than thicker galvanic layers. It is also disadvantageous that the cold-rolled strip or cold-rolled and galvanized strips has a "tendency to stick" when annealed in the closed coil. Such glue points are preferably created during the cold rolling of low-carbon cold strip, the surface of which has a minimal micro-roughness. After winding and heat treatment, glue spots are formed sporadically or over a large area and continuously, where the superimposed surfaces adhere to one another stubbornly and difficult to separate. When uncoiling is unwound, the adhesive points are separated / torn open, as a result of which the high-quality surface is damaged or destroyed. In addition, considerable glitches can occur due to the glue points, in addition to or rejects.

Im Rahmen der Herstellung von Kaltband ist es ferner bekannt, die galvanisch vernickelten Bänder vor der Weiterverarbeitung einer Wärmebehandlung zu unterziehen, um die Umformbarkeit des Verbundsystems Band plus Beschichtung zu erhöhen. Bei dieser thermischen Behandlung diffundiert das abgeschiedene Nickel in das Grundmetall hinein. Die Diffusionsgeschwindigkeit ist nach­teiligerweise relativ niedrig und das Verfahren ist zeitraubend und teuer, wenn gewisse Diffusionstiefen und die Bildung von be­stimmten Mischkristallen angestrebt werden.In the course of the production of cold strip, it is also known to subject the galvanized nickel-plated strips to a heat treatment before further processing, in order to increase the formability of the strip and coating composite system. During this thermal treatment, the deposited nickel diffuses into the base metal. The diffusion rate is disadvantageously relatively slow and the process is time-consuming and expensive if certain diffusion depths and the formation of certain mixed crystals are aimed for.

Der Erfindung liegt die Aufgabe zugrunde, unter Meidung der oben genannten Nachteile ein galvanisiertes Kaltband und ein Verfahren zu seiner Herstellung zu entwickeln, welches keine Klebeneigung besitzt, gut umformbar ist, hohe Diffusionstiefen der Beschichtung und günstiges Korrosionsverhalten aufweist, in seinem elektrochemischen Verhalten verbessert ist und wirtschaftlich herstellbar ist.The object of the invention is to develop a galvanized cold strip and a method for its production which avoid none of the disadvantages mentioned above Tends to stick, is easy to form, has high diffusion depths in the coating and has favorable corrosion behavior, its electrochemical behavior is improved and it can be produced economically.

Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß die Nickel­schicht eine Stärke von 1 bis 6 µm aufweist und eine elektroly­tisch aufgebrachte Cobaltschicht einer Stärke von 0,01 bis 1,0 µm trägt, wobei das Kaltband abschließend nach der Beschichtung mit einer Temperatur zwischen 580°C und 710°C wärmebehandelt ist. Ein derartig beschichtetes und wärmebehandeltes Kaltband neigt überraschenderweise nicht mehr zum Kleben und zeigt ein wesentlich günstigeres Korrosionsverhalten als die nur ver­nickelten Bändern, die die gleiche Gesamtschichtstärke aufwei­sen. Das elektrochemische Verhalten des erfindungsgemäßen Kalt­bandes weist hinsichtlich Aktivität, Polarisierbarkeit und Elek­trodenpotential wesentlich günstigere Werte auf als die nur ver­nickelten Bänder. Nickelbeschichtung, Cobaltbeschichtung und Wärmebehandlung ergänzen sich kombinatorisch zur Erzielung eines über die Summenwirkung hinausgehenden Gesamteffekts, da ein Ver­bundmaterial geschaffen wird, welches bei qualitativ hochwerti­gen Eigenschaften wirtschaftlich erzielbar ist. Bei der ther­mischen Behandlung entsteht eine wesentlich höhere Diffusionsge­schwindigkeit, wodurch qualitativ bessere Umformbarkeit des Ver­bundsystems wirtschaftlicher erreicht wird und wobei das Ein­dringen der Überzugsmetalle in das Grundmaterial durch Diffusion eine Tiefe zeigt, die das Mehrfache der Überzugsdicke (ein­schließlich Nickel-Schicht) ausmacht. Trotz der außerordentlich dünnen Cobaltbeschichtung wird ein hoher technischer und wirt­schaftlicher Gesamterfolg erzielt.The object is achieved in that the nickel layer has a thickness of 1 to 6 microns and carries an electrolytically applied cobalt layer of a thickness of 0.01 to 1.0 microns, the cold strip after coating with a temperature between 580 ° C. and 710 ° C is heat treated. Such a coated and heat-treated cold strip surprisingly no longer tends to stick and shows a significantly more favorable corrosion behavior than the only nickel-coated strips which have the same total layer thickness. In terms of activity, polarizability and electrode potential, the electrochemical behavior of the cold strip according to the invention has values which are considerably more favorable than the only nickel-plated strips. Nickel coating, cobalt coating and heat treatment complement each other in a combinatorial manner to achieve an overall effect that goes beyond the sum effect, since a composite material is created which can be economically achieved with high-quality properties. Thermal treatment results in a significantly higher diffusion rate, which means that the quality of the formability of the composite system is improved and the penetration of the coating metals into the base material by diffusion shows a depth that is several times the coating thickness (including the nickel layer). Despite the extremely thin cobalt coating, a high technical and economic overall success is achieved.

Die Patentliteratur beschreibt als bekannt die Cobaltabscheidung für verschiedene Aufgaben mit unterschiedlichen Verfahrens­ gängen, jedoch enthält sie keine Lehre, die gleiche Zielsetzung und Lösungswege, wie die vorliegende Erfindung beschreibt.As known, the patent literature describes the cobalt deposition for different tasks with different processes courses, however, it does not contain any teaching, the same objective and solutions as the present invention describes.

Die DE-OS 1 421 999 beschreibt die Cobaltbeschichtung von Magnetbändern, die aus Kunststoff bestehen.DE-OS 1 421 999 describes the cobalt coating of magnetic tapes which are made of plastic.

Die DE-OS 2 048 209 begehrt Patentschutz für die Herstellung von glänzenden Co-Schichten mit organischen Zusätzen, vorzugsweise in niedrigen Stromdichtenbereichen (< 0,5 A/dm²).DE-OS 2 048 209 requests patent protection for the production of shiny co-layers with organic additives, preferably in low current density ranges (<0.5 A / dm²).

Die DE-OS 2 060 120 beschreibt die Co-Abscheidung aus jodidhal­tigen Elektrolyten.DE-OS 2 060 120 describes the co-deposition from iodide-containing electrolytes.

Die DE-OS 2 134 457 erwähnt vier Zusätze, die die Co-Abscheidung auch in Anwesenheit von Zn-Verunreinigungen ermöglichen.DE-OS 2 134 457 mentions four additives which enable co-deposition even in the presence of Zn impurities.

Die DE-OS 2 417 952 beschreibt die Co-Abscheidung (hauptsächlich Co-Legierungen) mit Zusätzen von Mannit, Sorbit etc.DE-OS 2 417 952 describes co-deposition (mainly co-alloys) with additions of mannitol, sorbitol etc.

Die DE-PS 25 22 130 patentiert die Abscheidung von seidenmatten Ni-Co-Legierungen mit Hilfe von Polysiloxan-Polyoxialkylen-­Blockpolymere.DE-PS 25 22 130 patented the deposition of satin matt Ni-Co alloys with the help of polysiloxane-polyoxyalkylene block polymers.

Die DE-OS 2 642 666 beschreibt die hochglänzende Co- und Ni-Co-­Legierungsabscheidung, um Ni zu sparen.DE-OS 2 642 666 describes the high-gloss Co and Ni-Co alloy deposition in order to save Ni.

Die DE-OS 2 718 285 hat ähnliche Zielsetzung wie die DE-OS 2 642 666.DE-OS 2 718 285 has similar objectives as DE-OS 2 642 666.

Die DE-OS 3 112 919 beschreibt die Anwendung von Co-, Co-Legie­rungsschichten für die bessere Haftung der darauf folgenden Alu­minium-Abscheidung.DE-OS 3 112 919 describes the use of Co, Co alloy layers for better adhesion of the subsequent aluminum deposition.

In einer zweckmäßigen Ausgestaltung der Erfindung ist das Grund­material ein kohlenstoffarmes Stahlband, welches eine Nickel­ schicht von 1,5 bis 5 µm Stärke und eine Cobaltschicht von 0,1 bis 0,5 µm Stärke trägt, wobei die abschließende Wärmebehandlung bei einer Temperatur zwischen 600°C und je nach Stahlsorte 710°C durchgeführt ist. Vorzugsweise beträgt die Stärke der aufgetragenen Nickelschicht 2 µm und die Stärke der aufgetragenen Cobaltschicht 0,1 µm.In an expedient embodiment of the invention, the base material is a low-carbon steel strip, which is nickel layer of 1.5 to 5 µm in thickness and a cobalt layer of 0.1 to 0.5 µm in thickness, the final heat treatment being carried out at a temperature between 600 ° C and 710 ° C depending on the steel grade. The thickness of the applied nickel layer is preferably 2 μm and the thickness of the applied cobalt layer is 0.1 μm.

Zweckmäßigerweise ist das Grundmaterial des Kaltbandes durch ein ferritisches Gefüge mit eingelagertem Zementit bei mittleren Korngrößen zwischen 17,0 und 12,0 µm gekennzeichnet, wobei der Stahl 0,001 bis 0,70 % C, 0,170 bis 0,350 % Mn, 0,005 bis 0,020 % P, 0,005 bis 0,020 % S, 0,030 bis 0,060 % Al, 0,0015 bis 0,0070 % N, 0,003 bis 0,006 % B oder anstelle des Bors oder zusätzlich 0,005 bis 0,15 % Ti, Rest Eisen mit den üblichen Verunreinigungen enthält. (Sämtliche Angaben in Gew. %). Vorzugsweise weist das Grundmetall eine Stahlanalyse mit

C 0,030 - 0,060 %
Mn 0,200 - 0,250 %
P 0,005 - 0,020 %
S 0,005 - 0,015 %
Al 0,030 - 0,060 %
N 0,0015 - 0,0070 %
Ti 0,005 - 0,015 %,
Rest Eisen mit den üblichen Begleitele­menten

auf. Nach dem Tiefziehen werden aufgrund des sehr feinen Korn­durchmessers glatte Oberflächen erzielt. Die Zusammensetzung des Stahls ist insbesondere wesentlich, um die globulare Form des Korn und die oben angegebene Korngröße über die gesamte Ring­länge im Kaltband auch in den Anfangs- und Endbereichen zu er­reichen.
The base material of the cold strip is expediently characterized by a ferritic structure with embedded cementite with average grain sizes between 17.0 and 12.0 µm, the steel being 0.001 to 0.70% C, 0.170 to 0.350% Mn, 0.005 to 0.020% P, 0.005 to 0.020% S, 0.030 to 0.060% Al, 0.0015 to 0.0070% N, 0.003 to 0.006% B or instead of boron or additionally 0.005 to 0.15% Ti, balance iron with the usual impurities. (All data in% by weight). The base metal preferably has a steel analysis

C 0.030 - 0.060%
Mn 0.200 - 0.250%
P 0.005 - 0.020%
S 0.005 - 0.015%
Al 0.030 - 0.060%
N 0.0015 - 0.0070%
Ti 0.005 - 0.015%,
Remainder iron with the usual accompanying elements

on. After deep drawing, smooth surfaces are achieved due to the very fine grain diameter. The composition of the steel is particularly important in order to achieve the globular shape of the grain and the grain size specified above over the entire ring length in the cold strip, even in the start and end areas.

Das erfindungsgemäße Verfahren zur Herstellung des oben be­schriebenen Kaltbandes ist dadurch gekennzeichnet, daß als Aus­gangsmaterial ein Warmband einer Stärke von 1,8 bis 2,8 mm ver­ wendet wird, das Warmband mit oder ohne Zwischenglühe mit derart abgestimmten Abwalzgraden kaltgewalzt wird, daß eine relative Zipfelhöhe von maximal 3 % bei einer Endstärke nach dem Kalt­walzen zwischen 0,10 und 0,70 mm erreicht wird, daß das Kaltband anschließend elektrolytisch im alkalischen Entfettungsbad bei einer Temperatur von 50 bis 70°C, einer Stromdichte von 5 bis 60 A/dm², 5 bis 30 Sek. lang mit oder ohne Umpolung entfettet wird, daß nach einem Spülvorgang in 50 bis 20 Gew.-% Schwefelsäure 3 bis 8 Sek. lang dekapiert wird, darauf elektrolytisch bei einer Temperatur von 50 bis 80°C, bei einer Stromdichte von 5 bis 70 A/dm² und bei einen pH-Wert von 3,5 bis 3,8 vernickelt wird, daß nach einem Spülvorgang hierauf elektrolytisch eine Cobaltschicht bei einer Temperatur von 50 bis 70°C, bei einer Stromdichte von 5 bis 30 A/dm² und einem pH-Wert von 3,0 bis 3,5 abgeschieden wird und schließlich nach einem Spülen und Trocknen des Kaltbandes eine thermische Glühbehandlung in einer Schutzgasatmosphäre bei einer Temperatur von 580°C bis 710°C durchgeführt wird. Das derart erhaltene Kaltband weist keine Klebeneigung auf, zeichnet sich durch einen durch chronoamperometrische Messungen wahrnehmbaren Stromfluß wesentlich höherer Größenordnung als bekannt aus und ist durch die dünne Beschichtung mit teurem Cobalt außerordentlich wirtschaftlich. Bei der Wärmebehandlung dringt durch Diffusion Nickel und Cobalt tief in das Grundmaterial ein.The process according to the invention for producing the cold strip described above is characterized in that a hot strip with a thickness of 1.8 to 2.8 mm is used as the starting material is used, the hot strip is cold rolled with or without intermediate annealing with such coordinated rolling degrees that a relative tip height of maximum 3% with a final thickness after cold rolling between 0.10 and 0.70 mm is reached, that the cold strip is then electrolytically in the alkaline degreasing bath at a temperature of 50 to 70 ° C, a current density of 5 to 60 A / dm², degreased for 5 to 30 seconds with or without polarity reversal, that after a rinsing process in 50 to 20% by weight sulfuric acid 3 to 8 seconds long is picked up, then electrolytically nickel-plated at a temperature of 50 to 80 ° C, at a current density of 5 to 70 A / dm² and at a pH value of 3.5 to 3.8, that after a rinsing process thereupon electrolytically a cobalt layer is deposited at a temperature of 50 to 70 ° C, at a current density of 5 to 30 A / dm² and a pH of 3.0 to 3.5 and finally, after rinsing and drying the cold strip, a thermal annealing treatment in a Sch Commercial gas atmosphere is carried out at a temperature of 580 ° C to 710 ° C. The cold strip obtained in this way has no tendency to stick, is distinguished by a current flow which is perceptible by chronoamperometric measurements and is of a considerably higher magnitude than is known, and is extremely economical due to the thin coating with expensive cobalt. During heat treatment, nickel and cobalt penetrate deeply into the base material through diffusion.

Mit Vorteil können zur elektrolytischen Abscheidung von Nickel und Cobalt folgende Elektrolytzusammensetzungen verwendet werden: Nickelabscheidung Elekrolytzusammensetzung NiSO₄ · 6H₂O 150 - 300 g/l Cl (als NiCl₂ · 6H₂O) 15 - 30 g/l Borsäure 40 - 42 g/l Cobaltabscheidung Elektrolytzusammensetzung CoSO₄ · 7H₂O 300 - 350 g/l CoCl₂ · 6H₂O 40 - 60 g/l NaCl 15 - 25 g/l Borsäure 40 - 42 g/l. The following electrolyte compositions can advantageously be used for the electrolytic deposition of nickel and cobalt: Nickel deposition Electrolyte composition NiSO₄ · 6H₂O 150-300 g / l Cl (as NiCl₂ · 6H₂O) 15-30 g / l Boric acid 40-42 g / l Cobalt deposition Electrolyte composition CoSO₄.7H₂O 300-350 g / l CoCl₂ · 6H₂O 40 - 60 g / l NaCl 15-25 g / l Boric acid 40-42 g / l.

Weitere Einzelheiten, Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus der nachfolgenden Beschreibung vierer Beispiele:Further details, features and advantages of the subject matter of the invention result from the following description of four examples:

1.1 Grundmaterial (Stahlanalyse) 1.1 Base material (steel analysis)

Zusammensetzung AComposition A Zusammensetzung CComposition C CC. 0,020 - 0,0700.020 - 0.070 Gew. %% By weight CC. 0,0200.020 Gew. %% By weight MnMn 0,170 - 0,3500.170 - 0.350 Gew. %% By weight MnMn 0,1700.170 Gew. %% By weight PP 0,005 - 0,0200.005 - 0.020 Gew. %% By weight PP 0,0050.005 Gew. %% By weight SS 0,005 - 0,0200.005 - 0.020 Gew. %% By weight SS 0,0050.005 Gew. %% By weight AlAl 0,030 - 0,0600.030 - 0.060 Gew. %% By weight AlAl 0,0300.030 Gew. %% By weight BB 0,003 - 0,0060.003 - 0.006 Gew. %% By weight NN < 0,0030<0.0030 Gew. %% By weight NN < 0,0070<0.0070 Gew. %% By weight Zusammensetzung BComposition B Zusammensetzung DComposition D CC. 0,030 - 0,0600.030 - 0.060 Gew. %% By weight CC. 0,001 - 0,010.001 - 0.01 Gew. %% By weight MnMn 0,200 - 0,2500.200 - 0.250 Gew. %% By weight MnMn 0,150 - 0,2000.150 - 0.200 Gew. %% By weight PP 0,005 - 0,0200.005 - 0.020 Gew. %% By weight PP 0,005 - 0,0200.005 - 0.020 Gew. %% By weight SS 0,005 - 0,0150.005 - 0.015 Gew. %% By weight SS 0,005 - 0,0150.005 - 0.015 Gew. %% By weight AlAl 0,030 - 0,0600.030 - 0.060 Gew. %% By weight AlAl 0,030 - 0,0600.030 - 0.060 Gew. %% By weight TiTi 0,005 - 0,0150.005 - 0.015 Gew. %% By weight TiTi 0,05 - 0,150.05-0.15 Gew. %% By weight NN < 0,0070<0.0070 Gew. %% By weight NN < 0,0070<0.0070 Gew. %% By weight

Textur: Ferritisches Gefüge mit eingelagertem Zementit. Die Korngröße beträgt: 17,0 - 12,0 µm (als mittlere Korngröße ausgedrückt), vorliegend als globulare Kör­ner, um nach dem Tiefziehen aufgrund des sehr feinen Korndurchmessers glatte Oberflächen zu erzielen.Texture: Ferritic structure with embedded cementite. The grain size is: 17.0 - 12.0 µm (expressed as the mean grain size), in the present case as globular grains, in order to achieve smooth surfaces after deep-drawing due to the very fine grain diameter.

Entscheidend wichtig ist die Zusammensetzung des Stahls, um diese Kornform und Korngröße über die ge­samte Ringlänge auch in den Anfangs- und Endbereichen zu erzielen.The composition of the steel is of crucial importance in order to achieve this grain shape and grain size over the entire length of the ring, also in the start and end areas.

1.2 Kaltwalzen1.2 Cold rolling

Bei der Herstellung der erfindungsgemäßen veredelten Stahlbänder geht man von 1,8 - 2,8 mm dickem Warmband aus. Das Warmband wird kaltgewalzt mit oder ohne Zwi­schenglühe, mit abgestimmten Abwalzgraden, um eine re­lative Zipfelhöhe von max. 3 % zu erreichen. Die End­dicke nach dem Kaltwalzen beträgt 0,10 - 0,70 mm.The production of the finished steel strips according to the invention is based on 1.8-2.8 mm thick hot strips. The hot strip is cold rolled with or without intermediate annealing, with coordinated rolling degrees, to a relative tip height of max. To reach 3%. The final thickness after cold rolling is 0.10 - 0.70 mm.

1.3 Galvanische Veredlung1.3 Galvanic finishing

  • 1.3.1 Elektrolytisch entfetten im handelsüblichen alkalischen Entfettungsbad, bei einer Temperatur von ca. 50 - 70°C, bei einer Stromdichte von 5 - 60 A/dm², 5 - 30 Sekunden lang, mit oder ohne Umpolung.1.3.1 Electrolytically degrease in a commercially available alkaline degreasing bath, at a temperature of approx. 50 - 70 ° C, at a current density of 5 - 60 A / dm², for 5 - 30 seconds, with or without polarity reversal.
  • 1.3.2 Spülen1.3.2 Rinsing
  • 1.3.3 Dekapieren in 5 - 20 Gew.-% Schwefelsäure, 3 - 8 Sekun­den lang.1.3.3 Pickling in 5-20% by weight sulfuric acid for 3-8 seconds.
  • 1.3.4 Elektrolytisch vernickeln bei einer Temperatur von 50 - 80°C, bei einer Stromdichte von 5 - 70 A/dm², bei einem pH-Wert von 3,5 - 3,8.

    Elektrolytzusammensetzung:
    NiSO₄ . 6H₂O      150 - 300 g/l
    Cl (als NiCl₂ . 6H₂O)      15 - 30 g/l
    Borsäure      40 - 42 g/l
    Schichtstärke      ca. 1 µm
    1.3.4 Electrolytic nickel plating at a temperature of 50 - 80 ° C, at a current density of 5 - 70 A / dm², at a pH of 3.5 - 3.8.

    Electrolyte composition:
    NiSO₄ . 6H₂O 150-300 g / l
    Cl (as NiCl₂ 6H₂O.) 15 - 30 g / l
    Boric acid 40 - 42 g / l
    Layer thickness approx. 1 µm
  • 1.3.5 Spülen1.3.5 Rinse
  • 1.3.6 Elektrolytische Co-Schicht auftragen bei einer Tempera­tur von 50 - 70°C, bei einer Stromdichte von 5 - 30 A/dm², bei einem pH-Wert von 3,0 - 3,5.

    Elektrolytzusammensetzung:
    CoSO₄ . 7H₂O      300 - 350 g/l
    CoCl₂ . 6H₂O      40 - 60 g/l
    NaCl      15 - 25 g/l
    Borsäure      40 - 42 g/l
    Schichtstärke      0,01 - 0,8 µm
    1.3.6 Apply the electrolytic co-layer at a temperature of 50 - 70 ° C, at a current density of 5 - 30 A / dm², at a pH of 3.0 - 3.5.

    Electrolyte composition:
    CoSO₄ . 7H₂O 300-350 g / l
    CoCl₂ . 6H₂O 40 - 60 g / l
    NaCl 15-25 g / l
    Boric acid 40 - 42 g / l
    Layer thickness 0.01 - 0.8 µm
  • 1.3.7 Spülen1.3.7 Rinse
  • 1.3.8 Trocknen1.3.8 drying
1.4 Thermische Behandlung (Glühen)1.4 Thermal treatment (annealing)

Das veredelte Material wird mit einem definierten Schutzgas (mit ca. bis 100 % H₂) geglüht, um eine fleckenfreie Oberfläche zu erreichen.The refined material is annealed with a defined protective gas (with up to 100% H₂) in order to achieve a stain-free surface.

Die Temperatur beträgt 580 - 710°C je nach Stahltype und aufgetragener galvanischer Schichtdicke. Mit der Optimierung der thermischen Behandlung bei verschiedenen Temperaturen erreicht man gezielte Diffusionstiefen.The temperature is 580 - 710 ° C depending on the steel type and applied galvanic layer thickness. By optimizing the thermal treatment at different temperatures, you can achieve specific diffusion depths.

Bei der Prüfung eines derartig hergestellten vernickelten und mit dünner Co überzogenen und abschließend wärmebehandelten Kaltbandes wurde praktisch keine Klebeneigung mehr festgestellt. Im alkalischen Medium zeigen die Kaltbänder eine sehr gute Be­ständigkeit. Zur Messung des elektrochemischen Verhaltens wurden chronoamperometrische Messungen durchgeführt. Diese Messmethode basiert auf der Tatsache, daß bei einer konstanten Spannung (z.B. plus 100 mV) die Bildung einer Oxidschicht auf der Ober­fläche um so schneller geschieht, je aktiver die geprüfte Ober­fläche ist. Die Messung erfolgt mit dem sogenannten Dreielektro­densystem, wobei folgende Elektroden angewendet wurden:

Referenzelektrode: Quecksilberoxid/Quecksilber (HgO/Hg)
Hilfselektrode: Platindraht
Arbeitselektrode: erfindungsgemäß vernickeltes, cobaltiertes und wärmebehandeltes Kaltband scheibenför­mig, Fläche: 283 mm²
Elektrolyt: 35 %ige Kaliumhydroxid-Lösung
When testing a nickel-coated cold-rolled strip produced in this way and coated with thin Co and finally heat-treated, virtually no tendency to stick was found. The cold strips show very good resistance in an alkaline medium. Chronoamperometric measurements were carried out to measure the electrochemical behavior. This method of measurement is based on the fact that at a constant voltage (eg plus 100 mV), the more active the tested surface is, the faster an oxide layer is formed on the surface. The measurement is carried out with the so-called three-electrode system, the following electrodes being used:

Reference electrode: mercury oxide / mercury (HgO / Hg)
Auxiliary electrode: platinum wire
Working electrode: nickel-plated, cobalt-coated and heat-treated cold-rolled strip, surface: 283 mm²
Electrolyte: 35% potassium hydroxide solution

Die Messung erfolgt nach Voraktivierung, die die natürliche Oxidschicht von der Oberfläche unmittelbar vor der chronoampero­metrischen Messung entfernt. Die angewendete Voraktivierungs­spannung betrug ca. -550 mV.The measurement is carried out after preactivation, which removes the natural oxide layer from the surface immediately before the chronoamperometric measurement. The pre-activation voltage applied was approximately -550 mV.

Es wurde überraschend festgestellt, daß, während die nur ver­nickelten Arbeitselektroden ca. 8 - 10 µA Stromübergang zeigten, der Stromübergang bei den erfindungsgemäß aufgebauten Arbeits­elektroden 80 - 80 mA betrug. Durch die schnelle Oxidbildung nahm der Strom sehr schnell ab und tendiert asymtotisch nach ca. 3 Minuten zu 0 mA. Bei den nur vernickelten Arbeitselektroden erreichte man den nahen O-Wert (Strom) erst nach 15 - 20 Minuten.It was surprisingly found that while the only nickel-plated working electrodes showed approx. 8-10 .mu.A current transfer, the current transfer for the working electrodes constructed according to the invention was 80-80 mA. Due to the rapid formation of oxide, the current decreased very quickly and tends to asymtotically after 3 minutes to 0 mA. With the only nickel-plated working electrodes, the near O value (current) was only reached after 15-20 minutes.

Es wurde festgestellt, daß das in alkalischem Elektrolyten ent­stehende Elektrodenpotential des erfindungsgemäß hergestellten Kaltbandes mindestens zweimal solange konstant bleibt, als die nur aus vernickeltem Kaltband bestehende Elektrode.It was found that the electrode potential of the cold strip produced in accordance with the invention in alkaline electrolyte remains constant at least twice as long as the electrode consisting only of nickel-plated cold strip.

Schließlich wurde durch metallographische Schliffe und Ober­flächenanalysen mit der Glimmentladungslampe überraschenderweise festgestellt, daß die Diffusionstiefe der Überzugsmetalle Nickel und Cobalt ein Mehrfaches ausmachen, als die aufgetragene Schichtstärke. Bei einer aufgetragenen Schicht von 2 µm Nickel und 0,1 µm Cobalt ergab sich als Diffusionstiefe - Eindringen des Überzugsmetalls in das Grundmaterial Stahl - ein Wert von 5 µm. Hieraus ist erkennbar, daß ein neues Verbundmaterial be­sonderer Eigenschaften mit dem erfindungsgemäßen Verfahren her­stellbar ist.Finally, it was surprisingly found by means of metallographic cuts and surface analyzes with the glow discharge lamp that the diffusion depth of the coating metals nickel and cobalt was a multiple of the applied layer thickness. With a layer of 2 µm nickel and 0.1 µm cobalt applied, the diffusion depth - penetration of the coating metal into the base material steel - was 5 µm. From this it can be seen that a new composite material with special properties can be produced with the method according to the invention.

Claims (8)

1. Kaltband mit elektrolytisch aufgebrachter Nickelbeschichtung,
dadurch gekennzeichnet,
daß die Nickelschicht eine Stärke von 1 µm bis 6 µm aufweist und eine elektrolytisch aufgebrachte Cobaltschicht einer Stärke von 0,01 µm bis 1,0 µm trägt, wobei das Kaltband ab­schließend nach der Beschichtung mit einer Temperatur zwischen 580°C und 710°C wärmebehandelt ist.
1. Cold strip with electrolytically applied nickel coating,
characterized,
that the nickel layer has a thickness of 1 µm to 6 µm and carries an electrolytically applied cobalt layer of a thickness of 0.01 µm to 1.0 µm, the cold strip being finally heat-treated after the coating at a temperature between 580 ° C and 710 ° C is.
2. Kaltband nach Anspruch 1, dadurch gekennzeichnet, daß das Grundmaterial ein kohlenstoffarmes Stahlband ist, welches eine Nickelschicht von 1,5 µm bis 5 µm Stärke und eine Co­baltschicht von 0,1 µm bis 0,5 µm Stärke trägt, wobei die ab­schließende Wärmebehandlung bei einer Temperatur zwischen 600°C und 710°C durchgeführt ist.2. Cold strip according to claim 1, characterized in that the base material is a low-carbon steel strip, which carries a nickel layer of 1.5 µm to 5 µm in thickness and a cobalt layer of 0.1 µm to 0.5 µm in thickness, the final heat treatment is carried out at a temperature between 600 ° C and 710 ° C. 3. Kaltband nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Stärke der aufgetragenen Nickelschicht 2 µm und die Stärke der aufgetragenen Cobaltschicht 0,1 µm beträgt.3. Cold strip according to claim 1 and 2, characterized in that the thickness of the applied nickel layer is 2 microns and the thickness of the applied cobalt layer is 0.1 microns. 4. Kaltband nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß das Grundmaterial ein ferritisches Gefüge mit eingelagertem Zementit bei mittleren Korngrößen zwischen 17,0 und 12,0 µm aufweist, wobei der Stahl 0,001 bis 0,70 % C, 0,170 bis 0,350 % Mn, 0,005 bis 0,020 % P, 0,005 bis 0,020 % S, 0,030 bis 0,060 % Al, 0,0015 % bis 0,0070 % N, 0,003 bis 0,006 % B oder anstelle des Bors 0,005 bis 0,15 Ti, Rest Eisen mit den üblichen Begleitelementen enthält.4. Cold strip according to one of claims 1 to 3, characterized in that the base material has a ferritic structure with embedded cementite with average grain sizes between 17.0 and 12.0 microns, the steel 0.001 to 0.70% C, 0.170 to 0.350% Mn, 0.005 to 0.020% P, 0.005 to 0.020% S, 0.030 to 0.060% Al, 0.0015% to 0.0070% N, 0.003 to 0.006% B or 0.005 to 0.15 Ti instead of boron, the rest Contains iron with the usual accompanying elements. 5. Kaltband nach Anspruch 4, dadurch gekennzeichnet, daß das Grundmaterial eine Stahlanalyse mit 0,030 bis 0,060 % C, 0,200 bis 0,250 % Mn, 0,005 bis 0,020 % P, 0,005 bis 0,015 % S, 0,030 bis 0,060 % Al, 0,0015 bis 0,0070 % N, 0,005 bis 0,015 % Ti, Rest Eisen mit den üblichen Verunreinigungen, aufweist.5. Cold strip according to claim 4, characterized in that the base material is a steel analysis with 0.030 to 0.060% C, 0.200 to 0.250% Mn, 0.005 to 0.020% P, 0.005 to 0.015% S, 0.030 to 0.060% Al, 0.0015 to 0.0070% N, 0.005 to 0.015% Ti, balance iron with the usual impurities. 6. Verfahren zur Herstellung eines Kaltbandes gemäß einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß als Ausgangsmaterial ein Warmband einer Stärke von 1,8 bis 2,8 mm verwendet wird, das Warmband mit oder ohne Zwischenglühe mit derart abgestimmten Abwalzgraden kaltge­walzt wird, daß eine relative Zipfelhöhe von maximal 3 % bei einer Endstärke nach dem Kaltwalzen zwischen 0,10 und 0,70 mm erreicht wird, daß das Kaltband anschließend elektrolytisch im alkalischen Entfettungsbad bei einer Temperatur von 50°C bis 70°C, einer Stromdichte von 5 A/dm² bis 60 A/dm² 5 bis 30 Sek. lang mit oder ohne Umpolung entfettet wird, daß nach einem Spülvorgang in 50 bis 20 Gew.-% Schwefelsäure 3 bis 8 Sek. lang dekapiert wird, darauf elektrolytisch bei einer Temperatur von 50°C bis 80°C, bei einer Stromdichte von 5 A/dm² bis 70 A/dm² und bei einem pH-Wert von 3,5 bis 3,8 ver­nickelt wird, daß nach einem Spülvorgang hierauf elektroly­tisch eine Cobaltschicht bei einer Temperatur von 50°C bis 70°C, bei einer Stromdichte von 5 A/dm² bis 30 A/dm² und einem pH-Wert von 3,0 bis 3,5 abgeschieden wird und schließ­lich nach einem Spülen und Trocknen des Kaltbandes eine ther­mische Glühbehandlung in einer Schutzgasatmosphäre bei einer Temperatur von 580°C bis 710° durchgeführt wird.
6. A method for producing a cold strip according to one of claims 1 to 5,
characterized,
that a hot strip with a thickness of 1.8 to 2.8 mm is used as the starting material, the hot strip with or without intermediate annealing is cold-rolled with such coordinated rolling degrees that a relative tip height of maximum 3% with a final thickness after cold rolling between 0.10 and 0.70 mm is achieved that the cold strip is then electrolytically in an alkaline degreasing bath at a temperature of 50 ° C to 70 ° C, a current density of 5 A / dm² to 60 A / dm² for 5 to 30 seconds with or without polarity reversal is degreased that after a rinsing process in 50 to 20% by weight sulfuric acid is decapitated for 3 to 8 seconds, then electrolytically at a temperature of 50 ° C to 80 ° C, at a current density of 5 A / dm² to 70 A / dm² and is nickel-plated at a pH of 3.5 to 3.8, that after a rinsing process thereupon electrolytically a cobalt layer at a temperature of 50 ° C to 70 ° C, at a current density of 5 A / dm² to 30 A / dm² and a pH of 3.0 to 3.5 is deposited and schli After rinsing and drying the cold strip, a thermal annealing treatment is carried out in a protective gas atmosphere at a temperature of 580 ° C to 710 °.
7. Verfahren zur Herstellung von Kaltband gemäß Anspruch 6, dadurch gekennzeichnet, daß zur elektrolytischen Abscheidung von Nickel und Cobalt folgende Elektrolytzusammensetzungen verwendet werden:7. A process for the production of cold strip according to claim 6, characterized in that the following electrolyte compositions are used for the electrolytic deposition of nickel and cobalt: NickelabscheidungNickel deposition ElekrolytzusammensetzungElectrolyte composition NiSO₄ · 6H₂ONiSO₄ · 6H₂O 150 - 300 g/l150-300 g / l Cl (als NiCl₂ · 6H₂O)Cl (as NiCl₂ · 6H₂O) 15 - 30 g/l15-30 g / l BorsäureBoric acid 40 - 42 g/l40-42 g / l
CobaltabscheidungCobalt deposition ElektrolytzusammensetzungElectrolyte composition CoSO₄ · 7H₂OCoSO₄.7H₂O 300 - 350 g/l300-350 g / l CoCl₂ · 6H₂OCoCl₂ · 6H₂O 40 - 60 g/l40 - 60 g / l NaClNaCl 15 - 25 g/l15-25 g / l BorsäureBoric acid 40 - 42 g/l.40-42 g / l.
EP88110266A 1987-08-10 1988-06-28 Cold-rolled strip electroplated with a nickel sheet with a great diffusion depth, and process for its manufacture Expired - Lifetime EP0303035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88110266T ATE66865T1 (en) 1987-08-10 1988-06-28 COLD STRIP WITH ELECTROLYTIC NICKEL COATING OF HIGH DIFFUSION DEPTH AND METHOD FOR PRODUCTION OF THE COLD STRIP.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3726518 1987-08-10
DE19873726518 DE3726518A1 (en) 1987-08-10 1987-08-10 COLD BAND WITH ELECTROLYTICALLY APPLIED NICKEL COATING HIGH DIFFUSION DEPTH AND METHOD FOR THE PRODUCTION OF COLD BELT

Publications (2)

Publication Number Publication Date
EP0303035A1 true EP0303035A1 (en) 1989-02-15
EP0303035B1 EP0303035B1 (en) 1991-09-04

Family

ID=6333418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88110266A Expired - Lifetime EP0303035B1 (en) 1987-08-10 1988-06-28 Cold-rolled strip electroplated with a nickel sheet with a great diffusion depth, and process for its manufacture

Country Status (12)

Country Link
US (1) US4910096A (en)
EP (1) EP0303035B1 (en)
JP (1) JPH01111895A (en)
KR (1) KR960004786B1 (en)
AT (1) ATE66865T1 (en)
BR (1) BR8803944A (en)
CA (1) CA1322345C (en)
DD (1) DD272880A5 (en)
DE (2) DE3726518A1 (en)
ES (1) ES2026227T3 (en)
GR (1) GR3002845T3 (en)
MX (1) MX169599B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137118A1 (en) * 1991-11-12 1993-05-13 Schaeffler Waelzlager Kg Cold strip for deep drawn and case hardened components - has core and roller clad bearing layer of different characteristics
AT412557B (en) * 2000-05-24 2005-04-25 Ozf Oberflaechenbeschichtungsz Process for coating aluminum and magnesium die casting bodies, comprises electrolytically degreasing the body in an alkaline aqueous cleaner, descaling, forming a conversion layer, cataphoretically dip coating, rinsing in water, and curing
CN109772886A (en) * 2018-12-31 2019-05-21 陕西航宇有色金属加工有限公司 A kind of pure nickel plate processing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045612B2 (en) * 1992-06-22 2000-05-29 東洋鋼鈑株式会社 High corrosion resistant nickel-plated steel strip and its manufacturing method
EP0732758A1 (en) 1995-03-15 1996-09-18 Matsushita Electric Industrial Co., Ltd. A method to manufacture cell-cans
US6270922B1 (en) 1996-09-03 2001-08-07 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case, battery case and battery using the case
US6555266B1 (en) 1998-06-29 2003-04-29 The Gillette Company Alkaline cell with improved casing
DE19937271C2 (en) * 1999-08-06 2003-01-09 Hille & Mueller Gmbh & Co Process for the production of deep-drawn or ironable, refined cold strip, and cold strip, preferably for the production of cylindrical containers and in particular battery containers
KR20020054740A (en) * 2000-12-28 2002-07-08 이계안 Scratch removal device of cylinder head face
DE10129900C1 (en) * 2001-06-21 2003-02-13 Hille & Mueller Gmbh Process for the heat treatment of a cold strip with a surface coating of Ni and / or Co, sheet metal which can be produced by the process and battery cups which can be produced by the process
DE10316612B4 (en) * 2003-04-11 2006-06-29 Hille & Müller GMBH Electrolytically coated cold-rolled strip, method for coating the same and battery sleeve
US20060130940A1 (en) * 2004-12-20 2006-06-22 Benteler Automotive Corporation Method for making structural automotive components and the like
EP2388356A1 (en) * 2009-01-19 2011-11-23 Toyo Kohan Co., Ltd. Surface-treated steel sheet provided with antirust coating film and method for producing same
DE102015213335B4 (en) 2015-07-16 2023-05-17 Aktiebolaget Skf Process for coating roller bearing rings
JP6394847B1 (en) 2017-03-02 2018-09-26 新日鐵住金株式会社 Surface-treated steel sheet
US11713513B2 (en) 2018-02-14 2023-08-01 Nippon Steel Corporation Surface-treated steel sheet for battery containers and manufacturing method of surface-treated steel sheet for battery containers
KR102395426B1 (en) * 2018-07-06 2022-05-09 닛폰세이테츠 가부시키가이샤 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
CN109530527A (en) * 2018-12-05 2019-03-29 常德力元新材料有限责任公司 A kind of preparation method of punched nickel-plated steel band

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB942832A (en) * 1960-03-22 1963-11-27 Commissariat Energie Atomique Improvements in or relating to nickel electroplating
DE2060120A1 (en) * 1969-12-10 1971-06-16 M & T Chemicals Inc Process for the electrolytic deposition of cobalt coatings or coatings containing cobalt
EP0235595A2 (en) * 1986-03-01 1987-09-09 Hoesch Stahl Aktiengesellschaft Process, installation and apparatus for continuously degreasing and cleaning metal strips, in particular cold-rolled steel strips

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731403A (en) * 1952-11-08 1956-01-17 Pittsburgh Steel Co Manufacture of nickel-plated steel
NL287699A (en) * 1962-01-12
US3245885A (en) * 1964-10-05 1966-04-12 Yawata Iron & Steel Co Method of manufacturing nickel-plated steel plate
DE2016989C3 (en) * 1970-04-09 1974-08-08 Hoesch Werke Ag, 4600 Dortmund Process for single-layer enamelling of strips and sheets
US3697391A (en) * 1970-07-17 1972-10-10 M & T Chemicals Inc Electroplating processes and compositions
BE789793A (en) * 1971-10-06 1973-04-06 Hoesch Ag PROCESS FOR PRE-TREATMENT OF STEEL STRIPS AND SHEETS WITH A VIEW TO A SINGLE-LAYER ENAMEL
US3804726A (en) * 1973-04-23 1974-04-16 M & T Chemicals Inc Electroplating processes and compositions
US3917464A (en) * 1973-07-20 1975-11-04 Us Army Electroless deposition of cobalt boron
SE378118B (en) * 1974-03-14 1975-08-18 Nordstjernan Rederi Ab
USRE31221E (en) * 1975-02-28 1983-04-26 Armco Inc. Cold rolled, ductile, high strength steel strip and sheet and method therefor
ES451714A1 (en) * 1975-09-22 1977-09-01 M & T Chemicals Inc Electroplating process and electroplating solution
US4046647A (en) * 1976-06-17 1977-09-06 M&T Chemicals Inc. Additive for improved electroplating process
JPS5767186A (en) * 1980-10-08 1982-04-23 Nippon Steel Corp Steel plate for fuel container
DE3112919A1 (en) * 1981-03-31 1982-10-07 Siemens AG, 1000 Berlin und 8000 München Metal-coated ferrous materials
JPS60184687A (en) * 1984-03-01 1985-09-20 Kawasaki Steel Corp Manufacture of surface treated steel sheet for welded can
JPS61106793A (en) * 1984-10-30 1986-05-24 Nippon Steel Corp Steel material for fuel exhaust pipe system having superior corrosion and heat resistances
JPS62297473A (en) * 1986-06-16 1987-12-24 Nippon Steel Corp Ni alloy multilayer plated steel sheet having superior corrosion resistance, weldability and paintability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB942832A (en) * 1960-03-22 1963-11-27 Commissariat Energie Atomique Improvements in or relating to nickel electroplating
DE2060120A1 (en) * 1969-12-10 1971-06-16 M & T Chemicals Inc Process for the electrolytic deposition of cobalt coatings or coatings containing cobalt
EP0235595A2 (en) * 1986-03-01 1987-09-09 Hoesch Stahl Aktiengesellschaft Process, installation and apparatus for continuously degreasing and cleaning metal strips, in particular cold-rolled steel strips

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, Field C, Band 10, Nr. 235, 14. August 1986 The Patent Office Japanese Government seite 32 C 366 & JP - A - 61 067 792 (NIPPON STEEL) *
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, Field C, Band 9, Nr. 104, 8. Mai 1985 The Patent Office Japanese Goverment seite 53 C 279 & JP - A - 59 229 498 (CHIYODA) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137118A1 (en) * 1991-11-12 1993-05-13 Schaeffler Waelzlager Kg Cold strip for deep drawn and case hardened components - has core and roller clad bearing layer of different characteristics
AT412557B (en) * 2000-05-24 2005-04-25 Ozf Oberflaechenbeschichtungsz Process for coating aluminum and magnesium die casting bodies, comprises electrolytically degreasing the body in an alkaline aqueous cleaner, descaling, forming a conversion layer, cataphoretically dip coating, rinsing in water, and curing
CN109772886A (en) * 2018-12-31 2019-05-21 陕西航宇有色金属加工有限公司 A kind of pure nickel plate processing method

Also Published As

Publication number Publication date
ATE66865T1 (en) 1991-09-15
DD272880A5 (en) 1989-10-25
GR3002845T3 (en) 1993-01-25
BR8803944A (en) 1989-02-28
MX169599B (en) 1993-07-14
ES2026227T3 (en) 1992-04-16
DE3726518A1 (en) 1989-03-09
KR890003968A (en) 1989-04-19
DE3726518C2 (en) 1989-06-01
EP0303035B1 (en) 1991-09-04
JPH0317916B2 (en) 1991-03-11
DE3864629D1 (en) 1991-10-10
KR960004786B1 (en) 1996-04-13
US4910096A (en) 1990-03-20
CA1322345C (en) 1993-09-21
JPH01111895A (en) 1989-04-28

Similar Documents

Publication Publication Date Title
EP0303035B1 (en) Cold-rolled strip electroplated with a nickel sheet with a great diffusion depth, and process for its manufacture
EP1658390B1 (en) Method for producing a hardened steel part
EP2414562B1 (en) Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
DE3924246C2 (en)
DE2738151C2 (en) Process for the production of coated steel sheet
DE112019003814T5 (en) A method and an apparatus for the production of corrosion-resistant hot stamping parts
EP2045360A1 (en) Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming
DE2510328C2 (en) Process for improving the corrosion resistance of moldings made of steel or iron
DE2737296B2 (en) Process for the production of coated steel sheet and its use
DE202004021264U1 (en) Corrosion layer and hardened steel component
DE102012008816A1 (en) Process for producing a metallic layer composite, in particular band-shaped layer composite
KR930009994B1 (en) Surface-treated steel sheet having improved weldability and plating properties and method for producing the same
DE3242625A1 (en) METHOD FOR THE PRODUCTION OF HOT-GALVANIZED STEEL SHEETS
EP2987889B1 (en) Surface finished steel sheet and method for the production thereof
EP3947753B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
DE69728389T2 (en) HOT-DIPPED GALVANIZED STEEL PLATE WITH REDUCED DEFECTS, MADE BY MALFUNCTION, WITH EXCELLENT CONTACT COATING HAZARD, AND METHOD OF MANUFACTURING THEREOF
DE10316612B4 (en) Electrolytically coated cold-rolled strip, method for coating the same and battery sleeve
JPH02129395A (en) Flaw resistant nickel-plated steel sheet and production thereof
DE2356701C3 (en) Tinplate and its use to make seamless steel containers
DE2528143C3 (en) Cold-rolled enamelling steel sheet
EP3947754B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
DE60126821T2 (en) STEEL PLATE FOR ENAMELLING AND MANUFACTURING METHOD, ENAMELED PRODUCT AND THE PRODUCTION THEREOF
JP2001345080A (en) Ni plated steel sheet for positive electrode can of alkaline manganese battery, its manufacturing method and positive electrode using it
DE102018202867A1 (en) Method for adaptation, homogenization and activation of surfaces with the aim of improved surface properties
DE1521148C3 (en) Ferrous metal article with an aluminum-zinc alloy coating and method for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB GR IT

17P Request for examination filed

Effective date: 19890224

17Q First examination report despatched

Effective date: 19901220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT

REF Corresponds to:

Ref document number: 66865

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3864629

Country of ref document: DE

Date of ref document: 19911010

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2026227

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3002845

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040526

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040528

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040603

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040609

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040615

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040709

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050628

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070524

Year of fee payment: 20

BERE Be: lapsed

Owner name: *HILLE & MULLER

Effective date: 20050630