EP0301172B1 - Hydrogenation of carbon-containing feedstocks - Google Patents

Hydrogenation of carbon-containing feedstocks Download PDF

Info

Publication number
EP0301172B1
EP0301172B1 EP88105773A EP88105773A EP0301172B1 EP 0301172 B1 EP0301172 B1 EP 0301172B1 EP 88105773 A EP88105773 A EP 88105773A EP 88105773 A EP88105773 A EP 88105773A EP 0301172 B1 EP0301172 B1 EP 0301172B1
Authority
EP
European Patent Office
Prior art keywords
cold
slop
hydrogenation
fed
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88105773A
Other languages
German (de)
French (fr)
Other versions
EP0301172A2 (en
EP0301172A3 (en
Inventor
Eckard Dr. Wolowski
Frank Dr. Mirtsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0301172A2 publication Critical patent/EP0301172A2/en
Publication of EP0301172A3 publication Critical patent/EP0301172A3/en
Application granted granted Critical
Publication of EP0301172B1 publication Critical patent/EP0301172B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/004Inhibiting of corrosion

Definitions

  • the invention relates to the introduction of alkali donors, especially as a sodium compound, and cold slop in the common high-pressure circuit of a bottom phase hydrogenation with integrated gas phase hydrogenation.
  • the feedstocks are also supplied with an alkali dispenser, especially as a sodium compound, so that the chlorine is chemically bound from the feedstocks and discharged from the process together with the hydrogenation residue. Otherwise chlorine corrosion and salt formation (eg ammonium chloride) can occur in the condensation path of the oil products.
  • salt formation occurs to a greater extent in accordance with the chemical equation NH s + HCL - NH 4 CL (ammonium chloride), since the NH 3 concentration in the circulating gas is increased as a result of the chemical breakdown of the nitrogen in the refined products.
  • the sodium is mixed with the liquid carbonaceous feedstocks as Na 2 S in solid form.
  • the Na 2 S dissolves well in aromatic oils - especially raw coal oils from the bottom phase hydrogenation. With refined - or low aromatic - feed oils, the solubility for Na 2 S is very low.
  • the Na ⁇ S melts above 110 ° C and gradually releases its hydration water when it is heated further in the heating path. In cooler zones, the Na 2 S can then recrystallize and thus block pipes, fittings and containers.
  • soda Na z COs
  • Soda has the disadvantage compared to Na 2 S that soda has a specifically lower sodium content and the alkalinity compared to Na 2 S is reduced.
  • cold slop When operating the bottom phase hydrogenation with integrated gas phase hydrogenation, cold slop also falls - a mixture of partially unrefined product oils and phenolic water - on. This cold slop will not be worked up, as is customary in the bottom phase hydrogenation, in atmospheric distillation, in which the refined oil products and, if appropriate, the refined solvent are separated into boiling fractions.
  • Kaltslop contains unrefined oils and phenolic process water, which are not brought into contact with the refined oils in atmospheric distillation. According to the invention, the cold slop is run over the gas phase hydrogenation and refined.
  • the object of the invention is to feed the alkali dispenser - especially Na 2 S - into the high-pressure circuit while avoiding precipitation and clogging, and also to carry out cold slop processing without using an additional atmospheric distillation.
  • the object of the alkali donor supply is achieved according to the invention in that the alkali donor - specifically Na 2 S - is fed as an aqueous solution into the heating path or upstream of the sump phase reactor or into the sump phase reactor where heating and evaporation of the aqueous Na 2 S solution takes place.
  • the Na 2 S is then in finely divided form in the reaction mixture.
  • the cold slop workup in the bottom phase hydrogenation with integrated gas phase hydrogenation is achieved according to the invention in that the cold slot is fed into the heating path or upstream of the bottom phase reactor or into the bottom phase reactor.
  • the cold slop is expediently added to the hot separator head product. In this way, the addition of cold slops also supports the temperature setting in the gas phase reactor.
  • FIG 1 shows an example of use from coal hydrogenation with an integrated refining stage.
  • the mash (1) consisting of ground coal, catalyst and oil, is mixed with a partial stream of the hydrogenation gas (2) in the mash heat exchangers (24), (25) by indirect heat exchange with the hot separator head product stream (9) and the gas phase product stream (10), warmed up.
  • Most of the hydrogenation gas consisting of cycle gas (15) and fresh hydrogen (17), is heated as stream (5) in the gas heat exchangers (26), (28), (29) and the heating furnace (30) and together with the preheated one Mash fed to the bottom phase reactor (31).
  • the aqueous Na 2 S solution is passed alone or together with the cold slop as stream (18) by means of a high-pressure pump (37) into the bottom phase reactor.
  • the heating or evaporation of aqueous Na 2 S solution and cold slop in the bottom phase reactor (31) also serves to partially dissipate the heat of reaction and thus reduces the amount of quenching gas (16) required for setting the temperature in the bottom phase reactor.
  • the aqueous Na 2 S solution can also be fed in with the cold slop as stream (19) upstream of the bottom phase reactor (31) or as stream (20) between the mash heat exchangers (24) and (25). If the amount of cold slop differs in time, the oven (30) maintains a constant temperature of the Reactor insert (7) set.
  • the cold slop - alone or together with vacuum gas oil - is fed into the hot separator top product stream (9) by means of a high-pressure pump (38).
  • a high-pressure pump (38) Different feed rates as material flow (21) before or as material flow (22) after the mash heat exchanger (25) make it possible to compensate for different heat transfer rates of the heat exchanger (25). This facilitates a constant temperature setting in the gas phase reactor (33).
  • the chlorine is largely bound in the blowdown (8). This prevents salt formation in the material flow (10) and in the gas heat exchanger (28). Water injection to avoid salt formation or to dissolve salts is not necessary in normal operation. Preventive injection of demineralized water (23) behind the intermediate separator (34) into the material flow (12) can be useful if the dosage of the Na 2 S solution is not matched to fluctuations in the chlorine content due to time-related lag. VE water injection also supports the leaching of ammonia in the cycle gas, which has a desirable effect on the salt formation balance in the suppressive direction. Density differences then separate cold oil (13) and water (14) in the cold separator (35) in a manner known per se.

Description

Die Erfindung betrifft die Einbringung von Alkalispendern, speziell als Natriumverbindung, und Kaltslop in den gemeinsamen Hochdruckkreislauf einer Sumpfphasehydrierung mit integrierter Gasphasehydrierung.The invention relates to the introduction of alkali donors, especially as a sodium compound, and cold slop in the common high-pressure circuit of a bottom phase hydrogenation with integrated gas phase hydrogenation.

Bei der Hydrierung von kohlenstoffhaltigen Einsatzstoffen - Kohle, Teeren, schwersiedenden Ölen - wird den Einsatzstoffen außer einem Katalysator auch ein Alkalispender, speziell als Natriumverbindung zugeführt, damit das Chlor aus den Einsatzstoffen chemisch gebunden und gemeinsam mit dem Hydrierrückstand aus dem Prozeß herausgeschleust wird. Anderenfalls können im Kondensationspfad der Ölprodukte Chlorkorrosion und Salzbildung (z.B. Ammoniumchlorid) auftreten. Bei der Sumpfhphasehydrierung mit nachgeschalteter Gasphasehydrierung tritt entsprechend der chemischen Gleichung NHs + HCL--NH4CL (Ammoniumchlorid) die Salzbildung verstärkt auf, da infolge des chemischen Abbaus des Stickstoffs der raffinierten Produkte die NH3-Konzentration im Kreislaufgas erhöht ist.In the hydrogenation of carbonaceous feedstocks - coal, tars, high-boiling oils - in addition to a catalyst, the feedstocks are also supplied with an alkali dispenser, especially as a sodium compound, so that the chlorine is chemically bound from the feedstocks and discharged from the process together with the hydrogenation residue. Otherwise chlorine corrosion and salt formation (eg ammonium chloride) can occur in the condensation path of the oil products. In the bottoms phase hydrogenation with downstream gas phase hydrogenation, salt formation occurs to a greater extent in accordance with the chemical equation NH s + HCL - NH 4 CL (ammonium chloride), since the NH 3 concentration in the circulating gas is increased as a result of the chemical breakdown of the nitrogen in the refined products.

Bei der konventionellen Hydrierung - speziell Kohlehydrierung - wird das Natr:um als Na2S in fester Form den flüssigen kohlenstoffhaltigen Einsatzstoffen zugemischt Das Na2S löst sich in aromatenreichen Einsatzölen - speziell rohen Kohle- ölen aus der Sumpfphasehydrierung - gut auf. Bei raffinierten - bzw. aromatenarmen - Einsatzölen ist die Lösefähigkeit für Na2S sehr gering. Oberhalb 110 °C schmilzt das NaεS und gibt bei weiterer Erwärmung im Aufheizpfad stufenweise sein Hydrationswasser ab. In kühleren Zonen kann es dann zu Rekristallisation des Na2S und somit zu Verstopfungen von Rohrleitungen, Armaturen und Behältern kommen.In conventional hydrogenation - especially coal hydrogenation - the sodium is mixed with the liquid carbonaceous feedstocks as Na 2 S in solid form. The Na 2 S dissolves well in aromatic oils - especially raw coal oils from the bottom phase hydrogenation. With refined - or low aromatic - feed oils, the solubility for Na 2 S is very low. The NaεS melts above 110 ° C and gradually releases its hydration water when it is heated further in the heating path. In cooler zones, the Na 2 S can then recrystallize and thus block pipes, fittings and containers.

Als Alkalispender wird außer Na2S auch Soda (NazCOs) verwendet. Soda hat jedoch gegenüber Na2S den Nachteil, daß Soda einen spezifisch geringeren Natrium-Anteil hat und die Alkalität gegenüber Na2S reduziert ist.In addition to Na 2 S, soda (Na z COs) is also used as an alkali dispenser. Soda has the disadvantage compared to Na 2 S that soda has a specifically lower sodium content and the alkalinity compared to Na 2 S is reduced.

Durch Alkalieinspeisung als wässerige Na2S-Lösung wird Chlor gebunden und Salzbildung (Ammoniumchlorid) in den Gaswärmeaustauschern verhindert.

  • Na2S in fester oder geschmolzener Form hat eine schlechte Lösefähigkeit in raffiniertem Lösungsmittel. Es entstehen Verstopfungen im Bereich der Anmaischung. Wird NaεS in wässriger Lösung in den Aufheizpfad oder in den Sumpfphasereaktor eingespeist, treten diese Schwierigkeiten nicht auf.
By feeding in alkali as an aqueous Na 2 S solution, chlorine is bound and salt formation (ammonium chloride) is prevented in the gas heat exchangers.
  • Na 2 S in solid or molten form has poor solubility in refined solvent. There are blockages in the area of mashing. If NaεS in aqueous solution is fed into the heating path or into the bottom phase reactor, these difficulties do not arise.

Bei dem Betrieb der Sumpfphasehydrierung mit integrierter Gasphasehydrierung fällt auch Kaltslop - ein Gemisch aus z.T. nichtraffinierten Produktölen und phenolhaltigem Wasser - an. Dieser Kaltslop wird nicht - wie sonst üblich bei der Sumpfphasehydrierung - in der atmosphärischen Destillation, in welcher die raffinierten Olprodukte und ggf. das raffinierte Lösungsmittel in Siedefraktionen aufgetrennt werden, aufgearbeitet werden.When operating the bottom phase hydrogenation with integrated gas phase hydrogenation, cold slop also falls - a mixture of partially unrefined product oils and phenolic water - on. This cold slop will not be worked up, as is customary in the bottom phase hydrogenation, in atmospheric distillation, in which the refined oil products and, if appropriate, the refined solvent are separated into boiling fractions.

D. h. Kaltslop enthält unraffinierte Öle und phenolhaltiges Prozeßwasser, welche in der atmosphärischen Destillation nicht mit den raffinierten Ölen in Berührung gebracht werden. Nach der Erfindung wird der Kaltslop über die Gasphsehydrierung gefahren und raffiniert.I.e. Kaltslop contains unrefined oils and phenolic process water, which are not brought into contact with the refined oils in atmospheric distillation. According to the invention, the cold slop is run over the gas phase hydrogenation and refined.

Der Erfindung liegt die Aufgabe zugrunde, den Alkalispender - speziell Na2S - unter Vermeidung einer Ausfällung und Verstopfung in den Hochdruckkreislauf einzuspeisen und weiterhin die Kaltslopaufarbeitung ohne Verwendung einer zusätzlichen atmosphärischen Destillation durchzuführen.The object of the invention is to feed the alkali dispenser - especially Na 2 S - into the high-pressure circuit while avoiding precipitation and clogging, and also to carry out cold slop processing without using an additional atmospheric distillation.

Die Aufgabe der Alkalispenderzufuhr wird erfindungsgemäß dadurch gelöst, daß der Alkalispender - speziell Na2S - als wässerige Lösung in den Aufheizpfad oder vor dem Sumpfphasereaktor oder in den Sumpfphasereaktor eingespeist wird, wo eine Aufheizung und Verdampfung der wässerigen Na2S-Lösung stattfindet. Das Na2S liegt dann in fein verteilter Form im Reaktionsgemisch vor.The object of the alkali donor supply is achieved according to the invention in that the alkali donor - specifically Na 2 S - is fed as an aqueous solution into the heating path or upstream of the sump phase reactor or into the sump phase reactor where heating and evaporation of the aqueous Na 2 S solution takes place. The Na 2 S is then in finely divided form in the reaction mixture.

Die Kaltslopaufarbeitung bei der Sumpfphasehydrierung mit integrierter Gasphasehydrierung wird erfindungsgemäß dadurch gelöst, daß der Kaltslop in den Aufheizpfad oder vor dem Sumpfphasereaktor oder in den Sumpfphasereaktor eingespeist wird.The cold slop workup in the bottom phase hydrogenation with integrated gas phase hydrogenation is achieved according to the invention in that the cold slot is fed into the heating path or upstream of the bottom phase reactor or into the bottom phase reactor.

Zweckmäßig erfolgt eine gemeinsame Einspeisung von wässeriger Na2S-Lösung und Kaltslop in den Prozeß, um zusätzliche Hochdruckeinspeisepumpen einzusparen.It is advisable to jointly feed aqueous Na 2 S solution and cold slop into the process in order to save additional high-pressure feed pumps.

Soll der Kaltslop getrennt von der Na2S-Lösung in den Hochdruck-Kreislauf eingespeist werden, so erfolgt die Kaltslopzugabe zweckmäßig in das Heißabscheiderkopfprodukt. Auf diese Weise unterstützt die Kaltslopzugabe gleichzeitig die Temperatureinstellung im Gasphasereaktor.If the cold slop is to be fed into the high-pressure circuit separately from the Na 2 S solution, the cold slop is expediently added to the hot separator head product. In this way, the addition of cold slops also supports the temperature setting in the gas phase reactor.

In Fig. 1 wird ein Anwendungsbeispiel aus der Kohlehydrierung mit integrierter Raffinationsstufe dargestellt.1 shows an example of use from coal hydrogenation with an integrated refining stage.

Die Maische (1), bestehend aus gemahlener Kohle, Katalysator und ÖI, wird mit einem Teilstrom des Hydriergases (2) in den Maischewärmeaustauschern (24), (25) durch indirekten Wärmeaustausch mit dem Heißabscheiderkopfproduktstrom (9) und dem Gasphaseproduktstrom (10), aufgewärmt. Der größte Teil des Hydriergases, bestehend aus Kreislaufgas (15) und Frischwasserstoff (17), wird als Strom (5) in den Gaswärmeaustauschern (26), (28), (29) und dem Aufheizofen (30) aufgeheizt und gemeinsam mit der vorgewärmten Maische dem Sumpfphasereaktor (31) zugeführt. Die wässerige Na2S-Lösung wird allein oder gemeinsam mit dem Kaltslop als Strom (18) mittels Hochdruckpumpe (37) in den Sumpfphasereaktor geleitet. Die Aufheizung bzw. Verdampfung von wässeriger Na2S-Lösung und Kaltslop im Sumpfphasereaktor (31) dient gleichzeitig zur teilweisen Abführung der Reaktionswärme und reduziert somit die benötigte Quenchgasmenge (16) zur Temperatureinstellung im Sumpfphasereaktor.The mash (1), consisting of ground coal, catalyst and oil, is mixed with a partial stream of the hydrogenation gas (2) in the mash heat exchangers (24), (25) by indirect heat exchange with the hot separator head product stream (9) and the gas phase product stream (10), warmed up. Most of the hydrogenation gas, consisting of cycle gas (15) and fresh hydrogen (17), is heated as stream (5) in the gas heat exchangers (26), (28), (29) and the heating furnace (30) and together with the preheated one Mash fed to the bottom phase reactor (31). The aqueous Na 2 S solution is passed alone or together with the cold slop as stream (18) by means of a high-pressure pump (37) into the bottom phase reactor. The heating or evaporation of aqueous Na 2 S solution and cold slop in the bottom phase reactor (31) also serves to partially dissipate the heat of reaction and thus reduces the amount of quenching gas (16) required for setting the temperature in the bottom phase reactor.

Die wässerige Na2S-Lösung kann auch mit dem Kaltslop als Strom (19) vor den Sumpfphasereaktor (31) oder als Strom (20) zwischen den Maischewärmeaustauschern (24) und (25) eingespeist werden. Bei zeitlich unterschiedlichen Kaltslopmengen wird mit dem Ofen (30) eine konstante Temperatur des Reaktoreinsatzes (7) eingestellt.The aqueous Na 2 S solution can also be fed in with the cold slop as stream (19) upstream of the bottom phase reactor (31) or as stream (20) between the mash heat exchangers (24) and (25). If the amount of cold slop differs in time, the oven (30) maintains a constant temperature of the Reactor insert (7) set.

Alternativ wird der Kaltslop - allein oder gemeinsam mit Vakuumgasöl mittels Hochdruckpumpe (38) in den Heißabscheiderkopfproduktstrom (9) eingespeist. Durch unterschiedliche Einspeisungen als Stoffstrom (21) vor oder als Stoffstrom (22) nach dem Maischewärmeaustauscher (25) können unterschiedliche Wärmeübertragungsleistungen des Wärmeaustauschers (25) kompensiert werden. Hierdurch wird eine konstante Temperatureinstellung im Gasphasereaktor (33) erleichtert.Alternatively, the cold slop - alone or together with vacuum gas oil - is fed into the hot separator top product stream (9) by means of a high-pressure pump (38). Different feed rates as material flow (21) before or as material flow (22) after the mash heat exchanger (25) make it possible to compensate for different heat transfer rates of the heat exchanger (25). This facilitates a constant temperature setting in the gas phase reactor (33).

Durch die Einspeisung der wässerigen Na2S-Lösung in den Prozeß wird das Chlor weitgehend in den Abschlamm (8) gebunden. Somit wird die Salzbildung im Stoffstrom (10) und im Gaswärmeaustauscher (28) verhindert. Eine Wassereinspritzung zur Vermeidung von Salzbildung oder zur Auflösung von Salzen ist bei Normalbetrieb nicht notwendig. Präventiv kann die Einspritzung von VE-Wasser (23) hinter den Zwischenabscheider (34) in den Stoffstrom (12) dann von Nutzen sein, wenn die Dosierung der Na2S-Lösung auf Schwankungen des Chlorgehaltes durch zeitlich bedingten Nachlauf nicht abgestimmt ist. Außerdem unterstützt die VE-Wassereinspritzung die Auswaschung von Ammoniak im Kreislaufgas, was sich auf das Salzbildungsgleichgewicht in unterdrückender Richtung wünschenswert auswirkt. Mittels Dichteunterschiede erfolgt dann eine Trennung von Kaltöl (13) und Wasser (14) im Kaltabscheider (35) in an sich bekannter Weise.By feeding the aqueous Na 2 S solution into the process, the chlorine is largely bound in the blowdown (8). This prevents salt formation in the material flow (10) and in the gas heat exchanger (28). Water injection to avoid salt formation or to dissolve salts is not necessary in normal operation. Preventive injection of demineralized water (23) behind the intermediate separator (34) into the material flow (12) can be useful if the dosage of the Na 2 S solution is not matched to fluctuations in the chlorine content due to time-related lag. VE water injection also supports the leaching of ammonia in the cycle gas, which has a desirable effect on the salt formation balance in the suppressive direction. Density differences then separate cold oil (13) and water (14) in the cold separator (35) in a manner known per se.

Claims (5)

1. Process for hydrogenating carbon-containing feedstocks with hydrogen-containing gases as the hydrogenation gas under the conditions of a liquid phase hydrogenation at elevated temperature and elevated pressure in the presence of a catalyst or also of an additive with downstream hot separator stage and an integrated gas phase hydrogenation stage with feeding of alkali donors - especially as a sodium compound - to prevent chlorine corrosion and salt formation in the condensation path of the gas phase hydrogenation products, characterized in that the alkali donor is fed as an aqueous Na2S solution into the heating path of the feedstocks or upstream of or into the liquid phase reactor and cold slop is fed into the heating path of the feedstocks or upstream of or into the liquid phase reactor or into the top product stream from the hot separator.
2. Process according to Claim 1, characterized in that the aqueous Na2S solution is fed alone or together with the cold slop into the heating path.
3. Process according to Claim 1 or 2, characterized in that the aqueous NazS solution is fed alone or together with the cold slop upstream of or into the liquid phase reactor.
4. Process according to Claim 1 to 3, characterized in that cold slop is fed alone or together with vacuum gas oil into the top product stream from the hot separator upstream of the paste heat exchanger (25).
5. Process according to Claim 1 to 4, characterized in that the cold slop is fed alone or with vacuum gas oil into the top product stream from the hot separator downstream of the paste heat exchanger (25).
EP88105773A 1987-07-31 1988-04-12 Hydrogenation of carbon-containing feedstocks Expired - Lifetime EP0301172B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3725367 1987-07-31
DE3725367A DE3725367C1 (en) 1987-07-31 1987-07-31 Process for the hydrogenation of carbonaceous feedstocks

Publications (3)

Publication Number Publication Date
EP0301172A2 EP0301172A2 (en) 1989-02-01
EP0301172A3 EP0301172A3 (en) 1989-07-26
EP0301172B1 true EP0301172B1 (en) 1990-12-19

Family

ID=6332766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105773A Expired - Lifetime EP0301172B1 (en) 1987-07-31 1988-04-12 Hydrogenation of carbon-containing feedstocks

Country Status (6)

Country Link
EP (1) EP0301172B1 (en)
JP (1) JPS6436686A (en)
AU (1) AU609153B2 (en)
BR (1) BR8803775A (en)
DE (2) DE3725367C1 (en)
PL (1) PL151645B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573154B1 (en) 2005-04-29 2019-07-24 Altaca Insaat ve Dis Ticaret A.S. Apparatus for converting organic material
EP1879981B1 (en) 2005-04-29 2014-07-23 Altaca Insaat ve Dis Ticaret A.S. Method for converting organic material into hydrocarbon fuels
WO2007059783A1 (en) * 2005-11-24 2007-05-31 Scf Technologies A/S Method and apparatus for converting organic material using microwave excitation
CN104388118B (en) * 2014-11-24 2017-01-04 湖南省馨盛能源开发有限责任公司 The technological process of producing diesel by coal tar

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE692631C (en) * 1934-09-26 1940-06-24 I G Farbenindustrie Akt Ges Process for preventing corrosion in the heat treatment of coal, tars, mineral oils and the like like
DE3038309A1 (en) * 1980-10-10 1982-05-19 Ruhrkohle Ag, 4300 Essen COAL LIQUIDATION

Also Published As

Publication number Publication date
PL151645B1 (en) 1990-09-28
EP0301172A2 (en) 1989-02-01
AU1909688A (en) 1989-02-02
EP0301172A3 (en) 1989-07-26
PL273853A1 (en) 1989-04-03
BR8803775A (en) 1989-02-21
JPS6436686A (en) 1989-02-07
AU609153B2 (en) 1991-04-26
DE3725367C1 (en) 1988-09-22
DE3861308D1 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
DE3000242C2 (en)
DE2654635B2 (en) Process for the continuous production of hydrocarbon oils from coal by cracking pressure hydrogenation
EP0301172B1 (en) Hydrogenation of carbon-containing feedstocks
EP0116180B1 (en) Process for smoldering hydrogenation residues
DD148640A5 (en) COAL LIQUIDATION METHOD USING A SELECTIVE CHEMICAL SUPPLY
DD147678A5 (en) COAL LIQUIDATION METHOD WITH INTERNAL HEAT TRANSFER
DE2651253C2 (en) Process for hydrogenating coal
DE2816824A1 (en) INCREASED PRE-HEATING OF GASES FROM A SULFUR PLANT
DE1518505A1 (en) Process for the separation of carbon dioxide and ammonia from their mixtures with water
DE3242727A1 (en) METHOD FOR CONVERTING HEAVY OILS OR PETROLEUM RESIDUES TO GASEOUS AND DISTILLABLE HYDROCARBONS
DE1618928A1 (en) Process for the production of ethylene
DD158794A5 (en) METHOD FOR PRODUCING A NORMALLY SOLID SOLUBLE COAL
DE2728537A1 (en) METHOD FOR LIQUIDIZING COAL
DE3022158C2 (en) Process for hydrogenating coal liquefaction
US372243A (en) Joseph van euymbbke
DE3147391A1 (en) Process for cooling a hot reaction gas
DE958496C (en) Process for the catalytic hydrogenating refining of hydrocarbons which are liquid or solid at room temperature, at elevated temperature and pressure in the gas phase and / or liquid phase in the presence of luminous gas, coke oven gas, carbonization gas or similar gases containing hydrogen
DE956539C (en) Process for refining hydrocarbons which are liquid under normal conditions by catalytic treatment with hydrogen or hydrogen-containing gases
DE3524449C2 (en)
DE2156880A1 (en) Separation by crystallization in the presence of water
DE660019C (en) Process for the treatment of carbonaceous substances with hydrogenating gases
DE3022159C2 (en) Process for hydrogenating coal liquefaction
DE3943036C2 (en) Process for the hydrogenation of a carbon-containing feed, in particular coal and / or heavy oil
DE1091122B (en) Method of breaking down lignin
US592517A (en) Walther feld

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19890610

17Q First examination report despatched

Effective date: 19900510

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3861308

Country of ref document: DE

Date of ref document: 19910131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930315

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940318

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940412

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950510

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960417

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960430

BERE Be: lapsed

Owner name: RUHRKOHLE A.G.

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST