EP0302197B1 - Compressed-air blowing device - Google Patents

Compressed-air blowing device Download PDF

Info

Publication number
EP0302197B1
EP0302197B1 EP88109106A EP88109106A EP0302197B1 EP 0302197 B1 EP0302197 B1 EP 0302197B1 EP 88109106 A EP88109106 A EP 88109106A EP 88109106 A EP88109106 A EP 88109106A EP 0302197 B1 EP0302197 B1 EP 0302197B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
compressed air
turbulence
air nozzle
blower according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88109106A
Other languages
German (de)
French (fr)
Other versions
EP0302197A1 (en
Inventor
Walter Prof.Dipl.-Phys. Sibbertsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermar-Research Gesellschaft fur Forschung und Entwicklung Mbh
Marresearch Gesellschaft fuer Forschung und Entwicklung gmbH
Original Assignee
Intermar-Research Gesellschaft fur Forschung und Entwicklung Mbh
Marresearch Gesellschaft fuer Forschung und Entwicklung gmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19873725672 external-priority patent/DE3725672A1/en
Application filed by Intermar-Research Gesellschaft fur Forschung und Entwicklung Mbh, Marresearch Gesellschaft fuer Forschung und Entwicklung gmbH filed Critical Intermar-Research Gesellschaft fur Forschung und Entwicklung Mbh
Priority to AT88109106T priority Critical patent/ATE66835T1/en
Publication of EP0302197A1 publication Critical patent/EP0302197A1/en
Application granted granted Critical
Publication of EP0302197B1 publication Critical patent/EP0302197B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/21Air blast

Definitions

  • the invention relates to a compressed air blowing device with a pistol grip-like handle according to the preamble of claim 1.
  • Such a compressed air blowing device is known from DE-A 36 00 147. In this case, however, it has been found to be disadvantageous that the cold air nozzle can only be operated in a limited temperature range and that it is difficult to adapt to other temperature ranges. Another disadvantage of this known compressed air blowing device is that with larger air throughputs there is considerable noise, which is perceived as annoying when the compressed air blowing device is used.
  • GB-A-20 52 711 also describes a compressed air blowing device with a swirl tube, in which a device for soundproofing is assigned to the cold air outlet and the warm air outlet.
  • the cold air outlet and warm air outlet are each surrounded by a cylindrical hollow body which has a base plate on the end section side.
  • a sleeve is designed as a cold air nozzle in the base plate on the cold air side.
  • a further sleeve and a diaphragm are arranged coaxially to this in the hollow body.
  • the further sleeve is connected to the inner wall of the hollow body by means of a flange web.
  • a sound-absorbing porous thermally conductive material is also arranged on the inner wall of the hollow body.
  • the space between the hollow body and the warm air outlet pipe is filled with an air-permeable material that serves to absorb sound.
  • This compressed air blowing device has the disadvantage that large pressure losses occur due to the built-in sound-absorbing material and the built-in parts in the hollow air-side hollow body.
  • the radial escape of the warm air from the housing of the compressed air blowing device is perceived as disturbing.
  • This air outlet is caused by the fact that the warm air must be returned in the direction of the cold air nozzle in order to prevent ice formation on the cold air side silencer.
  • the object of the invention is to improve the compressed air blowing device of the type mentioned in such a way that the possibility of fine adjustment of the cold air temperature over a larger cold air temperature range is simplified and larger air throughputs are possible with the lowest possible pressure loss, the noise development being reduced compared to the known compressed air blowing device should, without pressure loss-causing internals or sound-absorbing materials are required.
  • the special design of the silencers guides the air flow, which reduces noise.
  • the muffler on the warm air side also serves to adjust the warm air nozzle. It has been shown that with the compressed air blowing device according to the invention, a temperature reduction of approximately 45 ° C. and more can be achieved in one stage compared to the temperature of the compressed air, the temperature of the air emerging from the hot air nozzle being increased only slightly.
  • the cold air nozzle can be provided with hose-like extension pieces for localized cooling of surfaces.
  • the compressed air blowing device 115 shown in FIG. 1 consists of a pistol grip-like handle 2 and a carrier body 26.
  • the handle 2 has a hose coupling 4 to which a compressed air hose can be connected.
  • an air valve not shown, which can be actuated by means of the trigger 9.
  • Compressed air is supplied to the swirl chamber 40 of the swirl tube 15 formed in the carrier body 26 via the channels 39, 14.
  • the channel 14 is closed from the surroundings by a grub screw 117.
  • the connection between the support body 26 and the handle 2 is made by a screw connection 116.
  • the nozzle body 49 of the cold air nozzle 18 is screwed into a recess 94 in the support body 26.
  • a silencer 82 is screwed onto the nozzle body 49 in such a way that the cold air outlet opening 93 is located within the silencer 82.
  • the vortex tube 15 formed in the carrier body 26 has, in its section facing the warm air nozzle 21, a channel section 121 with a constant cross section, to which a channel section designed as a diffuser 97, which widens in cross section in the flow direction, is connected.
  • the nozzle body 28 of a warm air nozzle 21 is arranged at its end section. The nozzle body 28 is clamped to the carrier body 26 by means of a grub screw 118.
  • a silencer 83 is screwed over the nozzle body 28, and a sealing ring 119 serves to prevent uncontrolled escape of compressed air in the area of the threaded connection of the silencer 83 with the nozzle body 28.
  • Another seal 120 is provided in the area of the channel 39 and seals the handle 2 against the carrier body 26. This seal 120 can be designed, for example, as a piece of tubing made of silicone or the like.
  • the carrier body 26 is formed in one piece and has the swirl tube 15 with the recesses and openings required for the connection means.
  • An annular chamber 23 adjoins the channel 14, in which the swirl chamber 40 is to be arranged.
  • the recess 94 adjoining the annular chamber 23 has an internal thread 122.
  • the recess 124 for the warm air nozzle 21 formed at the other end section of the vortex tube 15 is also provided with an internal thread 125.
  • a threaded bore 126 is provided for the grub screw 118.
  • a recess 127 and a slot 128 are formed in the lower section of the carrier body 26. Recess 127 and slot 128 serve to receive corresponding shapes on the pistol grip-like handle 2.
  • An opening 123 is provided in this area for the screw connection 116.
  • the channel 139 has an extension on the input side, which serves to receive the seal 120.
  • a flange disk 41 is shown as a swirl chamber, which forms a swirl chamber interior 50 when used in the annular chamber 23 of the carrier body 26.
  • the flange disk 41 has a central opening 42, on one side of which a pipe socket 43 is formed with the formation of a recess 129.
  • a shoulder 96 of the nozzle body 49 of the cold air nozzle 18 with a tight fit can be inserted into this recess 129.
  • An outer edge web 44 is formed on the other side of the flange disk 41. The recess formed by this and connected to the opening 42 serves to form the vortex chamber interior 50.
  • grooves 46 are formed with the same pitch, here for example 30 °, which open tangentially into the recess 45 serving as the vortex chamber interior 50.
  • the end face 48 of the edge web 44 rests the bottom of the recess 94 of the carrier body 26. It is possible to form the grooves 46 spirally or semicircularly with the same cross-section or tapering in the cross-section of a nozzle.
  • the nozzle body 49 of the cold air nozzle 18 of the compressed air blowing device 115 shown in FIGS. 4a to 4c is formed in one piece and has an external thread 130 on its circumference, which corresponds to the internal thread 122 of the recess 94 of the carrier body 26.
  • the opening 63 is designed as a diffuser, the inner wall of which has an inclination of e.g. 1:10 can have.
  • the shoulder 96 formed on the end section 95 opposite the cold air outlet opening 93 serves, as already mentioned above, for receiving the flange disk 41.
  • two flat key abutment surfaces 131 are provided, which are used to attach a tool for screwing the nozzle body 49 into the carrier body 26 serve.
  • the nozzle body 28 for the warm air nozzle 21 has a holding section 132, on which an external thread 133 is formed.
  • the external thread 133 corresponds to the internal thread 125 of the recess 124 of the carrier body 26.
  • a circumferential groove 134 is also provided on the holding section 132 and serves to receive the sealing ring 119.
  • the inflow section 135 of the opening 22 is expanded in a trumpet shape in the direction of the channel section 121 of the vortex tube 15.
  • other cross-sectional profiles of the inflow cross section 135 are also possible. It is essential that the opening 22 widens to the vortex tube 15 in cross section.
  • This inflow section 135 is adjoined by a channel section of the opening 22, which has a constant cross section and extends as far as the warm air outlet opening 136.
  • the flow straightener 52 (FIG. 1) arranged at the end section of the diffuser 97 of the vortex tube 15 of the compressed air blowing device 115 is shown schematically in FIGS. 6a and 6b.
  • This flow straightener 52 consists of four plates 137 of the same size arranged at right angles to one another, which are connected to one another to form a cross piece 138.
  • the upstream edges 139 of the plates 137 are tapered in a knife-like manner, so that a jam of the incoming compressed air is prevented in this area.
  • the muffler 82 assigned to the cold air nozzle 18 is shown in FIG. 7. It consists of a sleeve 84, which has a recess 86 at its end section 85 assigned to the carrier body 26. An internal thread 87 is formed in the recess 86, which corresponds to the external thread 130 of the nozzle body 49. Following the inflow opening 140, the sleeve 84 widens into a deflection chamber 141.
  • the side wall 142 of the deflection chamber 141 ends at the section of the deflection chamber 141 opposite the inflow opening 140 in a circular groove-like depression 143, the outlet of which merges into the side wall of a recess 90.
  • the directional diversions of the side wall 142 and the depression 143 are rounded to avoid eddies.
  • the outer wall of the recess 90 is conical and can, for example, have a cone angle of 60 °.
  • the sleeve 84 is tapered to form a connector 89.
  • An opening 92 is formed in the socket 89 coaxially to the central axis 91 and extends through the indentation 90 into the deflection chamber 141. The flow deflections effected in the deflection chamber 141 reduce the sound pressure of the cold air emerging from the cold air outlet opening 93.
  • the warm air side silencer 83 consists of two components, which are shown in Figures 8 to 10.
  • a sleeve-shaped hollow body 98 (FIG. 8) has an indentation 100 at an end section 99, on which an internal thread 101 is formed.
  • the internal thread 101 corresponds to the external thread 133 on the holding section 132 of the nozzle body 28.
  • the recess 10 is followed by a cavity 144 which is enlarged in relation to its diameter and which serves to form a deflection chamber.
  • a threaded bore 103 is formed, into which a deflection part 145 can be screwed.
  • the deflection part 145 consists of a plate 104, on which a bush 105, which projects into the hollow body 98 and surrounds the nozzle body 28 at a distance, is formed (FIG. 10).
  • the bottom surface 106 of the bush 105 is designed as a flow deflection section.
  • the inner wall surface 112 of the bush 105 is transferred into a curved, circular bottom surface section 111, which is followed by a nozzle cone 109 formed coaxially to the central axis of the bush 105.
  • the nozzle cone 109 is assigned to the outlet opening of the opening 22 in the nozzle body 28 of the hot air nozzle (FIG. 1).
  • circular openings 108 are provided which serve as air outlet openings.
  • annular groove 113 with a semicircular cross section is provided in the region of the transition from the outer wall surface 114 to the plate 104, the openings 108 opening into the bottom thereof.
  • the deflection part 145 can be displaced with respect to the outlet opening of the opening 22.
  • the nozzle cone 109 makes it possible to close the hot air nozzle 21 in the limit case.
  • a scale 146 is provided, which can be designed, for example, as a line engraving. An example of this is shown in the processing according to FIG. 9.
  • the compressed air blowing devices described below are each shown without silencers 82, 83. However, it is also possible to provide these compressed air blowing devices with silencers 82, 83 as described above.
  • the compressed air blowing device 1 shown in FIG. 11 consists of a pistol grip-like handle 2 and a carrier body 26 in which a vortex tube 15 is arranged.
  • a channel 38 is formed, which can be connected by means of a hose coupling 4 to a compressed air hose, not shown.
  • the air valve 5 is arranged at the other end section of the channel 38.
  • This consists of a valve cone 6, which is pressed onto a valve seat 3 by means of a valve spring 7.
  • the preload of the valve spring 7 can be adjusted by means of the adjusting screw 8.
  • the outlet 13 of the valve seat 3 is connected to a channel 39, through which a plunger 10 is guided in sections, which can be actuated by means of a trigger lever 9 articulated on the housing 11 of the handle 2.
  • the plunger 10 is sealed by means of a seal 12. Compressed air can be introduced from the channel 39 into the vortex tube 15 via the vortex chamber 40.
  • the carrier body 26 consists of a connecting piece 60 with a housing holder 25, into each of which a tubular body 58, 59 is screwed.
  • a cold air nozzle 18 is screwed onto the free end section of the tubular body 58, and a warm air nozzle 21 is screwed into the free end section of the tubular body 59.
  • the device carrier 25 is formed as a pin formed on the connecting piece 60, which is rotatably screwed into the housing 11 of the handle 2.
  • a stop 55 is formed on the housing 11, on which the side surfaces 56, 57 of the connecting piece 60 can be brought into contact with the rotation of the carrier body 26.
  • the carrier body 26 can be rotated by 180 °, so that either the cold air nozzle 18 or the warm air nozzle 21 is directed forward.
  • a channel 14 is formed in the center of the device holder 25 and is connected to the channel 39 and a further channel 24 formed in the carrier body 26.
  • the tube body 20 of the vortex tube 15 is mounted in the channel 24.
  • the tubular body 20 and the wall 27 of the tubular body 58 form an annular channel 34.
  • spacers 47 are formed in this, in which the swirl chamber 40 is mounted (FIGS. 11 and 12).
  • the swirl chamber 40 is designed as a flange disk 41 with a central opening 42 and a pipe socket 43 formed on one side.
  • the tubular body 20 of the vortex tube 15 is inserted into the pipe socket 43.
  • a recess 45 is formed with the formation of an outer peripheral edge web 44.
  • slot-shaped grooves 46 are also formed, which open tangentially into the recess 45 (FIG. 13).
  • An annular chamber 23 is formed in the tubular body 58 between the spacers 47 and the flange disk 41, from which compressed air flows into the recess 45 via the grooves 46.
  • the recess 45 forms the vortex chamber interior 50, in which a vortex-shaped air flow is formed.
  • the nozzle body 49 of the cold air nozzle 18 has a central opening 63 which is designed as a diffuser.
  • the diameter of the opening 63 in the region of the section of the nozzle body 49 facing the swirl chamber 40 is smaller than the diameter of the recess 45 and the opening 42.
  • the inlet of the opening 63 thus forms an aperture.
  • a jacket tube 54 which consists of a heat-insulating material, is drawn over the tubular body 20 in the annular channel 34. This limits the heat transfer from the hot air in the tubular body 20 to the outer surface of the tubular body 59.
  • two plates are arranged at right angles to one another in the latter as a flow straightener 52, each of which plates are aligned parallel to the central axis 19 (FIGS. 12, 14). It is also possible to design the flow straightener 52 as a grid, cross or the like.
  • the hot air nozzle 21 consists of a nozzle body 28 with a central opening 22.
  • This opening 22 is designed as a blind hole and is connected in the inner end section of the nozzle body 28 with radially arranged further openings. Via these openings, the channel 22 is connected to an annular chamber 32 which is formed between the nozzle cone 29 and the end section of the tubular body 59.
  • the nozzle cone 29 has a sealing ring and can be displaced relative to the conical nozzle seat 30 by actuating the nozzle body 28.
  • the outlet of the hot air can thus be varied.
  • the tubular body 20 of the vortex tube 15 can have different inner diameters depending on the desired cooling capacity in the area of the cold air nozzle 18. The larger the inside diameter, the greater the cooling capacity.
  • Fig. 15 shows a further compressed air blowing device 65, in which the channel 39 is designed such that, in addition to the channel 14, it is also connected to a shut-off nozzle 61 which is formed on the housing 11 of the handle 2 is. Untreated compressed air can be blown out of the compressed air blowing device 65 through this nozzle 61.
  • a shut-off element 62 is provided in the connecting piece 60, which can shut off the channel 14 if the nozzle 61 is to be put into operation.
  • This design provides a larger area of application for the compressed air blowing device 65.
  • FIG. 16 shows such a compressed air blowing device 70, in which the hot air outlet is optimized without a hot air nozzle 21.
  • a multiple diffuser 67 is used as the throttle member 68 on the warm air side, which is arranged on the end section 66 of the tubular body 20 facing away from the swirl chamber 40.
  • the end face 80 of the tubular body 20 abuts an annular end flange 81 of the carrier body 26, the tubular body 59 of which can be made shorter than the tubular body 59 of the compressed air blowing device 1.
  • the multiple diffuser 67 consists of a base body 69 which is designed as a one-piece profile body.
  • the base body 69 On the inflow side, the base body 69 has a flow guide surface 71.
  • radial webs 72 are formed on the base body 69 on the flow guide surface 71. These webs 72 extend to the plane 73 of the largest diameter of the flow guide surface 71.
  • the grooves 74 formed between the webs 72 have a cross section which widens in the direction of flow of the gas flowing through the tubular body 20.
  • the inflow sections 75 of the grooves 74 are arranged in the region of the flow guide surface 71. Furthermore, the grooves 74 aligned at a slight angle to the central axis 76 of the base body 69.
  • each groove 74 In each groove 74, one side wall 77 is flat and the other side wall 78 is concavely curved in the direction of flow, with both side walls 77, 78 abutting one another at the bottom 79 of the groove 74.
  • the side walls 77, 78 are arranged at an angle of less than 90 ° to one another.
  • the webs 72 have a generally triangular cross-section which decreases in the direction of flow of the gas flowing through the tubular body 20.
  • Embodiments of the multiple diffuser 67 are shown in FIGS. 18 to 21. While the arrangement and design of the grooves 74 and webs 72 are each identical, the flow guide surface 71 is designed differently. It can be conical, spherical or frustoconical. It is also possible to choose a pyramid shape with or without a tip. The specific shape of the multiple diffuser 67 depends on the dimensioning of the vortex tube 15 and the optimization criteria to be taken into account on the hot air side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)

Abstract

The invention relates to a pistol grip type compressed air blower having a handle (2) with a compressed air connection element and an air valve, on which a support body is placed with a turbulence tube (15). On one end section, the support body (26) is formed with a cold air nozzle (18) that has a passage (63) that is coaxial with the center axis of turbulence tube (15) and on an opposite end section, the support body is formed with a warm air nozzle with a hole that is coaxial to the center axis of turbulence tube (15). In some embodiments, the warm air nozzle is adjustable. A turbulence chamber with at least one hole directed tangentially into the interior space of the turbulence chamber is connected between the cold air nozzle (18) and the turbulence tube (15), and receives compressed air via a duct (14) of the handle that is connected to the compressed air connection element via the air valve. Turbulence chamber (40) is formed by a flanged disk that rests on the cold air nozzle (18). The flanged disk has a center hole (42), on one side of which is placed a socket for holding the flanged disk on the cold air nozzle and on the other side of which is formed a continuous outside edge flange (44) in which are formed slot-shaped grooves that tangentially end into a center recess serving as the interior space of the turbulence chamber. The passage of the nozzle body of the cold air nozzle (18) is designed as a diffuser. The cold air nozzle (18) and warm air nozzle (21) may each be detachably connected to a sound damper (82, 83).

Description

Die Erfindung betrifft eine Druckluftblaseinrichtung mit einer pistolengriffartigen Handhabe gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a compressed air blowing device with a pistol grip-like handle according to the preamble of claim 1.

Eine derartige Druckluftblaseinrichtung ist durch die DE-A 36 00 147 bekannt. Bei dieser hat es sich jedoch als nachteilig herausgestellt, daß ein Betrieb der Kaltluftdüse nur in einem begrenzten Temperaturbereich möglich und eine Anpassung an andere Temperaturbereiche nur schwierig durchzuführen ist. Ein weiterer Nachteil dieser bekannten Druckluftblaseinrichtung besteht darin, daß bei größeren Luftdurchsätzen eine erhebliche Geräuschentwicklung entsteht, was beim Einsatz der Druckluftblaseinrichtung als störend empfunden wird.Such a compressed air blowing device is known from DE-A 36 00 147. In this case, however, it has been found to be disadvantageous that the cold air nozzle can only be operated in a limited temperature range and that it is difficult to adapt to other temperature ranges. Another disadvantage of this known compressed air blowing device is that with larger air throughputs there is considerable noise, which is perceived as annoying when the compressed air blowing device is used.

In der GB-A-20 52 711 ist ferner eine Druckluftblaseinrichtung mit einem Wirbelrohr beschrieben, bei der dem Kaltluftauslaß und dem Warmluftauslaß jeweils eine Einrichtung zur Schalldämpfung zugeordnet ist. Hierzu sind Kaltluftauslaß und Warmluftauslaß jeweils von einem zylindrischen Hohlkörper umgeben, der endabschnittseitig eine Bodenplatte aufweist. In der kaltluftseitigen Bodenplatte ist eine Muffe als Kaltluftdüse ausgebildet. Koaxial zu dieser sind in dem Hohlkörper eine weitere Muffe und eine Blende angeordnet. Die weitere Muffe ist mittels eines Flanschstegs mit der Innenwand des Hohlkörpers verbunden. Auf der Innenwand des Hohlkörpers ist ferner ein schalldämpfendes poröses wärmeleitfähiges Material angeordnet. Warmluftseitig ist der Raum zwischen dem Hohlkörper und dem Warmluftauslaßrohr mit einem luftdurchlässigen Material ausgefüllt, das der Schalldämpfung dient. Bei dieser Druckluftblaseinrichtung besteht der Nachteil, daß durch das eingebaute Schalldämpfungsmaterial sowie die Einbauten in dem kaltluftseitigen Hohlkörper große Druckverluste auftreten. Außerdem wird der radiale Austritt der Warmluft aus dem Gehäuse der Druckluftblaseinrichtung als störend empfunden. Dieser Luftaustritt ist dadurch bedingt, daß die Warmluft in Richtung Kaltluftdüse zurückgeführt werden muß, um eine Eisbildung am kaltluftseitigen Schalldämpfer zu verhindern.GB-A-20 52 711 also describes a compressed air blowing device with a swirl tube, in which a device for soundproofing is assigned to the cold air outlet and the warm air outlet. For this purpose, the cold air outlet and warm air outlet are each surrounded by a cylindrical hollow body which has a base plate on the end section side. A sleeve is designed as a cold air nozzle in the base plate on the cold air side. A further sleeve and a diaphragm are arranged coaxially to this in the hollow body. The further sleeve is connected to the inner wall of the hollow body by means of a flange web. A sound-absorbing porous thermally conductive material is also arranged on the inner wall of the hollow body. On the warm air side, the space between the hollow body and the warm air outlet pipe is filled with an air-permeable material that serves to absorb sound. This compressed air blowing device has the disadvantage that large pressure losses occur due to the built-in sound-absorbing material and the built-in parts in the hollow air-side hollow body. In addition, the radial escape of the warm air from the housing of the compressed air blowing device is perceived as disturbing. This air outlet is caused by the fact that the warm air must be returned in the direction of the cold air nozzle in order to prevent ice formation on the cold air side silencer.

Die Aufgabe der Erfindung besteht darin, die Druckluftblaseinrichtung der eingangs genannten Art so zu verbessern, daß die Möglichkeit der Feineinstellung der Kaltlufttemperatur über einen größeren Kaltlufttemperaturbereich vereinfacht wird und mit möglichst geringem Druckverlust auch größere Luftdurchsätze möglich sind, wobei gegenüber der bekannten Druckluftblaseinrichtung die Geräuschentwicklung vermindert werden soll, ohne daß Druckverluste hervorrufende Einbauten oder schalldämpfende Materialien erforderlich sind.The object of the invention is to improve the compressed air blowing device of the type mentioned in such a way that the possibility of fine adjustment of the cold air temperature over a larger cold air temperature range is simplified and larger air throughputs are possible with the lowest possible pressure loss, the noise development being reduced compared to the known compressed air blowing device should, without pressure loss-causing internals or sound-absorbing materials are required.

Erfindungsgemäß erfolgt die Lösung der Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen der Erfindung werden in den abhängigen Ansprüchen beschrieben.According to the invention the object is achieved by the characterizing features of claim 1. Advantageous embodiments of the invention are described in the dependent claims.

Durch die besondere Ausbildung der Schalldämpfer erfolgt eine Führung der Luftströmung, die eine Geräuschminderung bewirkt. Der warmluftseitige Schalldämpfer dient gleichzeitig zur Einstellung der Warmluftdüse. Es hat sich gezeigt, daß mit der erfindungsgemäßen Druckluftblaseinrichtung gegenüber der Temperatur der Druckluft einstufig eine Temperaturabsenkung von ca. 45° C und mehr zu erreichen ist, wobei die Temperatur der aus der Warmluftdüse austretenden Luft nur geringfügig erhöht wird. Für eine örtlich begrenzte Kühlung von Flächen kann die Kaltluftdüse mit schlauchartigen Verlängerungsstücken versehen werden.The special design of the silencers guides the air flow, which reduces noise. The muffler on the warm air side also serves to adjust the warm air nozzle. It has been shown that with the compressed air blowing device according to the invention, a temperature reduction of approximately 45 ° C. and more can be achieved in one stage compared to the temperature of the compressed air, the temperature of the air emerging from the hot air nozzle being increased only slightly. The cold air nozzle can be provided with hose-like extension pieces for localized cooling of surfaces.

Die Erfindung wird nachstehend anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:

Fig. 1
eine Ausbildung einer Druckluftblaseinrichtung mit einem fest an einem Griff montierten Trägerkörper in einer Seitenansicht im teilweisen Schnitt,
Fig. 2a bis 2d
den Trägerkörper nach Fig. 1 in verschiedenen Ansichten, zum Teil im Schnitt,
Fig. 3a bis 3c
die Wirbelkammer der Druckluftblaseinrichtung nach Fig. 1 in verschiedenen Ansichten,
Fig. 4a bis 4c
die Kaltluftdüse nach Fig. 1 in verschiedenen Ansichten,
Fig. 5
die Warmluftdüse in einer Seitenansicht im Schnitt,
Fig. 6a
einen Strömungsgleichrichter in einer Seitenansicht und Draufsicht,
Fig. 7
den Schalldämpfer der Kaltluftdüse in einer Seitenansicht im Schnitt,
Fig. 8
das Gehäuse des Schalldämpfers der Warmluftdüse in einer Seitenansicht im Schnitt,
Fig. 9
die Abwicklung einer Skalierung auf dem Gehäuse nach Fig. 8,
Fig. 10
das Umlenkteil des Schalldämpfers der Warmluftdüse für das Gehäuse nach Fig. 8 in einer Seitenansicht im Schnitt,
Fig. 11
eine weitere Ausbildung einer Druckluftblaseinrichtung in einer Seitenansicht im Schnitt,
Fig. 12
das Wirbelrohr der Druckluftblaseinrichtung nach
Fig. 11
in einer vereinfachten Darstellung mit einem Rohrkörper und einer Wirbelkammer in einer Seitenansicht im Schnitt,
Fig. 13
die Wirbelkammer nach Fig. 12 in einer Ansicht in Richtung A,
Fig. 14
den Rohrkörper nach Fig. 12 in einer Ansicht in Richtung B,
Fig. 15 und 16
weitere Ausbildungen einer Druckluftblaseinrichtung in jeweils einer Seitenansicht im Schnitt,
Fig. 17
das Wirbelrohr der Druckluftblaseinrichtung nach Fig. 16 in einer vergrößerten Seitenansicht im Schnitt,
Fig. 18
den Rohrkörper nach Fig. 17 in einer vergrößerten Ansicht in Richtung C,
Fig. 19 bis 21
verschiedene Ausführungsformen eines Mehrfachdiffusors für die Druckluftblaseinrichtung nach Fig. 16 in schematischen Seitenansichten.
The invention is explained below with reference to the embodiments shown in the drawings. It shows:
Fig. 1
an embodiment of a compressed air blowing device with a carrier body fixedly mounted on a handle in a side view in partial section,
2a to 2d
1 in different views, partly in section,
3a to 3c
1 in different views,
4a to 4c
1 in different views,
Fig. 5
the hot air nozzle in a side view in section,
Fig. 6a
a flow straightener in a side view and top view,
Fig. 7
the muffler of the cold air nozzle in a side view in section,
Fig. 8
the housing of the muffler of the hot air nozzle in a side view in section,
Fig. 9
the handling of a scaling on the housing according to FIG. 8,
Fig. 10
8 is a sectional side view of the deflection part of the muffler of the warm air nozzle for the housing according to FIG. 8,
Fig. 11
a further embodiment of a compressed air blowing device in a side view in section,
Fig. 12
the vortex tube of the compressed air blowing device
Fig. 11
in a simplified representation with a tubular body and a swirl chamber in a side view in section,
Fig. 13
12 in a view in the direction A,
Fig. 14
12 in a view in the direction B,
15 and 16
further designs of a compressed air blowing device in a side view in section,
Fig. 17
16 in an enlarged side view in section,
Fig. 18
17 in an enlarged view in the direction C,
19 to 21
different embodiments of a multiple diffuser for the compressed air blowing device according to FIG. 16 in schematic side views.

Die in Fig. 1 dargestellte Druckluftblaseinrichtung 115 besteht aus einer pistolengriffartigen Handhabe 2 und einem Trägerkörper 26. Die Handhabe 2 weist eine Schlauchkupplung 4 auf, an die ein Druckluftschlauch angeschlossen werden kann. In der Handhabe befindet sich ein nicht näher dargestelltes Luftventil, das mittels des Abzugshebels 9 betätigt werden kann. Über die Kanäle 39, 14 wird Druckluft der Wirbelkammer 40 des in dem Trägerkörper 26 ausgebildeten Wirbelrohrs 15 zugeführt. Der Kanal 14 ist gegen die Umgebung durch eine Madenschraube 117 verschlossen. Die Verbindung des Trägerkörpers 26 mit der Handhabe 2 erfolgt durch eine Schraubverbindung 116 der Düsenkörper 49 der Kaltluftdüse 18 ist in eine Ausnehmung 94 des Trägerkörpers 26 eingeschraubt. Auf dem Düsenkörper 49 ist ein Schalldämpfer 82 so aufgeschraubt, daß die Kaltluftaustrittsöffnung 93 sich innerhalb des Schalldämpfers 82 befindet. Das in dem Trägerkörper 26 ausgebildete Wirbelrohr 15 weist in seinem der Warmluftdüse 21 zugewandten Abschnitt einen Kanalabschnitt 121 mit konstantem Querschnitt auf, an den sich ein als Diffusor 97 ausgebildeter sich in Strömungsrichtung im Querschnitt erweiternder Kanalabschnitt anschließt. An dessen Endabschnitt ist der Düsenkörper 28 einer Warmluftdüse 21 angeordnet. Der Düsenkörper 28 ist mittels einer Madenschraube 118 an dem Trägerkörper 26 festgeklemmt. Über den Düsenkörper 28 ist ein Schalldämpfer 83 geschraubt, ein Dichtungsring 119 dient zur Verhinderung von unkontrolliertem Austritt von Druckluft im Bereich der Gewindeverbindung des Schalldämpfers 83 mit dem Düsenkörper 28. Eine weitere Dichtung 120 ist im Bereich des Kanals 39 vorgesehen und dichtet die Handhabe 2 gegen den Trägerkörper 26 ab. Diese Dichtung 120 kann beispielsweise als Schlauchstück aus Silikon oder dergleichen ausgebildet sein.The compressed air blowing device 115 shown in FIG. 1 consists of a pistol grip-like handle 2 and a carrier body 26. The handle 2 has a hose coupling 4 to which a compressed air hose can be connected. In the handle there is an air valve, not shown, which can be actuated by means of the trigger 9. Compressed air is supplied to the swirl chamber 40 of the swirl tube 15 formed in the carrier body 26 via the channels 39, 14. The channel 14 is closed from the surroundings by a grub screw 117. The connection between the support body 26 and the handle 2 is made by a screw connection 116. The nozzle body 49 of the cold air nozzle 18 is screwed into a recess 94 in the support body 26. A silencer 82 is screwed onto the nozzle body 49 in such a way that the cold air outlet opening 93 is located within the silencer 82. The vortex tube 15 formed in the carrier body 26 has, in its section facing the warm air nozzle 21, a channel section 121 with a constant cross section, to which a channel section designed as a diffuser 97, which widens in cross section in the flow direction, is connected. The nozzle body 28 of a warm air nozzle 21 is arranged at its end section. The nozzle body 28 is clamped to the carrier body 26 by means of a grub screw 118. A silencer 83 is screwed over the nozzle body 28, and a sealing ring 119 serves to prevent uncontrolled escape of compressed air in the area of the threaded connection of the silencer 83 with the nozzle body 28. Another seal 120 is provided in the area of the channel 39 and seals the handle 2 against the carrier body 26. This seal 120 can be designed, for example, as a piece of tubing made of silicone or the like.

In den Figuren 2a bis 2d ist der Trägerkörper 26 nach Fig. 1 in verschiedenen Ansichten dargestellt. Der Trägerkörper 26 ist einstückig ausgebildet und weist das Wirbelrohr 15 mit den für die Anschlußmittel erforderlichen Ausnehmungen und Durchbrechungen auf. An den Kanal 14 schließt sich eine Ringkammer 23 an, in der die Wirbelkammer 40 anzuordnen ist. Die an die Ringkammer 23 anschließende Ausnehmung 94 weist ein Innengewinde 122 auf. Die am anderen Endabschnitt des Wirbelrohrs 15 ausgebildete Ausnehmung 124 für die Warmluftdüse 21 ist ebenfalls mit einem Innengewinde 125 versehen. Für die Madenschraube 118 ist eine Gewindebohrung 126 vorgesehen. Im unteren Abschnitt des Trägerkörpers 26 ist eine Ausnehmung 127 sowie ein Schlitz 128 ausgebildet. Ausnehmung 127 und Schlitz 128 dienen zur Aufnahme entsprechender Ausformungen an der pistolengriffartigen Handhabe 2. Für die Schraubverbindung 116 ist in diesem Bereich eine Durchbrechung 123 vorgesehen. Der Kanal 139 weist eingangsseitig eine Erweiterung auf, die zur Aufnahme der Dichtung 120 dient.2a to 2d, the carrier body 26 according to FIG. 1 is shown in different views. The carrier body 26 is formed in one piece and has the swirl tube 15 with the recesses and openings required for the connection means. An annular chamber 23 adjoins the channel 14, in which the swirl chamber 40 is to be arranged. The recess 94 adjoining the annular chamber 23 has an internal thread 122. The recess 124 for the warm air nozzle 21 formed at the other end section of the vortex tube 15 is also provided with an internal thread 125. A threaded bore 126 is provided for the grub screw 118. A recess 127 and a slot 128 are formed in the lower section of the carrier body 26. Recess 127 and slot 128 serve to receive corresponding shapes on the pistol grip-like handle 2. An opening 123 is provided in this area for the screw connection 116. The channel 139 has an extension on the input side, which serves to receive the seal 120.

In den Figuren 3a bis 3c ist als Wirbelkammer eine Flanschscheibe 41 dargestellt, die bei Einsatz in die Ringkammer 23 des Trägerkörpers 26 einen Wirbelkammerinnenraum 50 ausbildet. Die Flanschscheibe 41 weist eine mittige Durchbrechung 42 auf, an deren einer Seite ein Rohrstutzen 43 unter Ausbildung einer Ausnehmung 129 ausgebildet ist. In diese Ausnehmung 129 kann ein Absatz 96 des Düsenkörpers 49 der Kaltluftdüse 18 mit Festsitz eingesetzt werden. An der anderen Seite der Flanschscheibe 41 ist ein äußerer Randsteg 44 ausgebildet. Die durch diesen geformte mit der Durchbrechung 42 in Verbindung stehende Ausnehmung dient zur Ausbildung des Wirbelkammerinnenraums 50. In dem Randsteg 44 sind mit gleicher Teilung, hier beispielsweise 30°, Nuten 46 ausgebildet, die tangential in die als Wirbelkammerinnenraum 50 dienende Ausnehmung 45 münden. Im Einbauzustand liegt die Stirnfläche 48 des Randstegs 44 an dem Boden der Ausnehmung 94 des Trägerkörpers 26 an. Es ist möglich, die Nuten 46 spiralig oder halbkreisförmig mit gleichem Querschnitt oder sich im Querschnitt düsenförmig verjüngend auszubilden.In FIGS. 3a to 3c, a flange disk 41 is shown as a swirl chamber, which forms a swirl chamber interior 50 when used in the annular chamber 23 of the carrier body 26. The flange disk 41 has a central opening 42, on one side of which a pipe socket 43 is formed with the formation of a recess 129. A shoulder 96 of the nozzle body 49 of the cold air nozzle 18 with a tight fit can be inserted into this recess 129. An outer edge web 44 is formed on the other side of the flange disk 41. The recess formed by this and connected to the opening 42 serves to form the vortex chamber interior 50. In the edge web 44, grooves 46 are formed with the same pitch, here for example 30 °, which open tangentially into the recess 45 serving as the vortex chamber interior 50. In the installed state, the end face 48 of the edge web 44 rests the bottom of the recess 94 of the carrier body 26. It is possible to form the grooves 46 spirally or semicircularly with the same cross-section or tapering in the cross-section of a nozzle.

Der in den Figuren 4a bis 4c dargestellte Düsenkörper 49 der Kaltluftdüse 18 der Druckluftblaseinrichtung 115 ist einstückig ausgebildet und weist auf seinem Umfang ein Außengewinde 130 auf, das dem Innengewinde 122 der Ausnehmung 94 des Trägerkörpers 26 entspricht. Die Durchbrechung 63 ist als Diffusor ausgebildet, wobei dessen Innenwand eine Neigung von z.B. 1:10 haben kann. Der an dem der Kaltluftaustrittsöffnung 93 entgegengesetzte Endabschnitt 95 ausgebildete Absatz 96 dient -wie bereits oben erwähntzur Aufnahme der Flanschscheibe 41. An dem äußeren Umfang des Düsenkörpers 49 sind zwei plane Schlüsselanschlagflächen 131 vorgesehen, die zum Ansatz eines Werkzeugs zum Eindrehen des Düsenkörpers 49 in den Trägerkörper 26 dienen.The nozzle body 49 of the cold air nozzle 18 of the compressed air blowing device 115 shown in FIGS. 4a to 4c is formed in one piece and has an external thread 130 on its circumference, which corresponds to the internal thread 122 of the recess 94 of the carrier body 26. The opening 63 is designed as a diffuser, the inner wall of which has an inclination of e.g. 1:10 can have. The shoulder 96 formed on the end section 95 opposite the cold air outlet opening 93 serves, as already mentioned above, for receiving the flange disk 41. On the outer circumference of the nozzle body 49, two flat key abutment surfaces 131 are provided, which are used to attach a tool for screwing the nozzle body 49 into the carrier body 26 serve.

Der Düsenkörper 28 für die Warmluftdüse 21 weist einen Halteabschnitt 132 auf, an dem ein Außengewinde 133 ausgebildet ist. Das Außengewinde 133 entspricht dem Innengewinde 125 der Ausnehmung 124 des Trägerkörpers 26. An dem Halteabschnitt 132 ist ferner eine umlaufende Nut 134 vorgesehen, die zur Aufnahme des Dichtungsrings 119 dient. Der Einströmabschnitt 135 der Durchbrechung 22 ist in einer bevorzugten Ausführung trompetenförmig in Richtung zum Kanalabschnitt 121 des Wirbelrohrs 15 erweitert. Es sind jedoch auch andere Querschnittsverläufe des Einströmquerschnitts 135 möglich. Wesentlich ist, daß sich die Durchbrechung 22 zum Wirbelrohr 15 im Querschnitt erweitert. An diesen Einströmabschnitt 135 schließt sich ein Kanalabschnitt der Durchbrechung 22 an, der einen konstanten Querschnitt aufweist und sich bis zur Warmluftaustrittsöffnung 136 erstreckt.The nozzle body 28 for the warm air nozzle 21 has a holding section 132, on which an external thread 133 is formed. The external thread 133 corresponds to the internal thread 125 of the recess 124 of the carrier body 26. A circumferential groove 134 is also provided on the holding section 132 and serves to receive the sealing ring 119. In a preferred embodiment, the inflow section 135 of the opening 22 is expanded in a trumpet shape in the direction of the channel section 121 of the vortex tube 15. However, other cross-sectional profiles of the inflow cross section 135 are also possible. It is essential that the opening 22 widens to the vortex tube 15 in cross section. This inflow section 135 is adjoined by a channel section of the opening 22, which has a constant cross section and extends as far as the warm air outlet opening 136.

Der an dem Endabschnitt des Diffusors 97 des Wirbelrohrs 15 der Druckluftblaseinrichtung 115 angeordnete Strömungsgleichrichter 52 (Fig. 1) ist in den Figuren 6a und 6b schematisch dargestellt. Dieser Strömungsgleichrichter 52 besteht aus vier rechtwinklig zueinander angeordneten Platten 137 gleicher Größe, die zu einem Kreuzstück 138 miteinander verbunden sind. Die anströmseitigen Kanten 139 der Platten 137 sind schneidenartig zugespitzt, so daß ein Stau der anströmenden Druckluft in diesem Bereich verhindert wird.The flow straightener 52 (FIG. 1) arranged at the end section of the diffuser 97 of the vortex tube 15 of the compressed air blowing device 115 is shown schematically in FIGS. 6a and 6b. This flow straightener 52 consists of four plates 137 of the same size arranged at right angles to one another, which are connected to one another to form a cross piece 138. The upstream edges 139 of the plates 137 are tapered in a knife-like manner, so that a jam of the incoming compressed air is prevented in this area.

Der der Kaltluftdüse 18 zugeordnete Schalldämpfer 82 ist in Fig. 7 dargestellt. Er besteht aus einer Muffe 84, die an ihren dem Trägerkörper 26 zugeordneten Endabschnitt 85 eine Einziehung 86 aufweist. In der Einziehung 86 ist ein Innengewinde 87 ausgebildet, das dem Außengewinde 130 des Düsenkörpers 49 entspricht. Im Anschluß an die Einströmöffnung 140 erweitert sich die Muffe 84 zu einer Umlenkkammer 141. Die Seitenwand 142 der Umlenkkammer 141 endet am der Einströmöffnung 140 gegenüberliegenden Abschnitt der Umlenkkammer 141 in einer kreisförmigen nutartigen Vertiefung 143, deren Ausgang in die Seitenwand einer Einziehung 90 übergeht. Die Richtungsumlenkungen der Seitenwand 142 sowie der Vertiefung 143 sind zur Vermeidung von wirbeln gerundet ausgebildet. Die Außenwand der Einziehung 90 ist kegelförmig ausgebildet und kann z.B. einen Kegelwinkel von 60° aufweisen. An dem dem Endabschnitt 85 gegenüberliegenden Endabschnitt 88 der Muffe 84 ist diese zu einem Stutzen 89 verjüngt. Koaxial zur Mittelachse 91 ist in dem Stutzen 89 eine Durchbrechung 92 ausgebildet, die sich durch die Einziehung 90 bis in die Umlenkkammer 141 erstreckt. Durch die in der Umlenkkammer 141 bewirkten Strömungsumlenkungen wird eine Verminderung des Schalldrucks der aus der Kaltluftaustrittsöffnung 93 austretenden Kaltluft erzielt.The muffler 82 assigned to the cold air nozzle 18 is shown in FIG. 7. It consists of a sleeve 84, which has a recess 86 at its end section 85 assigned to the carrier body 26. An internal thread 87 is formed in the recess 86, which corresponds to the external thread 130 of the nozzle body 49. Following the inflow opening 140, the sleeve 84 widens into a deflection chamber 141. The side wall 142 of the deflection chamber 141 ends at the section of the deflection chamber 141 opposite the inflow opening 140 in a circular groove-like depression 143, the outlet of which merges into the side wall of a recess 90. The directional diversions of the side wall 142 and the depression 143 are rounded to avoid eddies. The outer wall of the recess 90 is conical and can, for example, have a cone angle of 60 °. At the end section 88 of the sleeve 84 opposite the end section 85, the sleeve 84 is tapered to form a connector 89. An opening 92 is formed in the socket 89 coaxially to the central axis 91 and extends through the indentation 90 into the deflection chamber 141. The flow deflections effected in the deflection chamber 141 reduce the sound pressure of the cold air emerging from the cold air outlet opening 93.

Der warmluftseitige Schalldämpfer 83 besteht aus zwei Bauteilen, die in den Figuren 8 bis 10 dargestellt sind. Ein buchsenförmiger Hohlkörper 98 (Fig. 8) weist an einem Endabschnitt 99 eine Einziehung 100 auf, an der ein Innengewinde 101 ausgebildet ist. Das Innengewinde 101 entspricht dem Außengewinde 133 auf dem Halteabschnitt 132 des Düsenkörpers 28. An die Einziehung 10 schließt sich ein gegenüber deren Durchmesser erweiterter Hohlraum 144 an, der zur Ausbildung einer Umlenkkammer dient. An dem anderen Endabschnitt 102 des Hohlkörpers 98 ist eine Gewindebohrung 103 ausgebildet, in die ein Umlenkteil 145 eingeschraubt werden kann. Das Umlenkteil 145 besteht aus einer Platte 104, an der eine in den Hohlkörper 98 ragende den Düsenkörper 28 im Abstand umgreifende Buchse 105 ausgebildet ist (Fig. 10). Die Bodenfläche 106 der Buchse 105 ist als Strömungsumlenkabschnitt ausgebildet. Hierzu ist die Innenwandfläche 112 der Buchse 105 in einen gewölbten kreisringförmigen Bodenflächenabschnitt 111 übergeführt, an den sich ein koaxial zur Mittelachse der Buchse 105 ausgebildeter Düsenkegel 109 anschließt. Der Düsenkegel 109 ist bei Einbau des Umlenkteils 145 in den Hohlkörper 98 der Austrittsöffnung der Durchbrechung 22 des Düsenkörpers 28 der Warmluftdüse zugeordnet (Fig. 1). In dem außenseitigen Rand 107 der Platte 104 sind kreisringförmig Durchbrechungen 108 vorgesehen, die als Luftaustrittsöffnungen dienen. Zur Verringerung von Wirbelbildungen ist im Bereich des Übergangs der Außenwandfläche 114 zu der Platte 104 eine kreisringförmig ausgebildeten Nut 113 mit einem halbkreisförmigen Querschnitt vorgesehen, in deren Boden die Durchbrechungen 108 münden.The warm air side silencer 83 consists of two components, which are shown in Figures 8 to 10. A sleeve-shaped hollow body 98 (FIG. 8) has an indentation 100 at an end section 99, on which an internal thread 101 is formed. The internal thread 101 corresponds to the external thread 133 on the holding section 132 of the nozzle body 28. The recess 10 is followed by a cavity 144 which is enlarged in relation to its diameter and which serves to form a deflection chamber. At the other end section 102 of the hollow body 98, a threaded bore 103 is formed, into which a deflection part 145 can be screwed. The deflection part 145 consists of a plate 104, on which a bush 105, which projects into the hollow body 98 and surrounds the nozzle body 28 at a distance, is formed (FIG. 10). The bottom surface 106 of the bush 105 is designed as a flow deflection section. For this purpose, the inner wall surface 112 of the bush 105 is transferred into a curved, circular bottom surface section 111, which is followed by a nozzle cone 109 formed coaxially to the central axis of the bush 105. When the deflection part 145 is installed in the hollow body 98, the nozzle cone 109 is assigned to the outlet opening of the opening 22 in the nozzle body 28 of the hot air nozzle (FIG. 1). In the outer edge 107 of the plate 104, circular openings 108 are provided which serve as air outlet openings. To reduce eddy formation, an annular groove 113 with a semicircular cross section is provided in the region of the transition from the outer wall surface 114 to the plate 104, the openings 108 opening into the bottom thereof.

Durch Drehen des Hohlkörpers 98 auf dem Halteabschnitt 132 des Düsenkörpers 28 kann das Umlenkteil 145 im Bezug auf die Austrittsöffnung der Durchbrechung 22 verschoben werden. Durch den Düsenkegel 109 ist es möglich, die Warmluftdüse 21 im Grenzfall zu verschließen. Zur Erleichterung der Einstellung der Warmluftdüse 21 ist auf der Außenfläche des Hohlkörpers 98 im Bereich der Einziehung 100 eine Skalierung 146 vorgesehen, die z.B. als Strichgravur ausgebildet sein kann. Ein Beispiel hierfür ist in der Abwicklung gemäß Fig. 9 dargestellt.By turning the hollow body 98 on the holding section 132 of the nozzle body 28, the deflection part 145 can be displaced with respect to the outlet opening of the opening 22. The nozzle cone 109 makes it possible to close the hot air nozzle 21 in the limit case. To facilitate the setting of the warm air nozzle 21 is on the outer surface of the hollow body 98 in the region of the retraction 100 a scale 146 is provided, which can be designed, for example, as a line engraving. An example of this is shown in the processing according to FIG. 9.

Die nachfolgend beschriebenen Druckluftblaseinrichtungen sind jeweils ohne Schalldämpfer 82, 83 dargestellt. Es ist jedoch möglich, auch diese Druckluftblaseinrichtungen mit Schalldämpfern 82, 83 zu versehen, wie sie oben beschrieben wurden.The compressed air blowing devices described below are each shown without silencers 82, 83. However, it is also possible to provide these compressed air blowing devices with silencers 82, 83 as described above.

Die in Fig. 11 dargestellte Druckluftblaseinrichtung 1 besteht aus einer pistolengriffartigen Handhabe 2 und einem Trägerkörper 26, in dem ein Wirbelrohr 15 angeordnet ist. In der Handhabe 2 ist ein Kanal 38 ausgebildet, der mittels einer Schlauchkupplung 4 mit einem nicht näher dargestellten Druckluftschlauch verbunden werden kann. An dem anderer Endabschnitt des Kanals 38 ist das Luftventil 5 angeordnet. Dieses besteht aus einem Ventilkegel 6, der mittels einer Ventilfeder 7 auf einen Ventilsitz 3 gedrückt wird. Die Vorspannung der Ventilfeder 7 kann mittels der Einstellschraube 8 eingestellt werden. Der Ausgang 13 des Ventilsitzes 3 ist mit einem Kanal 39 verbunden, durch den abschnittsweise ein Stößel 10 geführt ist, der mittels eines am Gehäuse 11 der Handhabe 2 gelenkig angeordneten Abzugshebels 9 betätigbar ist. Der Stößel 10 ist mittels einer Dichtung 12 abgedichtet. Aus dem Kanal 39 kann Druckluft über die Wirbelkammer 40 in das Wirbelrohr 15 eingeleitet werden.The compressed air blowing device 1 shown in FIG. 11 consists of a pistol grip-like handle 2 and a carrier body 26 in which a vortex tube 15 is arranged. In the handle 2, a channel 38 is formed, which can be connected by means of a hose coupling 4 to a compressed air hose, not shown. The air valve 5 is arranged at the other end section of the channel 38. This consists of a valve cone 6, which is pressed onto a valve seat 3 by means of a valve spring 7. The preload of the valve spring 7 can be adjusted by means of the adjusting screw 8. The outlet 13 of the valve seat 3 is connected to a channel 39, through which a plunger 10 is guided in sections, which can be actuated by means of a trigger lever 9 articulated on the housing 11 of the handle 2. The plunger 10 is sealed by means of a seal 12. Compressed air can be introduced from the channel 39 into the vortex tube 15 via the vortex chamber 40.

Der Trägerkörper 26 besteht aus einem Verbindungsstück 60 mit einem Gehäusehalter 25, in das beidseitig jeweils ein Rohrkörper 58, 59 eingeschraubt ist. An dem freien Endabschnitt des Rohrkörpers 58 ist eine Kaltluftdüse 18, an dem freien Endabschnitt des Rohrkörpers 59 eine Warmluftdüse 21 eingeschraubt. Der Geräteträger 25 ist als an dem Verbindungsstück 60 angeformter Zapfen ausgebildet, der in das Gehäuse 11 der Handhabe 2 drehbar eingeschraubt ist. An dem Gehäuse 11 ist ein Anschlag 55 ausgebildet, an dem die Seitenflächen 56, 57 des Verbindungsstücks 60 beim Drehen des Trägerkörpers 26 zur Anlage gebracht werden können. Hierdurch kann der Trägerkörper 26 jeweils um 180° gedreht werden, so daß entweder die Kaltluftdüse 18 oder aber die Warmluftdüse 21 nach vorne gerichtet ist. Mittig in dem Gerätehalter 25 ist ein Kanal 14 ausgebildet, der mit dem Kanal 39 und einem in dem Trägerkörper 26 ausgebildeten weiteren Kanal 24 verbunden ist. In dem Kanal 24 ist der Rohrkörper 20 des Wirbelrohrs 15 gelagert. Der Rohrkörper 20 und die Wand 27 des Rohrkörpers 58 bilden einen Ringkanal 34. Im Bereich des freien Endabschnitts 16 des Rohrkörpers 58 sind in diesem Abstandshalter 47 ausgebildet, in denen die Wirbelkammer 40 gelagert ist (Fig. 11 und 12).The carrier body 26 consists of a connecting piece 60 with a housing holder 25, into each of which a tubular body 58, 59 is screwed. A cold air nozzle 18 is screwed onto the free end section of the tubular body 58, and a warm air nozzle 21 is screwed into the free end section of the tubular body 59. The device carrier 25 is formed as a pin formed on the connecting piece 60, which is rotatably screwed into the housing 11 of the handle 2. A stop 55 is formed on the housing 11, on which the side surfaces 56, 57 of the connecting piece 60 can be brought into contact with the rotation of the carrier body 26. As a result, the carrier body 26 can be rotated by 180 °, so that either the cold air nozzle 18 or the warm air nozzle 21 is directed forward. A channel 14 is formed in the center of the device holder 25 and is connected to the channel 39 and a further channel 24 formed in the carrier body 26. The tube body 20 of the vortex tube 15 is mounted in the channel 24. The tubular body 20 and the wall 27 of the tubular body 58 form an annular channel 34. In the region of the free end section 16 of the tubular body 58, spacers 47 are formed in this, in which the swirl chamber 40 is mounted (FIGS. 11 and 12).

Die Wirbelkammer 40 ist als Flanschscheibe 41 mit mittiger Durchbrechung 42 und einseitig angeformtem Rohrstutzen 43 ausgebildet. In den Rohrstutzen 43 ist der Rohrkörper 20 des Wirbelrohrs 15 eingeführt. In der dem Rohrstutzen 43 abgewandten Fläche der Flanschscheibe 41 ist unter Ausbildung eines äußeren umlaufenden Randsteges 44 eine Ausnehmung 45 ausgebildet. In dem Randsteg 44 sind ferner schlitzförmige Nuten 46 ausgebildet, die tangential in die Ausnehmung 45 münden (Fig. 13). Zwischen den Abstandshaltern 47 und der Flanschscheibe 41 ist in dem Rohrkörper 58 eine Ringkammer 23 ausgebildet, von der Druckluft über die Nuten 46 in die Ausnehmung 45 strömt. Bei eingebauter Kaltluftdüse 18 bildet die Ausnehmung 45 den Wirbelkammerinnenraum 50, in dem ein wirbelförmiger Luftstrom ausgebildet wird.The swirl chamber 40 is designed as a flange disk 41 with a central opening 42 and a pipe socket 43 formed on one side. The tubular body 20 of the vortex tube 15 is inserted into the pipe socket 43. In the surface of the flange disk 41 facing away from the pipe socket 43, a recess 45 is formed with the formation of an outer peripheral edge web 44. In the edge web 44, slot-shaped grooves 46 are also formed, which open tangentially into the recess 45 (FIG. 13). An annular chamber 23 is formed in the tubular body 58 between the spacers 47 and the flange disk 41, from which compressed air flows into the recess 45 via the grooves 46. When the cold air nozzle 18 is installed, the recess 45 forms the vortex chamber interior 50, in which a vortex-shaped air flow is formed.

Der Düsenkörper 49 der Kaltluftdüse 18 weist eine mittige Durchbrechung 63 auf, die als Diffusor ausgebildet ist. Hierbei ist der Durchmesser der Durchbrechung 63 im Bereich des der Wirbelkammer 40 zugewandten Abschnitts des Düsenkörpers 49 kleiner als der Durchmesser der Ausnehmung 45 und der Durchbrechung 42. Der Einlaß der Durchbrechung 63 bildet somit eine Blende.The nozzle body 49 of the cold air nozzle 18 has a central opening 63 which is designed as a diffuser. Here, the diameter of the opening 63 in the region of the section of the nozzle body 49 facing the swirl chamber 40 is smaller than the diameter of the recess 45 and the opening 42. The inlet of the opening 63 thus forms an aperture.

Im Bereich des Rohrkörpers 59 ist in dem Ringkanal 34 ein Mantelrohr 54 über den Rohrkörper 20 gezogen, der aus einem Wärmedämmenden Material besteht. Hierdurch wird die Wärmeübertragung von der Warmluft in dem Rohrkörper 20 zu der äußeren Oberfläche des Rohrkörpers 59 beschränkt.In the area of the tubular body 59, a jacket tube 54, which consists of a heat-insulating material, is drawn over the tubular body 20 in the annular channel 34. This limits the heat transfer from the hot air in the tubular body 20 to the outer surface of the tubular body 59.

An dem der Warmluftdüse 21 zugewandten Endabschnitt des Rohrkörpers 20 sind in diesem als Strömungsgleichrichter 52 zwei rechtwinklig zueinander angeordnete Platten vorgesehen, die jeweils parallel zur Mittelachse 19 ausgerichtet sind (Fig. 12, 14). Es ist auch möglich, den Strömungsgleichrichter 52 als Gitter, Kreuz od. dgl. auszubilden.At the end section of the tubular body 20 facing the warm air nozzle 21, two plates are arranged at right angles to one another in the latter as a flow straightener 52, each of which plates are aligned parallel to the central axis 19 (FIGS. 12, 14). It is also possible to design the flow straightener 52 as a grid, cross or the like.

Die Warmluftdüse 21 besteht aus einem Düsenkörper 28 mit einer mittigen Durchbrechung 22. Diese Durchbrechung 22 ist als Sackloch ausgebildet und im inneren Endabschnitt des Düsenkörpers 28 mit radial angeordneten weiteren Durchbrechungen verbunden. Über diese Durchbrechungen steht der Kanal 22 mit einer Ringkammer 32 in Verbindung, die zwischen dem Düsenkegel 29 und dem endseitigen Abschnitt des Rohrkörpers 59 ausgebildet ist. Der Düsenkegel 29 weist einen Dichtungsring auf und ist durch Betätigung des Düsenkörpers 28 relativ zum konischen Düsensitz 30 verschiebbar. Je nach Einstellung der Warmluftdüse 21 kann somit der Austritt der Warmluft variiert werden.The hot air nozzle 21 consists of a nozzle body 28 with a central opening 22. This opening 22 is designed as a blind hole and is connected in the inner end section of the nozzle body 28 with radially arranged further openings. Via these openings, the channel 22 is connected to an annular chamber 32 which is formed between the nozzle cone 29 and the end section of the tubular body 59. The nozzle cone 29 has a sealing ring and can be displaced relative to the conical nozzle seat 30 by actuating the nozzle body 28. Depending on the setting of the hot air nozzle 21, the outlet of the hot air can thus be varied.

Der Rohrkörper 20 des Wirbelrohrs 15 kann je nach gewünschter Kühlleistung im Bereich der Kaltluftdüse 18 unterschiedliche Innendurchmesser aufweisen. Je größer der Innendurchmesser ist, um so größer ist auch die Kühlleistung.The tubular body 20 of the vortex tube 15 can have different inner diameters depending on the desired cooling capacity in the area of the cold air nozzle 18. The larger the inside diameter, the greater the cooling capacity.

Fig. 15 zeigt eine weitere Druckluftblaseinrichtung 65, bei der der Kanal 39 so ausgebildet ist, daß er außer mit dem Kanal 14 auch mit einer absperrbaren Düse 61 in Verbindung steht, die am Gehäuse 11 der Handhabe 2 ausgebildet ist. Durch diese Düse 61 kann unbehandelte Druckluft aus der Druckluftblaseinrichtung 65 ausgeblasen werden. Für diesen Fall ist in dem Verbindungsstück 60 ein Absperrglied 62 vorgesehen, das den Kanal 14 absperren kann sofern die Düse 61 in Betrieb genommen werden soll. Durch diese Ausbildung ist für die Druckluftblaseinrichtung 65 ein größerer Anwendungsbereich gegeben.Fig. 15 shows a further compressed air blowing device 65, in which the channel 39 is designed such that, in addition to the channel 14, it is also connected to a shut-off nozzle 61 which is formed on the housing 11 of the handle 2 is. Untreated compressed air can be blown out of the compressed air blowing device 65 through this nozzle 61. In this case, a shut-off element 62 is provided in the connecting piece 60, which can shut off the channel 14 if the nozzle 61 is to be put into operation. This design provides a larger area of application for the compressed air blowing device 65.

Es ist auch möglich, den Strömungsgleichrichter 52 derart auszubilden, daß der der Warmluftdüse 21 zugeordnete Endabschnitt des Rohrkörpers 20 im Querschnitt ausreichend soweit verkleinert wird, daß er als Drossel dient. In diesem Fall kann unter bestimmten Voraussetzungen kann auf den Einbau eines Düsenkörpers 28 verzichtet werden.It is also possible to design the flow straightener 52 in such a way that the end section of the tubular body 20 associated with the warm air nozzle 21 is sufficiently reduced in cross section that it serves as a throttle. In this case, the installation of a nozzle body 28 can be dispensed with under certain conditions.

Fig. 16 zeigt eine derartige Druckluftblaseinrichtung 70, bei der unter Verzicht auf eine Warmluftdüse 21 der Warmluftausgang optimiert ist. Als warmluftseitiges Drosselglied 68 wird ein Mehrfachdiffusor 67 verwendet, der an dem der Wirbelkammer 40 abgewandten Endabschnitt 66 des Rohrkörpers 20 angeordnet ist. Die Stirnfläche 80 des Rohrkörpers 20 liegt an einem kreisringförmigen Endflansch 81 des Trägerkörpers 26 an, dessen Rohrkörper 59 gegenüber dem Rohrkörper 59 der Druckluftblaseinrichtung 1 verkürzt ausgebildet sein kann.16 shows such a compressed air blowing device 70, in which the hot air outlet is optimized without a hot air nozzle 21. A multiple diffuser 67 is used as the throttle member 68 on the warm air side, which is arranged on the end section 66 of the tubular body 20 facing away from the swirl chamber 40. The end face 80 of the tubular body 20 abuts an annular end flange 81 of the carrier body 26, the tubular body 59 of which can be made shorter than the tubular body 59 of the compressed air blowing device 1.

Der Mehrfachdiffusor 67 besteht aus einem Grundkörper 69, der als einstückiger Profilkörper ausgebildet ist. Anströmseitig weist der Grundkörper 69 eine Strömungsleitfläche 71 auf. Abströmseitig sind an dem Grundkörper 69 an die Strömungsleitfläche 71 anschließend radiale Stege 72 ausgebildet. Diese Stege 72 erstrecken sich bis zur Ebene 73 des größten Durchmessers der Strömungsleitfläche 71. Die zwischen den Stegen 72 ausgebildeten Nuten 74 weisen einen sich in Strömungsrichtung des durch den Rohrkörper 20 strömenden Gases erweiternden Querschnitt auf. Die Einströmabschnitte 75 der Nuten 74 sind im Bereich der Strömungsleitfläche 71 angeordnet. Ferner sind die Nuten 74 schwachwinklig zur Mittelachse 76 des Grundkörpers 69 ausgerichtet. Bei jeder Nut 74 ist die eine Seitenwand 77 plan und die andere Seitenwand 78 in Strömungsrichtung konkav gewölbt, wobei beide Seitenwände 77, 78 am Boden 79 der Nut 74 aufeinander stoßen. Hierbei sind die Seitenwände 77, 78 zueinander in einem Winkel von kleiner als 90° angeordnet. Die Stege 72 weisen einen sich in Strömungsrichtung des durch den Rohrkörper 20 strömenden Gases verringernden allgemein dreieckförmigen Querschnitt auf. Ausführungsformen des Mehrfachdiffusors 67 sind in den Fig. 18 bis 21 dargestellt. Während die Anordnung und Ausbildung der Nuten 74 und Stege 72 jeweils identisch ist, ist die Strömungsleitfläche 71 unterschiedlich ausgebildet. Sie kann kegelförmig, ballig oder kegelstumpfförmig sein. Es ist auch möglich eine pyramidenförmige Form mit oder ohne Spitze zu wählen. Die konkrete Form des Mehrfachdiffusors 67 hängt ab von der Dimensionierung des Wirbelrohrs 15 sowie den zu berücksichtigenden warmluftseitigen Optimierungskriterien.The multiple diffuser 67 consists of a base body 69 which is designed as a one-piece profile body. On the inflow side, the base body 69 has a flow guide surface 71. On the outflow side, radial webs 72 are formed on the base body 69 on the flow guide surface 71. These webs 72 extend to the plane 73 of the largest diameter of the flow guide surface 71. The grooves 74 formed between the webs 72 have a cross section which widens in the direction of flow of the gas flowing through the tubular body 20. The inflow sections 75 of the grooves 74 are arranged in the region of the flow guide surface 71. Furthermore, the grooves 74 aligned at a slight angle to the central axis 76 of the base body 69. In each groove 74, one side wall 77 is flat and the other side wall 78 is concavely curved in the direction of flow, with both side walls 77, 78 abutting one another at the bottom 79 of the groove 74. The side walls 77, 78 are arranged at an angle of less than 90 ° to one another. The webs 72 have a generally triangular cross-section which decreases in the direction of flow of the gas flowing through the tubular body 20. Embodiments of the multiple diffuser 67 are shown in FIGS. 18 to 21. While the arrangement and design of the grooves 74 and webs 72 are each identical, the flow guide surface 71 is designed differently. It can be conical, spherical or frustoconical. It is also possible to choose a pyramid shape with or without a tip. The specific shape of the multiple diffuser 67 depends on the dimensioning of the vortex tube 15 and the optimization criteria to be taken into account on the hot air side.

Claims (20)

  1. Pistol grip type compressed air blower comprising a pistol grip like handle (2) with a compressed air connection element and an air valve; a support body mounted on said handle and provided with a turbulence tube (15); having a cold air nozzle (18) with a passage coaxially aligned with a center axis of the turbulence tube (15) and having a warm air nozzle (21) disposed at an opposite end of said turbulence tube (15) relative to said first end, being adjustable and having a hole coaxially aligned relative to the center axis of turbulence tube (15); and a turbulence chamber with at least one hole directed tangentially into an interior space of the turbulence chamber that is mounted between said turbulence tube (15) and said cold air nozzle, wherein the turbulence tube (15) is connected to a duct (14) leading to the air valve compressed air connection element via said turbulence chamber; characterized in that said turbulence chamber (40) comprises a flanged disk (41) with a center hole (42) on one side of which a socket (43) for holding the flanged disk on said old air nozzle (18) and on an opposite side of which is formed an outside edge flange (44) with a center recess (45) serving as the interior space of the turbulence chamber, said outside edge flange being provided with slot-shaped grooves (46) that end tangentially in said recess (45) serving as the interior space (50) of the turbulence chamber (40); wherein said passage (63) of the nozzle body (49) of cold air nozzle (18) has a diffuser shape, wherein a sound damper (82, 83) is detachably connected to each of the cold air nozzle (18) and warm air nozzle (21), wherein the sound damper (82) connected to the cold air nozzle (18) is in the form of a bushing (84) having a first end section (85) having a taper (86) of reduced interior diameter with an internal thread (87) for threaded engagement with an external thread formed on said nozzle body (49), and wherein an opposite, discharge, end section (88) of the bushing (84) is formed internally with a taper (90) flow reversing element, said bushing (84) is screwed on the nozele body ((49) of cold air nozzle (18) by means of an internal thread (89) whereby a throughhole (92) is formed coaxially therethrough, said taper (90) being spaced at a distance from a cold air discharge opening (93) of said cold air nozzle (18) and wherein the sound damper (83) for the warm air nozzle (21) is in the 55form of a hollow body having air discharge openings a flow reversing device and a throttle device if need be, and is mounted over the nozzle body (28) of the warm air nozzle (21) or the warm air section (17) of support body (26) in a manner enabling displacement thereof coaxially relatively to the center axis (19) of the turbulence tube (15).
  2. Compressed air blower according to claim 1, characterized in that the diameter of the throughhole (92) is smaller than the diameter of said cold air discharge opening (93).
  3. Compressed air blower according to claim 1, characterized in that the nozzle body (49) of the cold air nozzle (18) is disposed in a recess (94) of the support body (26), and has a shoulder (96), on an end section (95) away from the cold air discharge opening (93), on which said socket (43) of the flanged disk (41) is shoved with a tight fit; and wherein said edge flange (44) of the flanged disk (41) rests on a bottom wall of a recess (94) in an end of the support body (26).
  4. Compressed air blower according to claim 1, characterized in that the nozzle body (28) has a hole (22), which widens in a direction toward said turbulence tube (15).
  5. Compressed air blower according to claim 1, characterized in that a section of said turbulence tube (15) directed toward the nozzle body (28) of the warm air nozzle (21) is made in the form of a diffuser (97).
  6. Compressed air blower according to claim 1, characterized in that the sound damper (83) for the warm air nozzle comprises a sleeve shaped hollow body (98), having a first end section (99) with a taper (100) of reduced internal diameter with an internal thread (101); and wherein an opposite end section (102) of the hollow body (98) is closed by a plate (104) on which is formed a sleeve (105) which projects into said hollow body (98) in spaced surrounding relationship relative to said warm air nozzle body (28), a bottom surface (106) of said sleeve (105) being formed as a flow reversing section; and wherein holes (108) are formed in an outside edge (107) of said plate (104) as air discharge openings.
  7. Compressed air blower according to claim 6, characterized in that a nozzle cone (109) is formed on said bottom surface of said sleeve (105) that is coaxial with respect to the center axis (19) of the turbulence tube (15), said nozzle cone (109) having a surface (110) that smoothly merges into said bottom surface (111), and wherein said bottom surface (111) is circularly concavely arched and merges smoothly into an interior peripheral wall surface (112) of the sleeve (105).
  8. Compressed air blower according to claim 1, characterized in that said turbulence tube (15) has a center tubular body (20) which is placed in a duct (29) of said support body (20); wherein said support body (26) is rotatably connected to said handle (2) by means of a housing holder (25) which is engageable, at each of opposite ends (56, 57) thereof, by a stop (55) formed on the handle (2); wherein an outlet (13) of said air valve (5) is connected to the turbulence chamber (40) of the turbulence tube (15) by a duct (14) formed in said housing holder (25) and an annular duct (34) is formed between a wall (27) of said duct (24) of the support body (26) and the circumference of said tubular body (20); wherein the tubular body (20) is solidly fixed in the socket (43) formed on said first side of the flanged disk (41); and wherein said socket (43) of the flanged disk (41) is held by spacers (47) projecting inwardly from the wall (27) of the support body (20) in a manner creating an annular chamber (23) along which air can flow over an outside edge of the flanged disk (41) through the grooves (46) formed therein, and into the interior space (50) of the turbulence chamber (40).
  9. Compressed air blower according to claim 1, characterized in that a flow rectifier (52) in the form of a grid, cross, or the like is placed in an end section (53) of the turbulence tube (15) which faces away from said turbulence chamber (40).
  10. Compressed air blower according to claim 8, characterized in that a section of the tubular body (20), between the duct (14) and the end section (53), is surrounded by a casing (54) of head insulating material, which fills a corresponding portion of said annular duct (34).
  11. Compressed air blower according to claim 8, in which the warm air nozzle has a nozzle body with a hole that is coaxial with the center axis of the turbulence tube and a nozzle cone that can be pressed on a nozzle seat, characterized in that the nozzle seat (30) is formed on a warm air discharge end of the duct (24) of said support body (26).
  12. Compressed air blower wherein said warm air nozzle is formed by a throttle element placed on a warm air end section of the support body according to claim 8, characterized in that said throttle element (68) placed on warm air end section is a multiple diffuser (67) which is placed in an end section (66) of the tubular body (20) facing away from said turbulence chamber (40) and consists of a one-piece basic body (69); wherein a rotationally symmetric flow conducting surface (71) is formed on an upstream end of said basic body (69), said flow conducting surface (71) being formed with a cross-sectional area that decreases in an upstream direction relative to air flow thereover; wherein a downstream end of said basic body (69) is formed with flanges (72) extending radially as far as a largest diameter end of the flow conducting surface (71) said radially extending flanges (72) forming grooves (74) running axially from said flow conducting surface (71) that have a cross section which widens in said air flow direction; wherein an intake section (75) for said grooves (74) is formed in the area of said largest diameter flow conducting surface (71); and wherein said flanges (72) having a triangular cross section that generally decreases in the flow direction.
  13. Compressed air blower according to claim 12, characterized in that said grooves (74) are aligned at a slight angle relative to a center axis (76) of basic body (69).
  14. Compressed air blower according to claim 12, characterized in that one side wall (77) of each groove (74) is planar and the other side wall (78) thereof is concave ly arched in the flow direction; and wherein both side walls (77, 78) of the groove (74) meet one another at the bottom (79) of the groove (74).
  15. Compressed air blower according to claim 14, characterized in that the side walls (77, 78) are oriented at an angle of less than 90° relative to one another.
  16. Compressed air blower according to claim 12, characterized in that the multiple diffuser (67) is placed on an end section (66) of the tubular body (20), a front end surface (80) of said end section (66) resting on a circular end flange (81) of the support body (26).
  17. Compressed air blower according to claim 8, characterized in that the support body (26) is formed of a tubular body which is mounted in the housing holder (25).
  18. Compressed air blower according to claim 8, characterized in that the support body (26) comprises a first tubular body (58) connected to the cold air nozzle (18), a second tubular body (59) connected to the warm air nozzle (21) and a connection piece (60) for the tubular bodies (58, 59) on which said housing holder (25) is formed.
  19. Compressed air blower according to claim 1, characterized in that the duct (14) of the handle (2) is connected to a second duct (39), formed in the housing (11) of the handle (2), a closable nozzle (61) being placed on an outside end section of said second duct (39), and wherein a shutoff device (62) is provided in the support body (26) for blocking air flow from the handle duct (14).
  20. Compressed air blower according to claim 1, characterized in that the diameter of the passage (63) of the cold air nozzle body (49) in the area of the turbulence chamger (40) is smaller than the diameter of recess (45) and of center hole (42) of the turbulence chamber (40).
EP88109106A 1987-08-03 1988-06-08 Compressed-air blowing device Expired - Lifetime EP0302197B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88109106T ATE66835T1 (en) 1987-08-03 1988-06-08 COMPRESSED AIR BLOWING DEVICE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3725672 1987-08-03
DE19873725672 DE3725672A1 (en) 1987-08-03 1987-08-03 Pressurised air blower hand gun
DE8805752U DE8805752U1 (en) 1987-08-03 1988-04-30
DE8805752U 1988-04-30

Publications (2)

Publication Number Publication Date
EP0302197A1 EP0302197A1 (en) 1989-02-08
EP0302197B1 true EP0302197B1 (en) 1991-09-04

Family

ID=25858229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88109106A Expired - Lifetime EP0302197B1 (en) 1987-08-03 1988-06-08 Compressed-air blowing device

Country Status (5)

Country Link
US (1) US4867380A (en)
EP (1) EP0302197B1 (en)
AT (1) ATE66835T1 (en)
CA (1) CA1303102C (en)
DE (2) DE8805752U1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925775A1 (en) * 1989-08-03 1991-02-07 Scheco Kurt Scherrieble DEVICE WITH TEMPERATURE ISOLATING EFFECT
US5452855A (en) * 1989-11-06 1995-09-26 Hughes Aircraft Company High volume/low pressure spray gun
US5170943A (en) * 1990-06-21 1992-12-15 M-B-W Inc. High velocity pneumatic device
ATE174315T1 (en) * 1993-08-05 1998-12-15 Michael Bryan Land THERMAL PROCESSING OF GLASS
US5407135A (en) * 1993-11-16 1995-04-18 Imperial Chemical Industries Plc Hand-held air blower device
US5772116A (en) * 1993-12-02 1998-06-30 Holt; Earl R. Recirculating paint system having an improved spray gun
DE9403523U1 (en) * 1994-03-04 1994-06-09 Schneider Druckluft Gmbh Device for discharging compressed air
US5539952A (en) * 1994-08-22 1996-07-30 Hayes; Thomas Fluid handling apparatus for maintaining lithographic presses
US5944911A (en) * 1997-06-25 1999-08-31 Winters Company Method and apparatus for sweeping seating areas
KR200239294Y1 (en) * 1999-05-20 2001-09-25 이황우 Air gun for many talent
US6213411B1 (en) * 1999-07-09 2001-04-10 Wuu-Cheau Jou Inlet of blow gun
FR2870899B1 (en) * 2004-05-26 2008-09-05 X Air Sarl LOAD LOSS DEVICE FOR A VORTEX TUBE
NO326582B1 (en) * 2006-10-18 2009-01-12 Hutoco As Apparatus and method for tempering a surface treatment agent, as well as the use of the apparatus
ITPD20070182A1 (en) * 2007-05-23 2008-11-24 Ohg A N I S P A HOT AIR GENERATOR TOOL
US8844841B2 (en) * 2009-03-19 2014-09-30 S.C. Johnson & Son, Inc. Nozzle assembly for liquid dispenser
FR3019066B1 (en) * 2014-03-31 2016-04-29 Staubli Sa Ets COMPRESSED AIR BLOW GUN
CN110791724A (en) * 2019-11-07 2020-02-14 何洋洋 Electric arc spraying device for machining
CN114871419B (en) * 2022-04-19 2023-09-01 福建顶誉铸造有限公司 Harmless aluminum-manganese alloy casting cooling device based on Langmuir effect

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1453161A (en) * 1919-01-06 1923-04-24 Thomas W Murphy Spray nozzle
US1547349A (en) * 1923-06-02 1925-07-28 Howard W Beach Nozzle for air brushes
US3173273A (en) * 1962-11-27 1965-03-16 Charles D Fulton Vortex tube
US3163362A (en) * 1963-02-04 1964-12-29 Max R Mcfee Spray device having outer and interior tubular construction
US3208229A (en) * 1965-01-28 1965-09-28 Fulton Cryogenics Inc Vortex tube
FR2193458A5 (en) * 1972-07-19 1974-02-15 Geoffray Jean P Erre
US3982605A (en) * 1975-05-05 1976-09-28 The Carborundum Company Nozzle noise silencer
US4026474A (en) * 1976-01-22 1977-05-31 Western Electric Company, Inc. Venturi nozzle for air guns
US4187985A (en) * 1978-12-08 1980-02-12 The Continental Group, Inc. Aerosol valve for barrier type packages
US4333754A (en) * 1979-06-27 1982-06-08 Vortec Corporation Anti-icing noise-suppressing vortex tube assembly
SU1268876A1 (en) * 1985-06-11 1986-11-07 Предприятие П/Я А-3513 Nozzle
DE3600147A1 (en) * 1986-01-07 1987-07-09 Sibbertsen Walter Compressed-air blowing device
US4706888A (en) * 1986-07-11 1987-11-17 Calmar, Inc. Multi-purpose nozzle assembly

Also Published As

Publication number Publication date
CA1303102C (en) 1992-06-09
EP0302197A1 (en) 1989-02-08
ATE66835T1 (en) 1991-09-15
US4867380A (en) 1989-09-19
DE8805752U1 (en) 1988-09-15
DE3864628D1 (en) 1991-10-10

Similar Documents

Publication Publication Date Title
EP0302197B1 (en) Compressed-air blowing device
EP1723479B1 (en) Flow regulator
DE3717128C2 (en)
EP2268957A1 (en) Pipe coupling
EP0122526A1 (en) Fuel injector for the combustion chamber of a gas turbine
DE4422749C2 (en) Pump protection valve
EP0777084B1 (en) Mixing device for burner
EP0829666B1 (en) Valve
EP0242579B1 (en) Device for controlling the flow rate and/or the mixing rate of a gaseous fuel-air mixture
EP0508164B1 (en) Device for controlling the flow rate and/or the mixing rate of a gaseous fuel-air mixture
EP0134454B1 (en) Multistep regulated throttle device
DE3725672A1 (en) Pressurised air blower hand gun
CH668624A5 (en) RING PLATE DESIGN VALVE FOR A PISTON COMPRESSOR.
DE2658619A1 (en) Regulating valve generating vortex - is downstream side of valve passage to reduce noise of flow-through valve
EP0572595A1 (en) Water-cooled casing for a hot-blast slide valve
DE3639893A1 (en) Vortex tube
EP0464228B1 (en) Nozzle box
NO791957L (en) BLOW FITTING WITH LOW STOEY LEVEL
EP1214541B1 (en) Tap insert
EP1045943B1 (en) Method and device for reducing the flow-through quantity of liquids
DE3634361A1 (en) DEVICE FOR PRODUCING FOAM
DE1551647B2 (en) DEVICE FOR PROCESSING AN EMULSION FROM HYDROCARBONS AND WATER FOR FEEDING BURNERS
EP4314602A1 (en) Control valve for controlling a gas through-flow
DE19810429A1 (en) Single-hole mixer tap
DE1551647C3 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19890330

17Q First examination report despatched

Effective date: 19900219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910904

Ref country code: BE

Effective date: 19910904

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19910904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910904

Ref country code: SE

Effective date: 19910904

Ref country code: GB

Effective date: 19910904

Ref country code: FR

Effective date: 19910904

Ref country code: NL

Effective date: 19910904

REF Corresponds to:

Ref document number: 66835

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3864628

Country of ref document: DE

Date of ref document: 19911010

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950626

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301