EP0300927A1 - Aluminium based alloy for cans and process of manufacturing - Google Patents

Aluminium based alloy for cans and process of manufacturing Download PDF

Info

Publication number
EP0300927A1
EP0300927A1 EP88420210A EP88420210A EP0300927A1 EP 0300927 A1 EP0300927 A1 EP 0300927A1 EP 88420210 A EP88420210 A EP 88420210A EP 88420210 A EP88420210 A EP 88420210A EP 0300927 A1 EP0300927 A1 EP 0300927A1
Authority
EP
European Patent Office
Prior art keywords
alloy
thickness
dissolution
content
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88420210A
Other languages
German (de)
French (fr)
Other versions
EP0300927B1 (en
Inventor
Didier Teirlinck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Cegedur Societe de Transformation de lAluminium Pechiney SA
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cegedur Societe de Transformation de lAluminium Pechiney SA, Pechiney Rhenalu SAS filed Critical Cegedur Societe de Transformation de lAluminium Pechiney SA
Priority to AT88420210T priority Critical patent/ATE66699T1/en
Publication of EP0300927A1 publication Critical patent/EP0300927A1/en
Application granted granted Critical
Publication of EP0300927B1 publication Critical patent/EP0300927B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to an Al alloy containing essentially Si, Mn and Mg, intended for the manufacture of boxes and its process for obtaining in the form of sheets or strips.
  • One way to combat competition from other packaging materials, is to reduce the thicknesses of the strips of Al alloys used for the manufacture of boxes. Given the properties that the finished boxes must have, this reduction in thickness must be compensated by an increase in the mechanical properties of the alloys used. Unless otherwise indicated, the alloys will be designated according to the nomenclature of the Aluminum Association.
  • the alloys intended for the manufacture of boxes currently belong to two families of alloys according to the selected application: - 3004 (1% Mg - 1% Mn) for drawn drawn box bodies, - 5000 series alloys (Al-Mg) for the beverage can lids (Al - 4.5% Mg) or the bodies and lids of food cans (Al - 3% Mg).
  • the alloys currently used are at the limits of what can be achieved in mechanical characteristics: a) 3004
  • the addition of Mg is limited by two phenomena: - the appearance of seizure during stretching, - the decrease in formability.
  • the hardening route during annealing of the coatings such as that described in patent application EP 121,620, involves adding Cu to the alloy.
  • the present invention therefore relates to an alloy intended for the manufacture of bodies of boxes and lids which has both high mechanical characteristics and an excellent formability by drawing (shrinking and expansion) and by drawing.
  • Its composition is as follows (% by weight). - the contents of Mg and Si are limited by the polygon having the following vertices: Mg% Yes% AT 0.1 0.7 B 0.4 0.7 VS 0.5 1.0 D 0.5 1.2 E 0.1 1.4
  • the Mn is between 0.8% and 1.15% and preferably between 0.85 and 1.10%. It can also contain up to 0.6% Cu, up to 0.5% Fe, up to 0.3% (each) of Cr, Zr, Ti, B, Zn, and up to 0.05% each and 0.15% in total of other elements, remains Al.
  • the Mg content must be at least 0.1%. If, on the other hand, it is such that the alloy has a composition approaching too close to the domain of existence of Mg2Si, this may not completely redissolve during dissolution; it is preferable that its maximum content is limited to 0.45%. - Similarly, the Si content must be sufficient to ensure effective hardening, which means that Si>0.7%; excess silicon will contribute all the more to hardening as it is in solid solution. Its maximum content must therefore be such that the composition of the alloy is above the Al-Si solvus surface for the dissolution conditions used.
  • - manganese must be introduced in a large quantity (> 0.8%), preferably> 0.85%, to allow the formation of large precipitates Al6 (Fe, Mn) and / or ⁇ Al (Fe, Mn) Si in combination with iron during the casting and homogenization of the metal.
  • These large phases (1 to 15 ⁇ m at the final thickness) and in sufficient quantity, ensure that there is no jamming during stretching. Its content must however be limited to 1.15%, preferably 1.10%, because it can, always in combination with iron, form very coarse primary crystals which will cause holes in the very thin walls ( ⁇ 100 ⁇ m) stretched beverage cans.
  • - copper is added within the limit of food standards (Cu ⁇ 0.6%) to contribute to hardening.
  • the manufacturing range generally includes semi-continuous casting of trays, homogenization, hot rolling, possible cold rolling, solution and quenching, possible maturation, cold rolling with or without intermediate treatment and structural hardening. This latter treatment is usually carried out during the firing of varnish-type surface coatings.
  • the metal can be continuously cast in the form of strips of thickness 6 to 12 mm, which eliminates the hot rolling step; after homogenization, the continuously cast metal undergoes the same range as the metal obtained by semi-continuous casting of trays.
  • the operations are preferably carried out as follows:
  • the transformation range must be adapted to the desired final product but the solution must be complete (structure free of precipitates of Si and / or Mg2Si).
  • the strip is hot rolled to bring it to a thickness generally between 2 and 7 mm, the temperature at the end of hot rolling having to be between 280 and 350 ° C. to ensure recrystallization of the metal during the coil cooling.
  • a first cold rolling can be carried out up to a thickness of 1 to 2 mm.
  • This solution treatment can be done in a through oven or alternatively in a static oven if the temperature rise rate is high enough and if the cooling allows the alloy to be metallurgically quenched.
  • the dissolution temperature should allow complete dissolution of the addition elements. For this, we will choose a temperature between 540 and 590 ° C, preferably 550-570 ° C.
  • the duration of the treatment varies from a few seconds to several minutes depending on the thickness of the product: in a static oven, it can be up to 1 hour.
  • the metal After this treatment, the metal must be quenched to ensure maximum effectiveness of the structural hardening. For this, we will ensure that the cooling rate is greater than 100 ° C / h.
  • the metal is then cold rolled to the final thickness. Alternatively, it can undergo before this step or during it, an intermediate treatment at a temperature between 100 and 220 ° C for a period of 5 min to 8 h.
  • FIG. 1 represents the field of the compositions claimed in the Mg-Si plane.
  • the two alloys according to the invention of the following composition are poured by the conventional semi-continuous process.
  • Alloy Mg% Yes% Mn% Cu% Fe% AT 0.30 1.25 1.03 0.30 0.37 B 0.45 0.95 1.00 0.28 0.35 These alloys are homogenized for 10 h at 600 ° C followed by a 4 h stage at 500 ° C (descent in 2 h). These alloys are hot rolled to a thickness of 3.5 mm and they are coiled at a temperature of the order of 330 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Forging (AREA)
  • Coating With Molten Metal (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Metal Rolling (AREA)
  • Table Devices Or Equipment (AREA)
  • Packages (AREA)

Abstract

An Al alloy containing essentially Si, Mn and Mg, intended for the manufacture of cans and process for obtaining it in sheet metal form. This alloy has the following composition (in weight %): the Mg and Si contents are included in the ABDCE polygon of coordinates: Mg Si A 0.1% 0.7% B 0.4% 0.7% C 0.5% 1.0% D 0.5% 1.2% E 0.1% 1.4% The process essentially comprises a double-plateau homogenisation and an intermediate tempering treatment during the final cold rolling. The mechanical characteristics obtained make it possible to envisage the reduction in the thickness of the bodies of deep-drawn cans and the use of the same alloy for the production of the can body and of the lid. <IMAGE>

Description

L'invention concerne un alliage d'Al contenant essentiellement du Si, du Mn et du Mg, destiné à la fabrication de boîtes et son procédé d'obtention sous forme de tôles ou bandes.
Une voie pour lutter contre la concurrence des autres matériaux d'emballage, est de diminuer les épaisseurs des bandes en alliages d'Al utilisées pour la fabrication des boîtes.
Etant donné les propriétés que doivent posséder les boîtes finies, cette diminution d'épaisseur doit être compensée par une augmentation des propriétés mécaniques des alliages utilisés.
Sauf indication contraire, les alliages seront désignés suivant la nomenclature de l'Aluminium Association.
Les alliages destinés à la fabrication de boîtes appartiennent actuellement à deux familles d'alliages selon l'application retenue :
- le 3004 (1% Mg - 1% Mn) pour les corps de boîtes emboutis étirés,
- les alliages de la série 5000 (Al-Mg) pour les couvercles de boîtes boissons (Al - 4,5% Mg) ou les corps et couvercles de boîtes alimentaires (Al - 3% Mg).
Or, les alliages utilisés actuellement sont aux limites de ce que l'on peut atteindre en caractéristiques mécaniques :
a) 3004
L'ajout de Mg est limité par deux phénomènes :
- l'apparition du grippage lors de l'étirage,
- la diminution de l'aptitude à la formabilité.
La voie du durcissement lors du recuit des revêtements, telle que celle décrite dans la demande de brevet EP 121.620, passe par l'ajout de Cu à l'alliage. Cet ajout est limité étant donné les normes actuelles d'alimentarité (Cu < 0,6%) et la nécessaire résistance à la corrosion, ce qui fait que les propriétés mécaniques atteintes, bien que supérieures à celles du 3004 conventionnel, ne permettent pas de diminuer très significativement les épaisseurs des bandes pour corps de boîtes.
b) alliages de la série 5000
Ces alliages sont durcis grâce à la présence d'une forte teneur de Mg en solution solide qui induit un durcissement élevé par écrouissage. Mais pour les applications boîtes alimentaires, l'ajout de Mg rend le métal trop anisotrope à l'état H19 : le détourage important après emboutissage fait perdre les éventuels gains dûs à une épaisseur plus faible. De plus, la formabilité diminue lorsque l'on ajoute trop de Mg, l'alliage devenant de moins en moins emboutissable.
The invention relates to an Al alloy containing essentially Si, Mn and Mg, intended for the manufacture of boxes and its process for obtaining in the form of sheets or strips.
One way to combat competition from other packaging materials, is to reduce the thicknesses of the strips of Al alloys used for the manufacture of boxes.
Given the properties that the finished boxes must have, this reduction in thickness must be compensated by an increase in the mechanical properties of the alloys used.
Unless otherwise indicated, the alloys will be designated according to the nomenclature of the Aluminum Association.
The alloys intended for the manufacture of boxes currently belong to two families of alloys according to the selected application:
- 3004 (1% Mg - 1% Mn) for drawn drawn box bodies,
- 5000 series alloys (Al-Mg) for the beverage can lids (Al - 4.5% Mg) or the bodies and lids of food cans (Al - 3% Mg).
However, the alloys currently used are at the limits of what can be achieved in mechanical characteristics:
a) 3004
The addition of Mg is limited by two phenomena:
- the appearance of seizure during stretching,
- the decrease in formability.
The hardening route during annealing of the coatings, such as that described in patent application EP 121,620, involves adding Cu to the alloy. This addition is limited given the current food grade standards (Cu <0.6%) and the necessary corrosion resistance, which means that the mechanical properties achieved, although superior to those of conventional 3004, do not allow not to significantly reduce the thicknesses of the strips for box bodies.
b) 5000 series alloys
These alloys are hardened thanks to the presence of a high content of Mg in solid solution which induces a high hardening by work hardening. But for food can applications, the addition of Mg makes the metal too anisotropic in the H19 state: the large trimming after stamping causes any gains due to a reduced thickness to be lost. In addition, the formability decreases when too much Mg is added, the alloy becoming less and less stampable.

Toutes ces raisons font que la demanderesse s'est attachée à mettre au point des alliages à durcissement structural pour application au boîtage conserve et alimentaire.
Etant donné les contraintes d'alimentarité et des gains de caractéristiques mécaniques importants à réaliser, elle a choisi les alliages Al-Mg-Si avec addition de Mn.
Cette voie a déjà été explorée par différents producteurs qui ont proposé plusieurs compositions qui, selon l'avis de la demanderesse, présentent de nombreux inconvénients.
Par exemple, les demandes de brevets EP 59.812 et 97.319 décrivent des alliages Al-Mg-Si-Mn dans lesquels le rapport Mg/Si est proche de la valeur 1,73 donnant ainsi des alliages voisins de la composition stoechiométrique Mg2Si. Ces alliages présentent cependant le risque d'une mise en solution incomplète. La présence de Mg2Si hors solution est en effet néfaste vis-à-vis de la formabilité du métal surtout pour les applications boîtes boissons où les parois sont fortement étirées et où unexcès de précipités peut créer un endommagement conduisant à la rupture lors de l'opération d'étirage.
D'autres brevets, tel que le FR 2.375.332, concernent des alliages Al-Si-Mg à fort excès de Si par rapport à la stoechiométrie Mg2Si, sans ajout significatif de Mn. De tels alliages sont impropres à l'étirage important lors de la fabrication de corps de boîtes boissons, car un fort grippage, c'est-à-dire l'adhésion de l'aluminium sur les outils d'étirage, apparaît rapidement, provoquant de nombreuses casses lors de l'étirage.
For all these reasons, the Applicant has endeavored to develop alloys with structural hardening for application to canned and food packaging.
Given the constraints of food supply and the significant gains in mechanical characteristics to be achieved, it chose Al-Mg-Si alloys with the addition of Mn.
This route has already been explored by various producers who have proposed several compositions which, in the opinion of the applicant, have many drawbacks.
For example, patent applications EP 59,812 and 97,319 describe Al-Mg-Si-Mn alloys in which the Mg / Si ratio is close to the value 1.73 thus giving alloys close to the stoichiometric composition Mg2Si. However, these alloys present the risk of incomplete dissolution. The presence of Mg2Si out of solution is indeed detrimental with respect to the formability of the metal, especially for beverage can applications where the walls are strongly stretched and where an excess of precipitates can create damage leading to rupture during the operation. stretching.
Other patents, such as FR 2,375,332, relate to Al-Si-Mg alloys with a large excess of Si relative to the stoichiometry Mg2Si, without significant addition of Mn. Such alloys are unsuitable for high drawing during the manufacture of bodies of beverage cans, because a strong seizing, that is to say the adhesion of aluminum on the drawing tools, appears quickly, causing many breaks during stretching.

La présente invention concerne donc un alliage destiné à la fabrication de corps de boîtes et de couvercles qui possède à la fois des caractéristiques mécaniques élevées et une excellente aptitude à la mise en forme par emboutissage (rétreint et expansion) et par étirage.
Sa composition est la suivante (% en poids).
- les teneurs en Mg et Si sont limitées par le polygone ayant les sommets suivants : Mg% Si% A 0,1 0,7 B 0,4 0,7 C 0,5 1,0 D 0,5 1,2 E 0,1 1,4 Le Mn est compris entre 0.8% et 1,15% et de préférence entre 0.85 et 1.10%.
Il peut en outre contenir jusqu'à 0,6% de Cu, jusqu'à 0,5% de Fe, jusqu'à 0,3% (chacun) de Cr, Zr, Ti, B, Zn, et jusqu'à 0,05% chacun et 0,15% au total d'autres éléments, reste Al.
Ces limites de compositions sont justifiées de la façon suivante :
- pour assurer le durcissement par précipitation, il faut que la teneur en Mg soit au moins de 0,1%. Si par contre, elle est telle que l'alliage a une composition s'approchant de trop près du domaine d'existence de Mg2Si, celui-ci risque de ne pas se redissoudre totalement lors de la mise en solution ; il est préférable que sa teneur maximale soit limitée à 0,45%.
- de même la teneur en Si doit être suffisante pour assurer un durcissement efficace, ce qui impose que Si > 0,7% ; le silicium en excès contribuera d'autant plus au durcissement qu'il sera en solution solide. Sa teneur maximale devra donc être telle que la composition de l'alliage soit au-dessus de la surface solvus Al-­Si pour les conditions de mise en solution utilisées
- le manganèse doit être introduit en quantité importante (> 0,8%), de préférence > 0,85%, pour permettre la formation de gros précipités Al6 (Fe, Mn) et/ou α Al (Fe, Mn) Si en combinaison avec le fer lors de la coulée et de l'homogénéisation du métal. Ces phases de taille importante (1 à 15 µm à l'épaisseur finale) et en quantité suffisante, assurent une absence de grippage lors de l'étirage. Sa teneur doit cependant être limitée à 1,15%, de préférence 1,10%, car il peut, toujours en combinaison avec le fer, former des cristaux primaires très grossiers qui provoqueront des trous dans les parois très minces (≃ 100 µm) des boîtes boissons étirées.
- le cuivre est ajouté dans la limite des normes d'alimentarité (Cu < 0,6%) pour contribuer au durcissement. Au-delà, il provoque des problèmes de corrosion, malgré le revêtement existant sur les boîtes et couvercles.
La gamme de fabrication comporte généralement la coulée semi-continue de plateaux, homogénéisation, laminage à chaud, laminage à froid éventuel, mise en solution et trempe, maturation éventuelle, laminage à froid avec ou sans traitement intermédiaire et durcissement structural. Ce dernier traitement est habituellement effectué lors de la cuisson des revêtements superficiels type vernis.
Alternativement, le métal peut être coulé en continu sous forme de bandes d'épaisseur 6 à 12 mm, ce qui supprime l'étape de laminage à chaud; après homogénéisation, le métal coulé en continu subit la même gamme le métal obtenu par coulée semi-continue de plateaux.
En vue d'obtenir les caractéristiques optimales, les opérations sont, de préférence, conduites de la façon suivante :
La gamme de transformation doit être adaptée au produit final souhaité mais la mise en solution doit être complète (structure exempte de précipités de Si et/ou Mg2Si).
Pour faciliter la mise en solution ainsi que pour contrôler la taille du grain, il est nécessaire de réaliser une homogénéisation à double palier . Cette homogénéisation doit être précédée d'une montée lente en température.
On choisira donc une homogénéisation avec un premier palier entre 550 et 620°C, de préférence 580 à 600°C pendant une durée de 6 à 24 h, suivi d'un second palier entre 450 et 530°C, de préférence 480-510°C pendant une durée maximale de 4 h ; la descente à la température du second palier sera contrôlée entre 20°/h et 100°/h.
Après cette étape, on lamine à chaud la bande pour l'amener à une épaisseur généralement comprise entre 2 et 7 mm, la température de fin de laminage à chaud devant être comprise entre 280 et 350°C pour assurer une recristallisation du métal lors du refroidissement de la bobine.
The present invention therefore relates to an alloy intended for the manufacture of bodies of boxes and lids which has both high mechanical characteristics and an excellent formability by drawing (shrinking and expansion) and by drawing.
Its composition is as follows (% by weight).
- the contents of Mg and Si are limited by the polygon having the following vertices: Mg% Yes% AT 0.1 0.7 B 0.4 0.7 VS 0.5 1.0 D 0.5 1.2 E 0.1 1.4 The Mn is between 0.8% and 1.15% and preferably between 0.85 and 1.10%.
It can also contain up to 0.6% Cu, up to 0.5% Fe, up to 0.3% (each) of Cr, Zr, Ti, B, Zn, and up to 0.05% each and 0.15% in total of other elements, remains Al.
These composition limits are justified as follows:
- to ensure precipitation hardening, the Mg content must be at least 0.1%. If, on the other hand, it is such that the alloy has a composition approaching too close to the domain of existence of Mg2Si, this may not completely redissolve during dissolution; it is preferable that its maximum content is limited to 0.45%.
- Similarly, the Si content must be sufficient to ensure effective hardening, which means that Si>0.7%; excess silicon will contribute all the more to hardening as it is in solid solution. Its maximum content must therefore be such that the composition of the alloy is above the Al-Si solvus surface for the dissolution conditions used.
- manganese must be introduced in a large quantity (> 0.8%), preferably> 0.85%, to allow the formation of large precipitates Al6 (Fe, Mn) and / or α Al (Fe, Mn) Si in combination with iron during the casting and homogenization of the metal. These large phases (1 to 15 μm at the final thickness) and in sufficient quantity, ensure that there is no jamming during stretching. Its content must however be limited to 1.15%, preferably 1.10%, because it can, always in combination with iron, form very coarse primary crystals which will cause holes in the very thin walls (≃ 100 µm) stretched beverage cans.
- copper is added within the limit of food standards (Cu <0.6%) to contribute to hardening. Beyond that, it causes corrosion problems, despite the existing coating on the boxes and lids.
The manufacturing range generally includes semi-continuous casting of trays, homogenization, hot rolling, possible cold rolling, solution and quenching, possible maturation, cold rolling with or without intermediate treatment and structural hardening. This latter treatment is usually carried out during the firing of varnish-type surface coatings.
Alternatively, the metal can be continuously cast in the form of strips of thickness 6 to 12 mm, which eliminates the hot rolling step; after homogenization, the continuously cast metal undergoes the same range as the metal obtained by semi-continuous casting of trays.
In order to obtain the optimum characteristics, the operations are preferably carried out as follows:
The transformation range must be adapted to the desired final product but the solution must be complete (structure free of precipitates of Si and / or Mg2Si).
To facilitate dissolution and to control the size of the grain, it is necessary to carry out a double-stage homogenization. This homogenization must be preceded by a slow rise in temperature.
We will therefore choose a homogenization with a first level between 550 and 620 ° C, preferably 580 to 600 ° C for a period of 6 to 24 h, followed by a second level between 450 and 530 ° C, preferably 480-510 ° C for a maximum duration of 4 h; the descent to the temperature of the second level will be controlled between 20 ° / h and 100 ° / h.
After this step, the strip is hot rolled to bring it to a thickness generally between 2 and 7 mm, the temperature at the end of hot rolling having to be between 280 and 350 ° C. to ensure recrystallization of the metal during the coil cooling.

Selon les caractéristiques souhaitées, on peut réaliser un premier laminage à froid jusqu'à une épaisseur de 1 à 2 mm. Cependant, il est possible d'effectuer le traitement de mise en solution immédiatement après laminage à chaud.
Ce traitement de mise en solution peut être fait dans un four à passage ou alternativement en four statique si la vitesse de montée en température est suffisamment élevée et si le refroidissement permet de tremper métallurgiquement l'alliage.
La température de mise en solution devra permettre la mise en solution complète des éléments d'addition. Pour cela, on choisira une température comprise entre 540 et 590°C, de préférence 550-­570°C. La durée du traitement varie de quelques secondes à plusieurs minutes selon l'épaisseur du produit : en four statique, elle peut aller jusqu'à 1 h.
Après ce traitement, le métal doit être trempé pour assurer une efficacité maximale du durcissement structural. Pour cela, on s'assurera que la vitesse de refroidissement est supérieure à 100°C/h.
Le métal est ensuite laminé à froid jusqu'à l'épaisseur finale. Alternativement, il peut subir avant cette étape ou au cours de celle-ci, un traitement intermédiaire à une température entre 100 et 220°C pendant une durée de 5 mn à 8 h.
Depending on the desired characteristics, a first cold rolling can be carried out up to a thickness of 1 to 2 mm. However, it is possible to carry out the solution treatment immediately after hot rolling.
This solution treatment can be done in a through oven or alternatively in a static oven if the temperature rise rate is high enough and if the cooling allows the alloy to be metallurgically quenched.
The dissolution temperature should allow complete dissolution of the addition elements. For this, we will choose a temperature between 540 and 590 ° C, preferably 550-570 ° C. The duration of the treatment varies from a few seconds to several minutes depending on the thickness of the product: in a static oven, it can be up to 1 hour.
After this treatment, the metal must be quenched to ensure maximum effectiveness of the structural hardening. For this, we will ensure that the cooling rate is greater than 100 ° C / h.
The metal is then cold rolled to the final thickness. Alternatively, it can undergo before this step or during it, an intermediate treatment at a temperature between 100 and 220 ° C for a period of 5 min to 8 h.

On peut aussi réaliser une maturation après mise en solution, c'est-­à-dire laisser le métal vieillir à la température ambiante pendant plusieurs jours avant de la laminer à froid.One can also carry out a maturation after dissolving, ie let the metal age at room temperature for several days before cold rolling.

la présente invention est illustrée par l'exemple décrit ci-après et illustrée par la fig.1, qui représente le domaine des compositions revendiquées dans le plan Mg-Si.the present invention is illustrated by the example described below and illustrated by FIG. 1, which represents the field of the compositions claimed in the Mg-Si plane.

Exemple 1Example 1

On coule par le procédé classique semi-continu les deux alliages selon l'invention de composition suivante (% en poids). Alliage Mg% Si% Mn% Cu% Fe% A 0,30 1,25 1,03 0,30 0,37 B 0,45 0,95 1,00 0,28 0,35 On homogénéise ces alliages 10 h à 600°C suivi d'un palier de 4 h à 500°C (descente en 2 h).
On lamine à chaud ces alliages jusqu'à une épaisseur de 3,5 mm et on les bobine à une température de l'ordre de 330°C. On les lamine ensuite à froid jusqu'à 1,5 mm et on effectue à cette épaisseur une mise en solution en four à passage (température du métal : 560°C pendant 5 mm) suivie d'une trempe à l'air (refroidissement jusqu'à 100°C en 30 sec.).
On effectue alors les deux gammes suivantes sur chacune des compositions :
The two alloys according to the invention of the following composition (% by weight) are poured by the conventional semi-continuous process. Alloy Mg% Yes% Mn% Cu% Fe% AT 0.30 1.25 1.03 0.30 0.37 B 0.45 0.95 1.00 0.28 0.35 These alloys are homogenized for 10 h at 600 ° C followed by a 4 h stage at 500 ° C (descent in 2 h).
These alloys are hot rolled to a thickness of 3.5 mm and they are coiled at a temperature of the order of 330 ° C. They are then cold rolled to 1.5 mm and this solution is dissolved in a passing oven (metal temperature: 560 ° C for 5 mm) followed by air quenching (cooling up to 100 ° C in 30 sec.).
The following two ranges are then carried out on each of the compositions:

- gamme 1- range 1

- revenu 6 h à 180°C
- laminage à froid jusqu'à 0,33 mm
- tempering 6 h at 180 ° C
- cold rolling up to 0.33 mm

- gamme 2- range 2

- laminage à froid jusqu'à 1 mm
- revenu 1 h à 140°C
- laminage à froid jusqu'à 0,33 mm
- cold rolling up to 1 mm
- tempering 1 h at 140 ° C
- cold rolling up to 0.33 mm

Les propriétés mécaniques obtenuesThe mechanical properties obtained

- caractéristiques mécaniques de traction dans le sens long
- taux de cornes à 45° : S x (%)
- indice d'emboutissabilité Ericksen : I E (mm)
sont données dans le tableau suivant,
comparativement aux alliages classiques de même épaisseur
Alliage R0,2(MPa) Rm(MPa) A (%) Sx % I.E.(mm) 1 2 1 2 1 2 1 2 1 2 A 405 393 417 408 3,5 4,0 3,0 3,0 4,0 4,0 B 445 415 460 434 3 3,5 4,0 4,0 4,0 4,1 3004 Hl9 285 - 310 - 3,5 - 5 - - - 5052 Hl9 310 - 330 - 4,0 - 8,5 - 3,5 - 5182 Hl9 350 - 398 - 3,0 - 12 - 3,0 -
- long-term mechanical traction characteristics
- rate of horns at 45 °: S x (%)
- Ericksen stampability index: IE (mm)
are given in the following table,
compared to conventional alloys of the same thickness
Alloy R0.2 (MPa) Rm (MPa) AT (%) Sx% IE (mm) 1 2 1 2 1 2 1 2 1 2 AT 405 393 417 408 3.5 4.0 3.0 3.0 4.0 4.0 B 445 415 460 434 3 3.5 4.0 4.0 4.0 4.1 3004 Hl9 285 - 310 - 3.5 - 5 - - - 5052 Hl9 310 - 330 - 4.0 - 8.5 - 3.5 - 5182 Hl9 350 - 398 - 3.0 - 12 - 3.0 -

Après traitement de cuisson des revêtements (10 mm à 204°C), on obtient les propriétés suivantes : Alliage R0,2(MPa) Rm(MPa) A (%) Sx (%) I.E.(mm) 1 2 1 2 1 2 1 2 1 2 A 386 378 409 403 6,8 7 3,0 3,0 4,8 4,8 B 425 402 455 430 6,5 6,5 4,0 4,0 4,5 4,6 3004 Hl9 250 - 280 - 5,2 - 5 - - - 5052 Hl9 270 - 305 - 5,5 - 8,5 - 5,2 - 5182 Hl9 335 - 380 - 6,3 - 12 - 4,5 De plus avec l'alliage B on a réalisé un essai supplémentaire de fabrication de plusieurs milliers de corps de boîtes boissons par emboutissage et étirage sans aucun problème de formabilité ni de grippage (aucune adhésion de métal sur les bagues d'étirage).
Avec une forme de fond conventionnelle et une épaisseur de paroi de 0,125 mm, on obtient les performances suivantes sur les boîtes revétues :
- pression de retournement du fond : P = 0,79 MPa
- force d'écrasement : F = 3989 N
Ces valeurs sont à comparer aux valeurs obtenues avec le matériau conventionnel, le 3004 H19 de même épaisseur
- pression de retournement du fond : P = 0.67 MPa
- force d'écrasement : F = 3869 N
Les valeurs beaucoup plus élévées obtenues avec les alliages de la présente invention permettent d'envisager :
- la réduction des épaisseurs des bandes pour corps de boîtes embouties étirées,
- l'utilisation du même alliage pour réaliser le corps de boîte boisson et le couvercle ; seules les gammes de transformation seront différentes selon la partie de la boîte à réaliser.
After baking the coatings (10 mm at 204 ° C), the following properties are obtained: Alloy R0.2 (MPa) Rm (MPa) AT (%) Sx (%) IE (mm) 1 2 1 2 1 2 1 2 1 2 AT 386 378 409 403 6.8 7 3.0 3.0 4.8 4.8 B 425 402 455 430 6.5 6.5 4.0 4.0 4.5 4.6 3004 Hl9 250 - 280 - 5.2 - 5 - - - 5052 Hl9 270 - 305 - 5.5 - 8.5 - 5.2 - 5182 Hl9 335 - 380 - 6.3 - 12 - 4.5 In addition, with alloy B, an additional test was carried out for the production of several thousand bodies of beverage cans by stamping and drawing without any problem of formability or jamming (no metal adhesion on the drawing rings).
With a conventional bottom shape and a wall thickness of 0.125 mm, the following performances are obtained on coated boxes:
- bottom turning pressure: P = 0.79 MPa
- crushing force: F = 3989 N
These values are to be compared with the values obtained with the conventional material, the 3004 H19 of the same thickness.
- bottom turning pressure: P = 0.67 MPa
- crushing force: F = 3869 N
The much higher values obtained with the alloys of the present invention make it possible to envisage:
- the reduction of the thicknesses of the strips for bodies of drawn drawn boxes,
- the use of the same alloy to produce the beverage can body and the lid; only the transformation ranges will be different depending on the part of the box to be produced.

Claims (7)

1 - Alliage d'aluminium pour la fabrication de boîtes, caractérisé en ce que sa composition est la suivante (en poids %) :
les teneurs en Mg et Si sont comprises dans le polygone ABCDE de coordonnées : Mg Si A 0,1% 0,7% B 0,4% 0,7% C 0,5% 1,0% D 0,5% 1,2% E 0,1% 1,4%
- la teneur en Mn est comprise entre 0,8 et 1,15%
- la teneur en Cu est inférieure ou égale à 0,6%
- les éléments Cr, Zn, Zr, Ti, B peuvent exister à des teneurs inférieures à 0,3% chacun
- le fer est limité à 0,5% maximum
- les autres éléments sont limités à 0.05% chacun et 0,15% au total.
- reste Al.
1 - Aluminum alloy for the manufacture of boxes, characterized in that its composition is as follows (by weight%):
the contents of Mg and Si are included in the polygon ABCDE of coordinates: Mg Yes AT 0.1% 0.7% B 0.4% 0.7% VS 0.5% 1.0% D 0.5% 1.2% E 0.1% 1.4%
- the Mn content is between 0.8 and 1.15%
- the Cu content is less than or equal to 0.6%
- the elements Cr, Zn, Zr, Ti, B may exist at contents of less than 0.3% each
- the iron is limited to 0.5% maximum
- the other elements are limited to 0.05% each and 0.15% in total.
- remains Al.
2 - Alliage selon la revendication 1 caractérisé en ce que la teneur en Mn est comprise entre 0,85 et 1,10% et la teneur en Mg est comprise entre 0,1 et 0,45%.2 - Alloy according to claim 1 characterized in that the Mn content is between 0.85 and 1.10% and the Mg content is between 0.1 and 0.45%. 3 - Alliage selon l'une des revendications 1 ou 2 caractérisé en ce qu'il contient des précipités Al₆(Fe, Mn) et/ou α Al (Fe,Mn) Si de taille comprise entre 1 et 15 µm, à l'épaisseur finale.3 - Alloy according to one of claims 1 or 2 characterized in that it contains precipitates Al₆ (Fe, Mn) and / or α Al (Fe, Mn) If of size between 1 and 15 µm, to the final thickness. 4 - Procédé d'obtention de tôles ou bandes en un alliage conforme aux revendications 1 à 3 comportant les opérations suivantes : coulée de l'alliage, homogénéisation, laminage à chaud, laminage à froid éventuel, mise en solution complète et trempe, maturation éventuelle, laminage à froid avec ou sans traitement intermédiaire, caractérisé en ce que l'alliage est homogénéisé entre 550°C et 600°C pendant une durée de 6 à 24 h, suivi d'un palier à une température de 450°C à 530°C, de préférence 480°C à 510°C, d'une durée maximale de 4 h, la descente à la température du second palier étant comprise entre 20°/h et 120°/h.4 - A method of obtaining sheets or strips of an alloy according to claims 1 to 3 comprising the following operations: casting of the alloy, homogenization, hot rolling, possible cold rolling, complete dissolution and quenching, possible maturation , cold rolling with or without intermediate treatment, characterized in that the alloy is homogenized between 550 ° C and 600 ° C for a period of 6 to 24 h, followed by a plateau at a temperature of 450 ° C to 530 ° C, preferably 480 ° C to 510 ° C, with a maximum duration of 4 h, the descent to the temperature of the second stage being between 20 ° / h and 120 ° / h. 5 - Procédé selon la revendication 4 caractérisé en ce que le métal subit une mise en solution entre 540 et 590°C (de préférence entre 550 et 570°C) et trempe à une épaisseur comprise entre l'épaisseur à la sortie du laminage à chaud incluse et l'épaisseur finale.5 - Method according to claim 4 characterized in that the metal undergoes a dissolution between 540 and 590 ° C (preferably between 550 and 570 ° C) and quenching to a thickness between the thickness at the outlet of the rolling to hot included and final thickness. 6 - Procédé selon la revendication 5 caractérisé en ce que le métal subit immédiatement après mise en solution et trempe ou après un laminage à froid jusqu'à une épaisseur intermédiaire (l'épaisseur de mise en solution et l'épaisseur finale étant comprises dans ce domaine) au moins un traitement intermédiaire à une température de 100 à 220°C pendant une durée de 5 mn à 8 h.6 - Process according to claim 5 characterized in that the metal undergoes immediately after dissolution and quenching or after cold rolling to an intermediate thickness (the thickness of dissolution and the final thickness being included in this field) at least one intermediate treatment at a temperature of 100 to 220 ° C for a period of 5 min to 8 h. 7 - Procédé selon l'une des revendications 4 à 6 caractérisé en ce que le durcissement structural final est obtenu pendant la cuisson des revêtements.7 - Method according to one of claims 4 to 6 characterized in that the final structural hardening is obtained during the firing of the coatings.
EP88420210A 1987-06-23 1988-06-21 Aluminium based alloy for cans and process of manufacturing Expired - Lifetime EP0300927B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88420210T ATE66699T1 (en) 1987-06-23 1988-06-21 ALUMINUM-BASED ALLOY FOR BEVERAGE CANS AND PROCESS FOR THEIR PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8709168A FR2617188B1 (en) 1987-06-23 1987-06-23 AL-BASED ALLOY FOR CASING AND PROCESS FOR OBTAINING
FR8709168 1987-06-23

Publications (2)

Publication Number Publication Date
EP0300927A1 true EP0300927A1 (en) 1989-01-25
EP0300927B1 EP0300927B1 (en) 1991-08-28

Family

ID=9352645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420210A Expired - Lifetime EP0300927B1 (en) 1987-06-23 1988-06-21 Aluminium based alloy for cans and process of manufacturing

Country Status (6)

Country Link
EP (1) EP0300927B1 (en)
AT (1) ATE66699T1 (en)
DE (1) DE3864473D1 (en)
ES (1) ES2024683B3 (en)
FR (1) FR2617188B1 (en)
GR (1) GR3002615T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714993A1 (en) * 1994-11-29 1996-06-05 Alusuisse-Lonza Services AG Deep drawable and weldable AlMgSi type aluminium alloy
DE10163039C1 (en) * 2001-12-21 2003-07-24 Daimler Chrysler Ag Hot and cold formable component made of an aluminum alloy and process for its production
EP1484421A1 (en) * 2003-06-05 2004-12-08 Pechiney Rhenalu Use of a rolled or extruded aluminium alloy product having a good corrosion resistance
FR2873717A1 (en) * 2004-07-27 2006-02-03 Boxal France Soc Par Actions S PROCESS FOR MANUFACTURING AEROSOL BOXES
CN104561686A (en) * 2014-12-31 2015-04-29 东莞市东兴铝业有限公司 Aluminum alloy material capable of resisting cold and hot coagulation changes and preparation process for aluminum alloy material
WO2016000937A1 (en) * 2014-07-04 2016-01-07 Aleris Rolled Products Germany Gmbh Aluminium alloy for use in the building industry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2375332A1 (en) * 1976-12-24 1978-07-21 Alusuisse MANUFACTURING PROCESS OF WELL TRANSFORMABLE ALUMINUM SHEETS, POOR IN HORNS AND OF HIGH MECHANICAL STRENGTH
FR2432555A1 (en) * 1978-08-04 1980-02-29 Coors Container Co ALIMINUM ALLOY AND PROCESS FOR PRODUCING A STRIP FOR BOXES AND LIDS
EP0057959A1 (en) * 1981-02-06 1982-08-18 Vereinigte Deutsche Metallwerke Ag Wrought aluminium alloy
EP0059812A1 (en) * 1981-03-02 1982-09-15 Sumitomo Light Metal Industries Limited Method for producing an aluminium alloy forming sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2375332A1 (en) * 1976-12-24 1978-07-21 Alusuisse MANUFACTURING PROCESS OF WELL TRANSFORMABLE ALUMINUM SHEETS, POOR IN HORNS AND OF HIGH MECHANICAL STRENGTH
FR2432555A1 (en) * 1978-08-04 1980-02-29 Coors Container Co ALIMINUM ALLOY AND PROCESS FOR PRODUCING A STRIP FOR BOXES AND LIDS
EP0057959A1 (en) * 1981-02-06 1982-08-18 Vereinigte Deutsche Metallwerke Ag Wrought aluminium alloy
EP0059812A1 (en) * 1981-03-02 1982-09-15 Sumitomo Light Metal Industries Limited Method for producing an aluminium alloy forming sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714993A1 (en) * 1994-11-29 1996-06-05 Alusuisse-Lonza Services AG Deep drawable and weldable AlMgSi type aluminium alloy
CH688379A5 (en) * 1994-11-29 1997-08-29 Alusuisse Lonza Services Ag Thermaformed and weldable aluminum alloy of the AlMgSi type
DE10163039C1 (en) * 2001-12-21 2003-07-24 Daimler Chrysler Ag Hot and cold formable component made of an aluminum alloy and process for its production
EP1484421A1 (en) * 2003-06-05 2004-12-08 Pechiney Rhenalu Use of a rolled or extruded aluminium alloy product having a good corrosion resistance
EP1484420A1 (en) * 2003-06-05 2004-12-08 Pechiney Rhenalu Use of a rolled or extruded aluminium alloy product having a high corrosion resistance
FR2855833A1 (en) * 2003-06-05 2004-12-10 Pechiney Rhenalu LAMINATED OR ALUMINUM ALLOY WIRE WITH GOOD CORROSION RESISTANCE
FR2873717A1 (en) * 2004-07-27 2006-02-03 Boxal France Soc Par Actions S PROCESS FOR MANUFACTURING AEROSOL BOXES
EP1624083A3 (en) * 2004-07-27 2007-05-16 Boxal France Process for manufacturing aerosol cans
US7520044B2 (en) 2004-07-27 2009-04-21 Boxal France Aerosol can fabrication process
WO2016000937A1 (en) * 2014-07-04 2016-01-07 Aleris Rolled Products Germany Gmbh Aluminium alloy for use in the building industry
CN104561686A (en) * 2014-12-31 2015-04-29 东莞市东兴铝业有限公司 Aluminum alloy material capable of resisting cold and hot coagulation changes and preparation process for aluminum alloy material

Also Published As

Publication number Publication date
FR2617188B1 (en) 1989-10-20
FR2617188A1 (en) 1988-12-30
GR3002615T3 (en) 1993-01-25
DE3864473D1 (en) 1991-10-02
ES2024683B3 (en) 1992-03-01
EP0300927B1 (en) 1991-08-28
ATE66699T1 (en) 1991-09-15

Similar Documents

Publication Publication Date Title
EP2997171B1 (en) Aluminium alloy sheet for metallic bottle or can or aerosol bottle
WO2014167191A1 (en) Method for transforming al-cu-li alloy sheets improving formability and corrosion resistance
FR2843754A1 (en) Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities
FR2584094A1 (en) HIGH STRENGTH TITANIUM ALLOY MATERIAL HAVING IMPROVED OUVABILITY AND PROCESS FOR PRODUCING THE SAME
EP0259232B1 (en) Easily workable and weldable aluminium alloy, and process for its manufacture
FR3026747A1 (en) ALUMINUM-COPPER-LITHIUM ALLOY ISOTROPES FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES
FR2737225A1 (en) AL-CU-MG ALLOY WITH HIGH FLOW RESISTANCE
EP0660882B1 (en) Method for manufacturing a thin sheet for producing canning components
WO2018073533A1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
FR2543578A1 (en) PRODUCTION OF METALLIC ARTICLES BY SUPERPLASTIC DEFORMATION
EP0300927B1 (en) Aluminium based alloy for cans and process of manufacturing
FR2773819A1 (en) Aluminum-copper-manganese alloy for impact extruded and drawn aerosol can manufacture
FR2679257A1 (en) Aluminium and lithium alloy and process for its manufacture
EP0070790B1 (en) Process for manufacturing hollow bodies for pressure containers from an aluminium alloy
WO2005010222A2 (en) Thin strips or foils of alfesi alloy
EP0375572B1 (en) Aluminium alloy for cupping, containing silicon, magnesium and copper
FR2836154A1 (en) THIN BANDS IN ALUMINUM-IRON ALLOY
EP0149946B1 (en) Nickel base alloy
FR2496702A1 (en) ALUMINUM ALLOY OPENING PRODUCT CONTAINING AFFINED INTERMETALLIC PHASES, PREPARATION AND USE THEREOF
JP3708616B2 (en) Manufacturing method of Ai alloy plate for DI can body excellent in formability
EP0547175A1 (en) Aluminum alloy sheet stock
FR2496701A1 (en) OPEN ALUMINUM ALLOY FOR THE MANUFACTURE OF HEAT EXCHANGE FINS AND TUBES, METHOD FOR MANUFACTURING THE SAME, AND USE THEREOF
FR3122187A1 (en) 5xxx aluminum sheets with high formability
FR2507210A1 (en) METHOD FOR MANUFACTURING A HIGH ELASTIC LIMIT ALUMINUM SHEET
JPS63149348A (en) Aluminum alloy for wrapping and manufacture thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890328

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CEGEDUR PECHINEY RHENALU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY RHENALU

17Q First examination report despatched

Effective date: 19901220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 66699

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3864473

Country of ref document: DE

Date of ref document: 19911002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024683

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3002615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940518

Year of fee payment: 7

Ref country code: CH

Payment date: 19940518

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940524

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940601

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940606

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 7

Ref country code: LU

Payment date: 19940630

Year of fee payment: 7

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88420210.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950621

Ref country code: GB

Effective date: 19950621

Ref country code: AT

Effective date: 19950621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950622

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19950622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

Ref country code: BE

Effective date: 19950630

BERE Be: lapsed

Owner name: PECHINEY RHENALU

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3002615

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

EUG Se: european patent has lapsed

Ref document number: 88420210.2

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050621