EP0299000A1 - Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon - Google Patents

Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon

Info

Publication number
EP0299000A1
EP0299000A1 EP88900017A EP88900017A EP0299000A1 EP 0299000 A1 EP0299000 A1 EP 0299000A1 EP 88900017 A EP88900017 A EP 88900017A EP 88900017 A EP88900017 A EP 88900017A EP 0299000 A1 EP0299000 A1 EP 0299000A1
Authority
EP
European Patent Office
Prior art keywords
projectile
sensors
signals
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88900017A
Other languages
English (en)
French (fr)
Inventor
Alexander Paesch
Klaus Hermann Nahrwold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Industrie AG
Original Assignee
Rheinmetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall GmbH filed Critical Rheinmetall GmbH
Publication of EP0299000A1 publication Critical patent/EP0299000A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means
    • G01P3/665Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means for projectile velocity measurements

Definitions

  • the invention relates to a method and an apparatus for measuring a projectile or parts thereof, during flight, possibly up to the target area.
  • the object of the present invention is to provide a method and a device for measuring a projectile or parts thereof, which work simply, are versatile and enable the use of simple and inexpensive sensors.
  • This object is achieved by a method in which the electrical charge, which is given to the projectile or its parts by air friction and / or gas cloud generated by ignition or detonation, is detected by at least one inductively operating sensor and the zero crossing of the received signal is evaluated.
  • a projectile receives an electric charge on its way to its destination as a result of air friction. This induces a voltage in the form of a signal with a zero crossing when flying past the sensor or when passing through the sensor due to a magnetic field generated by a moving charge in the induction coil is measured, its speed can be determined.
  • the Sig can trigger other measuring devices, for example target X-ray devices.
  • the speed of the projectile or part thereof can be predetermined by using two or more along the trajectory JL
  • the fragments of explosive projectiles or the like are electrically charged by the gas cloud of the explosive and can accordingly be measured, whereby a temporal resolution of the fragment cloud can be taken before.
  • the method can be carried out by means of a device which detects at least one sensor with an induction coil in the area of the flight path, which is coupled to an evaluation device which records at least zero time crossing of the signal generated by the sensor.
  • Fig. 1 shows schematically a device for measuring a projectile.
  • Fig. 2 shows schematically the course of a device generated by the sensor of the device, of Fig. 1.
  • 3 schematically shows the use of several sensors along the trajectory of a projectile.
  • the device shown in Fig. 1 comprises a sensor 1 made of egg on a frame 2, which is, for example, a simple wooden frame, ge celtic induction coil 3.
  • the frame 2 can have a circumferential groove 4 for receiving a few turns of the induction coil 3 have isolated Dra.
  • the frame 2 can have a stand 5, which makes it easier to set.
  • the area 1 enclosed by the induction coil 3 expediently in the range from approximately 1 to 6 m 2 . It is also expedient to arrange the frame 2 as perpendicular as possible to the direction of flight 6 of a jectile 7 to be detected.
  • the induction coil 3 is connected to a matching circuit 8, a preamplifier 9, a filter 10, a squelch 11 and a device driver 12, via a line 13 and a line sensor 14, the signal generated by the induction coil can be given to an evaluation direction 15 are, preferably a transiscope, ie digital memory and screen display, so that a visual evaluation can be vorgeno.
  • a computer 15 and / or a timer 17 a be closed to carry out an automatic evaluation.
  • a pulse that can be measured at the induction coil 3 has a maximum spa of the order of a few 100 uV when a projectile 7 flies past or through the induction coil 3.
  • Fig. 2 shows voltage pulse as it is generated by the induction coil 3 depending on the t or the flight path s.
  • the time or the path s Q on the zisse represent the point at which the projectile 7 passes the induction coil. At this point the signal would pass through zero, the projectile 7 would have constant electrical charge.
  • the electrical La increases continuously due to air friction, the passage of the signal approximately to the right - based on the W flight direction covered - becomes t or s. postponed. If this shift is lost in the inaccuracy, it need not be taken into account.
  • a corresponding correction can also be carried out, since amplitudes of the positive and negative branches of the signal do not have the same absolute maximum values U, U • for the same reason, so that the difference 'between them results in a correction value for determining time t can be calculated by the arithmetic for the flyby of the projectile 7. If two or more sensors 1 are present at predetermined intervals along the trajectory of the projectile 7, cf. Fig. 3, the amplitude can also be used to determine the charge change during flight projectile 7 and thus to correct the time difference between two passes of the signals from two sensors 1. When the projectile 7 has a large flight path, its electrical charge approaches a maximum value, so that a correction of the zero crossing only makes sense at a short distance from the launching or blasting site, up to about 60 to 80 m.
  • the speed of a profile 7 can be determined in different sections of its trajectory 18.
  • the measurement is independent of the weather and time of day and requires k magnetization of the projectile 7. Even if the projectile 7 " hits the inductor 3, an evaluable signal is present because the zero point signal has been reached.
  • the measurements can also be carried out at a distance of a few meters
  • the costs of the induction coil 3 are very low, so that it does not have to be protected from damage, and wobbling or overturning projectiles always generate pulses of the same polarity in contrast to magn 7

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

Verfahren und Vorrichtung zum meßtechnischen Erfassen eines Projektils oder Teilen hiervon
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum meßte nischen Erfassen eines Projektils oder Teilen hiervon während des Flugs gebenenfalls bis in den Zielbereich.
In der ballistischen Meßtechnik sind verschiedene Methoden bekannt, verschiedene interessierende Größen in bezug auf ein Projektil oder Tei hiervon zu bestimmen. Optische Meßmethoden sind wetter- und tageszeitabhän sowie aufwendig. Bei induktiven Meßmethoden wird eine Magnetisierung des P jektils vorausgesetzt, was jedoch aus verschiedensten Gründen nicht im möglich ist, z.B. weil das Material nicht magnetisierbar ist (Hartkern schösse o.dgl.). Insbesondere werden bei durch Sprengung erzeugten Projekti keine oder nur sehr unbefriedigende Ergebnisse erhalten.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine V richtung zum meßtechnischen Erfassen eines Projektils oder Teilen hiervon schaffen, die einfach arbeiten, vielseitig verwendbar sind und die Verwend einfacher und billiger Sensoren ermöglichen.
Diese Aufgabe wird durch ein Verfahren gelöst, bei dem die elektris Ladung, die dem Projektil oder dessen Teilen durch Luftreibung und/oder bei Zündung oder Sprengung erzeugte Gaswolke erteilt wird, über wenigst einen induktiv arbeitenden Sensor erfaßt und der Nulldurchgang des erhalte Signals ausgewertet wird.
Hierbei wird ausgenutzt, daß ein Projektil auf seinem Weg zum Ziel folge von Luftreibung eine elektrische Ladung erhält. Diese induziert b Vorbeiflug an dem Sensor oder beim Hindurchflug durch den Sensor infolge von einer bewegten Ladung erzeugten Magnetfeldes in der Induktionsspule Sensors eine Spannung in Form eines einen Nulldurchgang aufweisenden Signa Dieses kann zur Flugzeitmessung des Projektils verwendet werden, indem Zeit zwischen Abschuß und Auftreten des Nulldurchgangs gemessen wird, wodu sich dessen Geschwindigkeit ermitteln läßt. Außerdem können mit dem Sig andere Meßeinrichtungen, z.B. Zielröntgeneinrichtungen ausgelöst werden. Auch läßt sich die Geschwindigkeit des Projektils oder von dessen Teil durch Verwendung von zwei oder mehr entlang der Flugbahn mit vorbestimm JL
Abstand hintereinander angeordneten Sensoren bestimmen, wobei die Zeitdif renz zwischen den Nulldurchgängen der Signale zweier hintereinander angeo neter Sensoren gemessen wird.
Auch die Splitter von Sprenggeschossen oder dergleichen werden durch Gaswolke des Sprengstoffes elektrisch aufgeladen und können dementsprech vermessen werden, wodurch eine zeitliche Auflösung der Splitterwolke vor nommen werden kann.
Das Verfahren kann mittels einer Vorrichtung durchgeführt werden, die Bereich der Flugbahn wenigstens einen Sensor mit einer Induktionsspule faßt, der mit einer Auswerteeinrichtung gekoppelt ist, die zumindest zeitlichen Nulldurchgang des vom Sensor erzeugten Signals festhält.
Weitere Ausgestaltungen der Erfindung sind der nachfolgenden Beschr bung und den Unteransprücheπ zu entnehmen.
Die Erfindung wird nachstehend anhand der in den beigefügten Abbildun dargestellten Ausführungsbeispiele näher erläutert.
Fig. 1 zeigt schematisch eine Vorrichtung zum meßtechnischen Erfas eines Projektils.
Fig. 2 zeigt schematisch den Verlauf eines von dem Sensor der Vorri tung, von Fig. 1 erzeugten Signals. Fig. 3 zeigt schematisch die Verwendung mehrerer Sensoren entlang Flugbahn eines Projektils.
Die in Fig.- 1 dargestellte Vorrichtung umfaßt einen Sensor 1 aus ei auf einen Rahmen 2, der beispielsweise ein einfacher Holzrahmen ist, ge kelten Induktionsspule 3. Der Rahmen 2 kann, eine umlaufende Nut 4 zur Aufn von wenigen Windungen des die Induktionsspule 3 bildenden isolierten Dra aufweisen. Ferner kann.der Rahmen 2 einen Ständer 5 aufweisen, der sein stellen erleichtert. Die von der Induktionsspule 3 umschlossene Fläche l zweckmäßigerweise im Bereich von etwa 1 bis 6 m2. Außerdem ist es zweckmä den Rahmen 2 möglichst senkrecht zur Flugrichtung 6 eines zu erfassenden jektils 7 anzuordnen.
Die Induktionsspule 3 ist an eine Anpaßschaltung 8 angeschlossen, einen Vorverstärker 9, einen Filter 10, eine Rauschsperre 11 und einen tungstreiber 12 umfassen kann, über eine Leitung 13 und einen Leitungsemp ger 14 kann das von der Induktionspule erzeugte Signal auf eine Auswerte richtung 15 gegeben werden, vorzugsweise ein Transiscope, d.h. digitaler nalspeicher und Bildschirmanzeige, so daß eine visuelle Auswertung vorgeno werden kann. Außerdem kann ein Rechner 15 und/oder ein Zeitmeßglied 17 a schlössen sein, um eine automatische Auswertung durchzuführen.
Ein an der Induktionsspule 3 meßbarer Impuls hat eine maximale Spa in der Größenordnung von einigen 100 uV, wenn ein Projektil 7 nahe an der duktionsspule 3 vorbei oder durch diese hindurch fliegt. Fig. 2 zeigt Spannungsimpuls, wie er von der Induktionsspule 3 in Abhängigkeit von der t bzw. dem Flugweg s erzeugt wird. Die Zeit bzw. der Weg sQ auf der zisse stellen den Punkt dar, in dem das Projektil 7 die Induktionsspu passiert. An dieser Stelle würde der Nulldurchgang des Signals erfolgen, das Projektil 7 konstante elektrische Ladung hätte. Da die elektrische La durch die Luftreibung aber kontinuierlich zunimmt, wird hierdurch der durchgang des Signals etwa nach rechts - bezogen auf den zurückgelegten W Flugrichtung - zu t, bzw. s. verschoben. Falls diese Verschiebung in der ungenauigkeit untergeht, braucht sie nicht berücksichtigt zu werden. Falls wendig, läßt sich jedoch auch eine entsprechende Korrektur vornehmen, da Amplituden des positiven und des negativen Zweiges des Signals aus dem g chen Grunde nicht die gleichen absoluten Maximalwerte U , U • besitzen daß sich aus der Differenz' hierzwischen ein Korrekturwert zur Ermittlung Zeitpunkts t für den Vorbeiflug des Projektils 7 etwa durch den Rechne errechnen läßt. Wenn zwei oder mehr Sensoren 1 in vorbestimmten Abständen entlang Flugbahn des Projektils 7 vorhanden sind, vgl. Fig. 3, kann der Amplitude terschied ebenfalls zur Bestimmung der Ladungsänderung während des Flugs Projektils 7 und damit zur Korrektur der Zeitdifferenz zwischen zwei durchgängen der Signale von zwei Sensoren 1 verwendet werden. Bei grö Flugweg des Projektils 7 nähert sich dessen elektrische Ladung einem Maxi wert, so daß eine Korrektur des Nulldurchgangs nur bei geringeren Entfernu von der Abschuß- oder Sprengungsstelle etwa bis 60 bis 80 m sinnvoll ist.
Mit einer Anordnung gemäß Fig. 3 kann die Geschwindigkeit eines Pro tils 7 in verschiedenen Abschnitten seiner Flugbahn 18 bestimmt werden. Die Messung ist witteruπgs- und tageszeitunabhängig und erfordert k Magnetisierung des Projektils 7. Selbst wenn das Projektil 7 "die Indukti spule 3 trifft, ist ein auswertbares Signal vorhanden, da der Nullpunkt Signals erreicht wurde. Die Messungen können auch in einem Abstand von wen Metern von einem Sprengpunkt oder einer Abschußstelle vorgenommen werden. Kosten für die Induktionsspule 3 sind sehr gering, so daß diese nicht g Beschädigung geschützt werden muß. Auch taumelnde bzw. sich überschlag Projektile erzeugen immer Impulse gleicher Polarität im Gegensatz zu magn 7
sierten Projektilen, die zwei Magnetpole aufweisen. Auch lassen sich Gescho mit elektronischen Zündern bzw. mit interner Elektronik, bei denen bei Mag tisierung die Gefahr bestünde, die Elektronik zu beschädigen oder den Zün auszulösen, meßtechnisch über die elektrische Aufladung erfassen.

Claims

Patentansprüche
1. Verfahren zum meßtechnischen Erfassen eines Projektils oder Tei hiervon während des Flugs gegebenenfalls bis in den Zielbereich, dadurch kennzeichnet, daß die elektrische Ladung, die dem Projektil oder dessen Tei durch Luftreiburig und/oder die bei der Zündung oder Sprengung erzeugte wölke erteilt wird, über wenigstens einen induktiv arbeitenden Sensor erf und der Nulldurchgang des erhaltenen Signals ausgewertet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das erhalt Signal zur Flugzeitmessung verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß erhaltene Signal zur Auslösung weiterer Meßeinrichtungen verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichn daß wenigstens zwei mit vorbestimmten Abstand hintereinander angeordnete S soren verwendet werden und eine Geschwindigkeitsbestimmung des Projektils o von dessen Teilen über eine Messung des zeitlichen Abstandes zwischen Nulldurchgängen der Signale der beiden hintereinander befindlichen Senso vorgenommen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichn daß die Differenz der Maximalamplitudenwerte eines oder zweier Signale ei oder zweier Sensoren verwendet werden, um die zeitliche Verschiebung des o der tatsächlichen Nulldurchgänge des oder der Signale infolge der kontinui lichen Ladungszunahme des Projektils durch Luftreibung zu korrigieren.
6. Vorrichtung zum meßtechnischen Erfassen eines Projektils oder Tei hiervon während des Fluges gegebenenfalls bis in den Zielbereich zur Du führung des Verfahrens nach einem der Ansprüche 1 bis 5, dadurch gekennzei net, daß im Bereich der Flugbahn wenigstens ein Sensor (1) mit einer Ind tionsspule (3) angeordnet ist, der mit einer Auswerteeinrichtung (15, 16) koppelt ist, die zumindest den zeitlichen Nulldurchgang des "vo Sensor erzeugten Signals festhält.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Ind tionsspule (3) aus wenigen Windungen besteht und einen großen Spulendurch ser aufweist.
8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß Induktionsspule (3) auf einem Rahmen (4) angeordnet ist.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichn daß zumindest zwei Sensoren (1) mit vorbestimmtem Abstand hintereinander geordnet sind und die Auswerteeinrichtung (15, 16) einen Schaltkreis (17) Bestimmen der Länge des Zeitabschnitts zwischen den beiden Nulldurchgängen Signale der beiden Sensoren (1) aufweist.
10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzei net, daß die Auswerteeinrichtung (15, 16) eine Einrichtung zum Bestimmen Amplitudenextremwerte der Signale des oder der Sensoren (1) aufweist.
EP88900017A 1987-01-28 1987-11-26 Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon Ceased EP0299000A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873702429 DE3702429A1 (de) 1987-01-28 1987-01-28 Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon
DE3702429 1987-01-28

Publications (1)

Publication Number Publication Date
EP0299000A1 true EP0299000A1 (de) 1989-01-18

Family

ID=6319666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88900017A Ceased EP0299000A1 (de) 1987-01-28 1987-11-26 Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon

Country Status (4)

Country Link
US (1) US4935697A (de)
EP (1) EP0299000A1 (de)
DE (1) DE3702429A1 (de)
WO (1) WO1988005914A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272435A (en) * 1991-08-09 1993-12-21 Mcbroom Michael A Apparatus for timing aquatic craft for water skiing competition
US5111689A (en) * 1991-10-07 1992-05-12 The United States Of America As Represented By The Secretary Of The Army Background illumination simulator
GB2448164A (en) * 2007-04-03 2008-10-08 Mark Andrew Zaremba Magnetic detection system to indicate the location of fired weapons
RU2470310C1 (ru) * 2011-08-16 2012-12-20 Сергей Михайлович Мужичек Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
RU2498318C1 (ru) * 2012-07-05 2013-11-10 Сергей Михайлович Мужичек Способ определения характеристик осколочного поля снаряда в динамике и устройство для его осуществления
RU2498317C1 (ru) * 2012-07-05 2013-11-10 Сергей Михайлович Мужичек Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
US9574843B2 (en) * 2014-02-27 2017-02-21 Magnetospeed Llc Apparatus for correcting trajectories of projectiles launched from firearms

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146723A (en) * 1938-01-12 1939-02-14 James V Dunham Detecting the flight of projectiles past a given point
US2301194A (en) * 1940-09-28 1942-11-10 Remington Arms Co Inc Measuring instrument
US2369659A (en) * 1942-07-04 1945-02-20 Thomas D Carr Electronic control circuit
GB865077A (en) * 1958-01-20 1961-04-12 Sig Schweiz Industrieges Improvements in or relating to packing machines
GB965077A (en) * 1960-08-29 1964-07-29 Military Training Device Compa Improvements in a method of and apparatus for measuring the muzzle velocity of a projectile
CH443745A (fr) * 1966-04-27 1967-09-15 Ebauches Sa Dispositif pour la mesure de la vitesse initiale d'un projectile et procédé pour la mise en action de ce dispositif
CA906060A (en) * 1967-08-31 1972-07-25 F. Slaght William System and method for determining the velocity of a moving object
DE2648186A1 (de) * 1976-10-25 1978-04-27 Hauke Dr Trinks Einrichtung zur abgabe von stromsignalen zu einer messanlage zur bestimmung des durchdringungszeitpunktes von projektilen durch eine nichtmaterielle flaeche
US4372192A (en) * 1980-12-22 1983-02-08 The United States Of America As Represented By The Secretary Of The Army First motion detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8805914A1 *

Also Published As

Publication number Publication date
WO1988005914A1 (en) 1988-08-11
DE3702429A1 (de) 1988-08-11
US4935697A (en) 1990-06-19
DE3702429C2 (de) 1989-01-26

Similar Documents

Publication Publication Date Title
EP2411758B1 (de) Bestimmung der mündungsgeschwindigkeit eines geschosses
DE2745880A1 (de) Messfuehler
DE3411786A1 (de) Verfahren bei schiessuebungen
EP0028397B1 (de) Verfahren zur Beseitigung des Einflusses von Remanenz in Empfangssystemen und Vorrichtung zur Durchführung des Verfahrens
EP0108973A1 (de) Vorrichtung zur Messung der Anfangsgeschwindigkeit eines aus einer Waffe abgeschossenen Geschosses
DE2618970B2 (de) Tachometer für Verbrennungsmotoren
CH639774A5 (en) Appliance for non-destructive testing of ferromagnetic specimens
EP1482311B1 (de) Vorrichtung und Verfahren zur Ermittlung der Mündungsgeschwindigkeit eines Projektils
EP0299000A1 (de) Verfahren und vorrichtung zum messtechnischen erfassen eines projektils oder teilen hiervon
DE4410326A1 (de) Geschoß mit einer Vorrichtung zur Flugbahnkorrektur
DE3936359A1 (de) Verfahren zur bestimmung der zielrichtung und der zielentfernung von schallerzeugenden zielen
AT404653B (de) Näherungsschalter
DE3334570C2 (de) Vorrichtung zur Erfassung des Rißstartes bei einer Bruchmechanik-Probe
DE1623362C3 (de) Einrichtung zum Zünden einer Sprengladung bzw. zum Auslosen einer Funktion
DE69908793T2 (de) Elektrostatisches scharfstellungsgerät für einen explosiven flugkörper
EP0141924B1 (de) Verfahren zum Eichen einer Vo-Messeinrichtung
DE3152919C2 (de) Verfahren und Vorrichtung zur magnetischen Pr}fungmechanischer Eigenschaften
DE3702428C2 (de)
DE19731560A1 (de) Verfahren zum Orten und zur Identifizierung unterhalb der Erdoberfläche befindlicher Ferromagnetischer Munitionskörper
DE3127264C2 (de) Einrichtung zur Bestimmung des Triggerpunktes eines elektrischen Signals
DE2552397C1 (de) Anordnung von einer oder mehreren Magnetometer-Sonden
DE2721031B2 (de) Prüfgerät zur zerstörungsfreien Prüfung von sich kontinuierlich bewegenden, elektrisch leitenden Objekten
DE4215358A1 (de) Verfahren zur zerstörungsfreien Prüfung von Stahlarmierungen in Bauwerken
DE19753064C2 (de) Verfahren und Vorrichtung zur Prüfung von eine Vielzahl von magnetischen Polen aufweisenden Ringen
DE10004761C1 (de) Vorrichtung zur induktiven Programmierung und Drallbestimmung eines Geschoßzünders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900320

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19910413