EP0297029A1 - Method and apparatus for regulating the supply of steam in a steaming chamber - Google Patents

Method and apparatus for regulating the supply of steam in a steaming chamber Download PDF

Info

Publication number
EP0297029A1
EP0297029A1 EP88810283A EP88810283A EP0297029A1 EP 0297029 A1 EP0297029 A1 EP 0297029A1 EP 88810283 A EP88810283 A EP 88810283A EP 88810283 A EP88810283 A EP 88810283A EP 0297029 A1 EP0297029 A1 EP 0297029A1
Authority
EP
European Patent Office
Prior art keywords
damper housing
steam
temperature
controller
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88810283A
Other languages
German (de)
French (fr)
Other versions
EP0297029B1 (en
Inventor
Andres Bichsel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benninger AG Maschinenfabrik
Original Assignee
Benninger AG Maschinenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4231073&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0297029(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Benninger AG Maschinenfabrik filed Critical Benninger AG Maschinenfabrik
Publication of EP0297029A1 publication Critical patent/EP0297029A1/en
Application granted granted Critical
Publication of EP0297029B1 publication Critical patent/EP0297029B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B17/00Storing of textile materials in association with the treatment of the materials by liquids, gases or vapours
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • D06B19/0005Fixing of chemicals, e.g. dyestuffs, on textile materials
    • D06B19/0029Fixing of chemicals, e.g. dyestuffs, on textile materials by steam
    • D06B19/0035Fixing of chemicals, e.g. dyestuffs, on textile materials by steam the textile material passing through a chamber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • D06B3/12Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics in zig-zag manner over series of guiding means

Definitions

  • the invention relates to a method and a device for regulating the supply of steam in a damper housing Maintain steam atmosphere in the damper housing.
  • a control is required which in each case supplies the damper housing with so much steam that the temperature in the damper required for an optimal reaction remains constant and that the damper housing is completely filled with steam and if possible has no air pockets.
  • the best way to achieve this is to maintain a constant vapor pressure in the damper housing that is above atmospheric pressure.
  • This object is achieved according to the invention with a method with the features of claim 1 and with a device with the features of claim 4.
  • the invention is based on the physical fact that media with different temperatures layer according to their density.
  • the hot and thus lighter water vapor fills the damper housing from top to bottom and displaces the heavier air.
  • This property is exploited by the method according to the invention or by the device in an optimally simple way to the Determine the pressure inside the damper or the degree of steam filling by measuring the temperature. Since the temperature is measured in the area of the lowest vapor layer, an optimal degree of filling can always be maintained. A sharp drop in temperature can be measured in the border area between the lowest and therefore heaviest vapor layer and the ambient air, so that the lower vapor level can be determined with the temperature measurement.
  • the measurement is particularly reliable and simple if the temperature outside the damper housing is measured in a pipeline that communicates freely with the steam atmosphere in the steam housing and with the outside atmosphere.
  • the measurement of the temperature in the pipeline outside the damper housing also has the advantage that the stratification in the pipeline is more constant than at other points within the damper housing.
  • the separation point between hot steam and colder ambient air remains unaffected by operational turbulence at a constant level under optimal conditions. In this way, no complicated measuring devices are required inside the damper housing.
  • the steam can flow freely through the pipeline into the outside atmosphere, so that the temperature at the measuring point only increases when steam flows past the measuring point instead of the displaced air.
  • the degree of filling can be controlled in an optimally simple manner if, when the temperature at the measuring point drops, steam is supplied to the damper housing until the temperature at the measuring point rises again.
  • a complete filling of the damper housing with steam is ensured in that the pipeline extends under the damper housing and that the temperature sensor is arranged below the damper housing.
  • the steam only reaches the temperature sensor when the entire damper housing is filled with steam and when a layer of steam builds up in the pipeline.
  • the pipeline can have a straight section which has a plurality of connection points for a temperature sensor which are arranged at a distance from one another.
  • the temperature sensor can be attached to the pipeline at various points. It would also be conceivable to attach more than one temperature sensor to the pipeline in order to achieve more precise control or an increased safety factor.
  • the controller-controlled means particularly advantageously have a steam regulating valve in a steam feed line leading to the damper housing, wherein the steam regulating valve can be actuated by a regulator which compares the temperature measured at the temperature sensor with a target temperature which corresponds to a damper housing completely filled with steam.
  • This temperature can be determined by measurements, the measured value also allowing conclusions to be drawn about the temperature or the pressure at any point in the damper housing.
  • the steam atmosphere is influenced by alternative controller-controlled means. For example, fresh water can also be injected into the damper housing when a heating device in the damper housing is actuated at the same time.
  • a damper 8 is shown in a highly simplified representation, as is usually used for the treatment of a fabric web 2 in a steam atmosphere.
  • the fabric web 2 comes from a pretreatment system (not shown) through the inlet channel 9 into the damper housing 1 and is guided in a meandering manner through the damper via lower guide rollers 10 and upper guide rollers 11 in a bound web guide.
  • the damper housing 1 is covered with an insulation 12.
  • the inlet opening 19 on the inlet channel 9 is kept as narrow as possible in order to prevent steam from escaping as far as possible. Touching the fabric web 2 e.g. A flexible lip seal is not permitted at this point, otherwise the liquid carried along by the fabric web, e.g. Dyes, bleaches, etc. would be scraped off.
  • the fabric web 2 leaves the damper housing 1 via a water lock 13, in which a deflection roller 17 is arranged.
  • the water lock prevents steam from escaping through the outlet.
  • an outlet opening can also be formed, which is designed like the inlet opening 19.
  • the fabric web is then a post-treatment machine such as fed to a washing machine.
  • steam is supplied to the damper housing from a steam source (not shown) in a steam feed line.
  • the steam arrives in a collecting line 20 and from there via several steam distribution pipes 14 into the interior of the damper housing.
  • a steam control valve 16 is arranged, which with a pneumatic, hydraulic or electric motor Rischen actuator is equipped.
  • the steam control valve 16 is controlled by a controller 17 and opens or cuts off the steam supply in the damper housing, depending on the actual state determined. As a rule, the damper is heated by means of saturated steam.
  • the pipeline 3 is arranged on the side of the damper housing and extends below the bottom of the damper housing.
  • the stratification in the damper housing corresponding to the vapor density can thus continue in the pipeline, since it is open to the outside atmosphere at one end.
  • a temperature sensor 4 is arranged on the pipeline 3, which feeds the measured temperature to the controller 17 via a measuring transducer, not shown in any more detail.
  • the desired setpoint temperature is set on controller 17 when the damper is started up.
  • FIG 2 an advantageous embodiment of the pipeline 3 is shown in more detail.
  • the pipeline is fastened to the side wall 21 of the damper housing 1 with a connecting flange 5.
  • the pipeline could also extend straight down from the bottom of the damper housing.
  • condensate would also flow out, which is undesirable on the one hand and which on the other hand could falsify the measurement results.
  • a lateral arrangement at a certain distance from the floor is therefore more advantageous.
  • From the connecting flange 5, the pipeline extends vertically downward over a bend 23.
  • the outlet opening 22 is therefore in any case below the deepest point of the damper housing 1.
  • the diameter of the pipeline 3 is dimensioned such that the steam atmosphere can propagate in layers in an unhindered manner.
  • the temperature sensor 4 is fastened to a connecting eye 7 and projects obliquely from above into the interior of the pipeline 3.
  • the temperature determined can be measured directly on a thermometer 6 be read.
  • a plurality of connection eyes 7 can be arranged at regular intervals on the straight section of the pipeline, into which a temperature sensor 4 or a sealing pin can be inserted as required. As a rule, however, the optimal position of the sensor 4 on the pipeline 3 is determined by tests, so that only a single connecting eye 7 is required.
  • a control sensor 24 can be arranged, which measures the actual temperature in the working area of the damper housing. This temperature can be read on the control thermometer 25.
  • the stratification of a steam column 26 with increasing density or decreasing temperature from top to bottom is shown symbolically in FIG. 2 relative to the pipeline 3.
  • the steam column 26 or the pipeline 3 is divided into the levels a to h, which are arranged at the same distance from one another.
  • the plane y lies at the outlet opening 22 and the plane x lies at the height of the control measuring sensor 24.
  • control measurements were carried out in the mentioned planes, the diagram shown in FIG. 3 resulting from pressure and temperature. T is the temperature in degrees Celcius and P is the vapor pressure in Pascal.
  • the "hot / cold" separation point is always kept at approximately the same level via the control system, so that a constant temperature at level x and complete filling of the damper housing with steam is ensured.
  • the pressure decreases with increasing distance from the damper housing and reaches the value 0 on the plane y or at the outlet opening 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Pipeline Systems (AREA)

Abstract

1. Method of regulating the steam supply in a steaming chamber (1) for continuous treatment of textile materials (2), by which the actual conditions within the steaming chamber (1) are measured and continually compared with a nominal value through a regulator controlled means, whereby the regulator controlled means is activated by changes in temperature, characterised in that the temperature of the steam atmosphere is measured at a point of measurement (f) outside the steaming chamber (1), within a pipe (3) which is able to communicate freely with the steam atmosphere inside the steaming chamber and with the outside atmosphere, whereby the point of measurement is connected to the region of the lowest steam layer existing within the steaming chamber (1).

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Regeln der Dampfzufuhr in einem Dämpfergehäuse gemäss dem Oberbegriff von Anspruch 1 bzw. von Anspruch 4. Um bei der kontinuierlichen Behandlung von Textilgut in einem Dämpfer optimale Resultate zu erhalten, ist es bekanntlich erforder­lich, eine möglichst gleichbleibende Dampfatmosphäre im Dämpfergehäuse aufrechtzuerhalten. Zu diesem Zweck ist eine Regelung erforderlich, welche dem Dämpfergehäuse jeweils so viel Dampf zuführt, dass die für eine optimale Reaktion er­forderliche Temperatur im Dämpfer konstant bleibt und dass das Dämpfergehäuse vollständig mit Dampf gefüllt ist und möglichst keine Lufteinschlüsse aufweist. Dieses Ziel wird am besten dadurch erreicht, dass im Dämpfergehäuse dauernd ein bestimmter Dampfdruck aufrechterhalten wird, der über dem Atmosphärendruck liegt.The invention relates to a method and a device for regulating the supply of steam in a damper housing Maintain steam atmosphere in the damper housing. For this purpose, a control is required which in each case supplies the damper housing with so much steam that the temperature in the damper required for an optimal reaction remains constant and that the damper housing is completely filled with steam and if possible has no air pockets. The best way to achieve this is to maintain a constant vapor pressure in the damper housing that is above atmospheric pressure.

Die Regelung der Dampfzufuhr und damit des Dampfdruckes im Dämpfergehäuse wird jedoch dadurch erschwert, dass die exakte Messung des Istzustandes im Dämpfergehäuse mit erheblichen Schwierigkeiten verbunden ist. Infolge der kontinuierlichen Arbeitsweise des Dämpfers, die das Anbringen von Eintritts- und Austrittöffnungen erfordert, kann im Dämpfergehäuse nur ein geringer Ueberdruck erzeugt werden. Andernfalls würde dauernd eine erhebliche Dampfmenge aus dem Dämpfergehäuse austreten, was wegen der damit verbundenen Immissionen und Energieverluste nicht erwünscht ist. Der geringe Ueberdruck erschwert die Verwendung des Druckes als Regelgrösse, da dieser einerseits schwierig zu messen ist und da anderseits betriebsbedingte Druckschwankungen zu Fehlregelungen führen würden. Aber auch eine Temperaturmessung innerhalb des Dämpfergehäuses ist mit Schwierigkeiten verbunden, da turbu­lente Strömungen auftreten können, die das Messresultat ver­fälschen. Ausserdem sagt eine irgendwo im Dämpfergehäuse gemessene Temperatur noch nichts aus über den tatsächlichen Dampffüllungsgrad im Dämpfergehäuse.The regulation of the steam supply and thus the steam pressure in the damper housing is made more difficult by the fact that the exact measurement of the actual state in the damper housing is associated with considerable difficulties. Due to the continuous operation of the damper, which requires the installation of inlet and outlet openings, only a slight excess pressure can be generated in the damper housing. Otherwise, a significant amount of steam would continuously escape from the damper housing, which is not desirable because of the associated immissions and energy losses. The low overpressure makes it difficult to use the pressure as a control variable, since it is difficult to measure on the one hand and, on the other hand, operational pressure fluctuations lead to incorrect control would. However, temperature measurement within the damper housing is also difficult because turbulent flows can occur which falsify the measurement result. In addition, a temperature measured somewhere in the damper housing does not say anything about the actual degree of steam filling in the damper housing.

Durch die DE-C-19 37 100 ist eine gattungsmässig vergleichba­re Vorrichtung bekanntgeworden, bei welcher der Zustand der Dampfatmosphäre im Dämpergehäuse mit Hilfe eines Wassergefäs­ses im Dämpfergehäuse ermittelt wird, welches von aussen laufend mit Wasser versorgt wird. Die dem Wassergefäss zuge­führte Wassermenge wird mit einem Durchflussmesser ermittelt. Die Temperatur der Flüssigkeit im Gefäss und die mit Hilfe der Durchflussmenge ermittelte Verdampfungsgeschwindigkeit bilden eine Regelgrösse für die Zufuhr von Dampf und Wärme zum Dämpfer. Dieses Messverfahren ist ersichtlicherweise sehr kompliziert und gewährleistet nicht unbedingt die Aufrechter­haltung eines optimalen Dampffüllungsgrades im Innern des Dämpfergehäuses.From DE-C-19 37 100 a generic comparable device has become known, in which the state of the steam atmosphere in the damper housing is determined with the help of a water vessel in the damper housing, which is continuously supplied with water from the outside. The amount of water supplied to the water tank is determined with a flow meter. The temperature of the liquid in the vessel and the evaporation rate determined with the aid of the flow rate form a controlled variable for the supply of steam and heat to the damper. Obviously, this measurement procedure is very complicated and does not necessarily guarantee the maintenance of an optimal degree of steam filling inside the damper housing.

Es ist daher eine Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu schaffen, um in einem Dämpfergehäuse einen optimalen Füllungsgrad und eine möglichst konstante Temperatur aufrechtzuerhalten. Diese Aufgabe wird erfindungsgemäss mit einem Verfahren mit den Merkmalen von Anspruch 1 und mit einer Vorrichtung mit den Merkmalen von Anspruch 4 gelöst.It is therefore an object of the invention to provide a method and a device of the type mentioned at the outset in order to maintain an optimum degree of filling and a temperature which is as constant as possible in a damper housing. This object is achieved according to the invention with a method with the features of claim 1 and with a device with the features of claim 4.

Die Erfindung geht von der physikalischen Tatsache aus, dass sich Medien mit unterschiedlichen Temperaturen entsprechend ihrer Dichte schichten. Der heisse und somit leichtere Was­serdampf füllt somit das Dämpfergehäuse von oben nach unten und verdrängt dabei die schwerere Luft. Diese Eigenschaft wird durch das erfindungsgemässe Verfahren bzw. durch die Vorrichtung auf optimal einfache Weise dazu ausgenützt um den Druck im Innern des Dämpfers bzw. den Dampffüllungsgrad durch Messung der Temperatur zu ermitteln. Da die Temperatur im Bereich der untersten Dampfschicht gemessen wird, kann immer ein optimaler Füllungsgrad aufrechterhalten werden. Im Grenz­bereich zwischen der untersten und damit schwersten Dampf­schicht und der Umgebungsluft ist ein starker Temperaturab­fall messbar, so dass mit der Temperaturmessung das untere Dampfniveau ermittelt werden kann.The invention is based on the physical fact that media with different temperatures layer according to their density. The hot and thus lighter water vapor fills the damper housing from top to bottom and displaces the heavier air. This property is exploited by the method according to the invention or by the device in an optimally simple way to the Determine the pressure inside the damper or the degree of steam filling by measuring the temperature. Since the temperature is measured in the area of the lowest vapor layer, an optimal degree of filling can always be maintained. A sharp drop in temperature can be measured in the border area between the lowest and therefore heaviest vapor layer and the ambient air, so that the lower vapor level can be determined with the temperature measurement.

Die Messung erfolgt dabei besonders zuverlässig und einfach, wenn die Temperatur ausserhalb des Dämpfergehäuses in einer Rohrleitung gemessen wird, die mit der Dampfatmosphäre im Dampfgehäuse und mit der Aussenatmosphäre frei kommuniziert. Die Messung der Temperatur in der Rohrleitung ausserhalb des Dämpfergehäuses hat ausserdem den Vorteil, dass die Schich­tung in der Rohrleitung konstanter ist als an anderen Stellen innerhalb des Dämpfergehäuses. Die Trennstelle zwischen heis­sem Dampf und kälterer Umgebungsluft bleibt unbeeinflusst von betriebsbedingten Turbulenzen auf einem unter optimalen Be­dingungen stets gleichbleibenden Niveau. Auf diese Weise sind keine komplizierten Messeinrichtungen im Innern des Dämpfer­gehäuses erforderlich. Der Dampf kann infolge der Druckdiffe­renz frei durch die Rohrleitung in die Aussenatmosphäre strö­men, so dass die Temperatur am Messpunkt erst dann ansteigt, wenn anstelle der verdrängten Luft Dampf am Messpunkt vorbei­strömt. Die Regelung des Füllungsgrades kann dabei auf opti­mal einfache Weise erfolgen, wenn beim Absinken der Tempera­tur am Messpunkt dem Dämpfergehäuse so lange Dampf zugeführt wird, bis die Temperatur am Messpunkt wieder steigt.The measurement is particularly reliable and simple if the temperature outside the damper housing is measured in a pipeline that communicates freely with the steam atmosphere in the steam housing and with the outside atmosphere. The measurement of the temperature in the pipeline outside the damper housing also has the advantage that the stratification in the pipeline is more constant than at other points within the damper housing. The separation point between hot steam and colder ambient air remains unaffected by operational turbulence at a constant level under optimal conditions. In this way, no complicated measuring devices are required inside the damper housing. As a result of the pressure difference, the steam can flow freely through the pipeline into the outside atmosphere, so that the temperature at the measuring point only increases when steam flows past the measuring point instead of the displaced air. The degree of filling can be controlled in an optimally simple manner if, when the temperature at the measuring point drops, steam is supplied to the damper housing until the temperature at the measuring point rises again.

Eine vollständige Füllung des Dämpfergehäuses mit Dampf wird dadurch gewährleistet, dass sich die Rohrleitung unter das Dämpfergehäuse erstreckt und dass der Temperaturfühler unter­halb des Dämpfergehäuses angeordnet ist. Der Dampf erreicht dadurch den Temperaturfühler erst, wenn das gesamte Dämpfer­gehäuse mit Dampf gefüllt ist und wenn sich auch in der Rohr­leitung eine Dampfschicht aufbaut.A complete filling of the damper housing with steam is ensured in that the pipeline extends under the damper housing and that the temperature sensor is arranged below the damper housing. As a result, the steam only reaches the temperature sensor when the entire damper housing is filled with steam and when a layer of steam builds up in the pipeline.

Die Rohrleitung kann einen geraden Abschnitt aufweisen, der mehrere im Abstand zueinander angeordnete Anschlussstellen für einen Temperaturfühler aufweist. Je nach dem angestrebten Istzustand im Dämpfergehäuse bzw. je nach dem Messbereich der Temperaturfühler kann der Temperaturfühler an verschiedenen Stellen an der Rohrleitung befestigt werden. Es wäre auch denkbar, mehr als einen Temperaturfühler an der Rohrleitung zu befestigen, um eine exaktere Regelung oder einen erhöhten Sicherheitsfaktor zu erreichen.The pipeline can have a straight section which has a plurality of connection points for a temperature sensor which are arranged at a distance from one another. Depending on the desired actual condition in the damper housing or depending on the measuring range of the temperature sensors, the temperature sensor can be attached to the pipeline at various points. It would also be conceivable to attach more than one temperature sensor to the pipeline in order to achieve more precise control or an increased safety factor.

Besonders vorteilhaft weisen die reglergesteuerten Mittel ein Dampfregulierventil in einer zum Dämpfergehäuse führenden Dampfspeiseleitung auf wobei das Dampfregelventil durch einen Regler betätigbar ist, der die am Temperaturfühler gemessene Temperatur mit einer Solltemperatur vergleicht, die einem vollständig mit Dampf gefüllten Dämpfergehäuse entspricht. Diese Temperatur kann durch Messungen ermittelt werden, wobei der gemessene Wert auch Rückschlüsse über die Temperatur bzw. über den Druck an einer beliebigen Stelle im Dämpfergehäuse erlaubt. Selbstverständlich wäre es aber auch denkbar, dass die Dampfatmosphäre durch alternative reglergesteuerte Mittel beeinflusst wird. So könnte z.B. bei gleichzeitiger Betäti­gung einer Heizeinrichtung im Dämpfergehäuse auch Frischwas­ser in das Dämpfergehäuse eingespritzt werden.The controller-controlled means particularly advantageously have a steam regulating valve in a steam feed line leading to the damper housing, wherein the steam regulating valve can be actuated by a regulator which compares the temperature measured at the temperature sensor with a target temperature which corresponds to a damper housing completely filled with steam. This temperature can be determined by measurements, the measured value also allowing conclusions to be drawn about the temperature or the pressure at any point in the damper housing. Of course, it would also be conceivable that the steam atmosphere is influenced by alternative controller-controlled means. For example, fresh water can also be injected into the damper housing when a heating device in the damper housing is actuated at the same time.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird nachstehend genauer beschrieben. Es zeigen:

  • Figur 1 Eine erfindungsgemässe Vorrichtung in schematischer Darstellung,
  • Figur 2 eine Rohrleitung mit angeschlossenem Temperaturfüh­ler und
  • Figur 3 ein Diagramm mit den Temperatur- und Druckverhält­nissen in der Rohrleitung.
An embodiment of the invention is shown in the drawings and will be described in more detail below. Show it:
  • FIG. 1 shows a device according to the invention in a schematic illustration,
  • Figure 2 shows a pipe with a connected temperature sensor and
  • Figure 3 is a diagram with the temperature and pressure conditions in the pipeline.

In Figur 1 ist in stark vereinfachter Darstellungsweise ein Dämpfer 8 dargestellt, wie er üblicherweise für die Behand­lung einer Gewebebahn 2 in einer Dampfatmosphäre verwendet wird. Die Gewebebahn 2 kommt von einer nicht dargestellten Vorbehandlungsanlage durch den Eintrittskanal 9 in das Dämpfergehäuse 1 und wird über untere Leitwalzen 10 und obere Leitwalzen 11 in gebundener Bahnführung mäanderförmig durch den Dämpfer geführt. Um den Energieverlust so klein wie mög­lich zu halten, ist das Dämpfergehäuse 1 mit einer Isolation 12 überzogen.In Figure 1, a damper 8 is shown in a highly simplified representation, as is usually used for the treatment of a fabric web 2 in a steam atmosphere. The fabric web 2 comes from a pretreatment system (not shown) through the inlet channel 9 into the damper housing 1 and is guided in a meandering manner through the damper via lower guide rollers 10 and upper guide rollers 11 in a bound web guide. In order to keep the energy loss as small as possible, the damper housing 1 is covered with an insulation 12.

Die Eintrittsöffnung 19 am Eintrittskanal 9 ist so schmal wie möglich gehalten, um ein Entweichen von Dampf möglichst zu vermeiden. Eine Berührung der Gewebebahn 2 z.B. durch eine flexible Lippendichtung ist an dieser Stelle nicht zulässig, da sonst die von der Gewebebahn mitgeführte Flüssigkeit wie z.B. Farbstoffe, Bleichmittel usw. wiederum abgerakelt würde. Im Ausführungsbeispiel verlässt die Gewebebahn 2 das Dämpfer­gehäuse 1 über ein Wasserschloss 13, in dem eine Umlenkwalze 17 angeordnet ist. Das Wasserschloss verhindert das Austreten von Dampf durch die Austrittstelle. Anstelle des Wasser­schlosses kann aber auch eine Austrittsöffnung treten, die wie die Eintrittsöffnung 19 ausgebildet ist. Die Gewebebahn wird anschliessend einer Nachbehandlungsmaschine wie z.B. einer Waschmaschine zugeführt.The inlet opening 19 on the inlet channel 9 is kept as narrow as possible in order to prevent steam from escaping as far as possible. Touching the fabric web 2 e.g. A flexible lip seal is not permitted at this point, otherwise the liquid carried along by the fabric web, e.g. Dyes, bleaches, etc. would be scraped off. In the exemplary embodiment, the fabric web 2 leaves the damper housing 1 via a water lock 13, in which a deflection roller 17 is arranged. The water lock prevents steam from escaping through the outlet. Instead of the water castle, however, an outlet opening can also be formed, which is designed like the inlet opening 19. The fabric web is then a post-treatment machine such as fed to a washing machine.

Zum Aufheizen und Beheizen des Dämpfergehäuses wird von einer nicht dargestellten Dampfquelle in einer Dampfspeiseleitung 15 Dampf an das Dämpfergehäuse herangeführt. Der Dampf ge­langt in eine Sammelleitung 20 und von dort aus über mehrere Dampfverteilerrohre 14 ins Innere des Dämpfergehäuses. In der Dampfspeiseleitung 15 ist ein Dampfregelventil 16 angeordnet, das mit einem pneumatischen, hydraulischen oder elektromoto­ rischen Stellglied ausgerüstet ist. Das Dampfregelventil 16 wird durch einen Regler 17 angesteuert und öffnet oder unter­bricht die Dampfzufuhr je nach dem ermittelten Istzustand im Dämpfergehäuse. In der Regel erfolgt die Beheizung des Dämpfers mittels Sattdampf.To heat and heat the damper housing 15, steam is supplied to the damper housing from a steam source (not shown) in a steam feed line. The steam arrives in a collecting line 20 and from there via several steam distribution pipes 14 into the interior of the damper housing. In the steam feed line 15, a steam control valve 16 is arranged, which with a pneumatic, hydraulic or electric motor Rischen actuator is equipped. The steam control valve 16 is controlled by a controller 17 and opens or cuts off the steam supply in the damper housing, depending on the actual state determined. As a rule, the damper is heated by means of saturated steam.

Seitlich am Dämpfergehäuse ist die Rohrleitung 3 angeordnet, die sich bis unter den Boden des Dämpfergehäuses erstreckt. Die der Dampfdichte entsprechende Schichtung im Dämpfergehäu­se kann sich somit in der Rohrleitung fortsetzen, da diese an einem Ende zur Aussenatmosphäre geöffnet ist. Unterhalb des Dämpfergehäuses 1 ist an der Rohrleitung 3 ein Temperaturfüh­ler 4 angeordnet, der die gemessene Temperatur über einen nicht näher dargestellten Messwertumformer dem Regler 17 zuführt. Die gewünschte Solltemperatur wird bei der Inbe­triebnahme des Dämpfers am Regler 17 eingestellt.The pipeline 3 is arranged on the side of the damper housing and extends below the bottom of the damper housing. The stratification in the damper housing corresponding to the vapor density can thus continue in the pipeline, since it is open to the outside atmosphere at one end. Below the damper housing 1, a temperature sensor 4 is arranged on the pipeline 3, which feeds the measured temperature to the controller 17 via a measuring transducer, not shown in any more detail. The desired setpoint temperature is set on controller 17 when the damper is started up.

In Figur 2 ist eine vorteilhafte Ausbildung der Rohrleitung 3 etwas genauer dargestellt. Die Rohrleitung ist mit einem Anschlussflansch 5 an der Seitenwand 21 des Dämpfergehäuses 1 befestigt. Theoretisch könnte sich die Rohrleitung auch un­mittelbar vom Boden des Dämpfergehäuses aus nach unten er­strecken. Dabei würde jedoch auch Kondensat ausströmen, was einerseits unerwünscht ist und was anderseits die Messresul­tate verfälschen könnte. Eine seitliche Anordnung in einem bestimmten Abstand zum Boden ist daher vorteilhafter. Vom Anschlussflansch 5 her erstreckt sich die Rohrleitung über eine Krümmung 23 vertikal nach unten. Die Austrittsöffnung 22 liegt somit in jedem Fall unterhalb der tiefsten Stelle des Dämpfergehäuses 1. Der Durchmesser der Rohrleitung 3 ist so dimensioniert, dass sich die Dampfatmosphäre ungehindert schichtförmig fortpflanzen kann.In Figure 2, an advantageous embodiment of the pipeline 3 is shown in more detail. The pipeline is fastened to the side wall 21 of the damper housing 1 with a connecting flange 5. Theoretically, the pipeline could also extend straight down from the bottom of the damper housing. However, condensate would also flow out, which is undesirable on the one hand and which on the other hand could falsify the measurement results. A lateral arrangement at a certain distance from the floor is therefore more advantageous. From the connecting flange 5, the pipeline extends vertically downward over a bend 23. The outlet opening 22 is therefore in any case below the deepest point of the damper housing 1. The diameter of the pipeline 3 is dimensioned such that the steam atmosphere can propagate in layers in an unhindered manner.

Der Temperaturfühler 4 ist an einem Anschlussauge 7 befestigt und ragt von oben schräg ins Innere der Rohrleitung 3. Die ermittelte Temperatur kann direkt an einem Thermometer 6 abgelesen werden. Am geraden Abschnitt der Rohrleitung können in regelmässigen Abständen mehrere Anschlussaugen 7 angeord­net sein, in welche nach Bedarf ein Temperaturfühler 4 oder aber ein Verschlusszapfen eingesetzt werden kann. In der Regel wird jedoch die optimale Position des Messfühlers 4 an der Rohrleitung 3 durch Versuche ermittelt, so dass nur ein einziges Anschlussauge 7 erforderlich ist.The temperature sensor 4 is fastened to a connecting eye 7 and projects obliquely from above into the interior of the pipeline 3. The temperature determined can be measured directly on a thermometer 6 be read. A plurality of connection eyes 7 can be arranged at regular intervals on the straight section of the pipeline, into which a temperature sensor 4 or a sealing pin can be inserted as required. As a rule, however, the optimal position of the sensor 4 on the pipeline 3 is determined by tests, so that only a single connecting eye 7 is required.

Im Bereich einer beruhigten Dampfatmosphäre im Innern des Dämpfergehäuses 1 kann ein Kontrollmessfühler 24 angeordnet sein, der die Isttemperatur im Arbeitsbereich des Dämpferge­häuses misst. Diese Temperatur kann am Kontrolltermometer 25 abgelesen werden.In the area of a calm steam atmosphere inside the damper housing 1, a control sensor 24 can be arranged, which measures the actual temperature in the working area of the damper housing. This temperature can be read on the control thermometer 25.

Die Schichtung einer Dampfsäule 26 mit von oben nach unten zunehmender Dichte bzw. abnehmender Temperatur ist in Figur 2 relativ zur Rohrleitung 3 symbolisch dargestellt. Die Dampf­säule 26 bzw. die Rohrleitung 3 ist dabei in die Ebenen a bis h unterteilt, die im gleichen Abstand zueinander angeordnet sind. Die Ebene y liegt auf der Austrittsöffnung 22 und die Ebene x liegt auf der Höhe des Kontrollmessfühlers 24. In einer Versuchsanordnung wurden Kontrollmessungen in den ge­nannten Ebenen durchgeführt, wobei sich das in Figur 3 darge­stellte Diagramm aus Druck und Temperatur ergab. T ist dabei die Temperatur in Grad Celcius und P der Dampfdruck in Pascal.The stratification of a steam column 26 with increasing density or decreasing temperature from top to bottom is shown symbolically in FIG. 2 relative to the pipeline 3. The steam column 26 or the pipeline 3 is divided into the levels a to h, which are arranged at the same distance from one another. The plane y lies at the outlet opening 22 and the plane x lies at the height of the control measuring sensor 24. In a test arrangement, control measurements were carried out in the mentioned planes, the diagram shown in FIG. 3 resulting from pressure and temperature. T is the temperature in degrees Celcius and P is the vapor pressure in Pascal.

Wie aus der Temperaturkurve 27 ersichtlich ist, kann zwischen den Ebenen g und e ein starkes Temperaturgefälle festgestellt werden. Dieses Temperaturgefälle entspricht dem Grenzbereich zwischen der Dampfatmosphäre im Dämpferinnern und der Aussen­atmosphäre. Die Temperatur im Messstellenbereich f liegt dabei in einer Grössenordnung, welche die Verwendung handels­üblicher Temperaturfühler erlaubt.As can be seen from the temperature curve 27, a strong temperature gradient can be found between the levels g and e. This temperature gradient corresponds to the border area between the steam atmosphere inside the damper and the outside atmosphere. The temperature in the measuring point area f is of the order of magnitude which allows the use of commercially available temperature sensors.

Die Trennstelle "warm/kalt" wird über das Regelsystem immer etwa auf dem gleichen Niveau gehalten, so dass eine stets gleichbleibende Temperatur auf der Ebene x und eine vollstän­dige Füllung des Dämpfergehäuses mit Dampf gewährleistet ist.The "hot / cold" separation point is always kept at approximately the same level via the control system, so that a constant temperature at level x and complete filling of the damper housing with steam is ensured.

Wie aus der Druckkurve 28 ersichtlich ist, nimmt der Druck mit zunehmender Entfernung vom Dämpfergehäuse ab und erreicht auf der Ebene y bzw. an der Austrittsöffnung 22 den Wert 0.As can be seen from the pressure curve 28, the pressure decreases with increasing distance from the damper housing and reaches the value 0 on the plane y or at the outlet opening 22.

Claims (9)

1. Verfahren zum Regeln der Dampfzufuhr in einem Dämpferge­häuse (1) für die kontinuierliche Behandlung von Textil­gut (2), bei dem der Istzustand im Dämpfergehäuse (1) gemessen wird und durch reglergesteuerte Mittel dauernd einem Sollwert angeglichen wird, dadurch gekennzeichnet, dass die Temperatur der Dampfatmosphäre an einem Mess­punkt (f) gemessen wird, der im Bereich der untersten Dampfschicht im Dämpfergehäuse (1) liegt und dass die reglergesteuerten Mittel bei Temperaturveränderungen aktiviert werden.1. A method for regulating the steam supply in a damper housing (1) for the continuous treatment of textile material (2), in which the actual state in the damper housing (1) is measured and continuously adjusted to a setpoint by means of controller-controlled means, characterized in that the temperature the steam atmosphere is measured at a measuring point (f), which lies in the area of the lowest vapor layer in the damper housing (1) and that the controller-controlled means are activated when the temperature changes. 2. Verfahren nach Anspruch l, dadurch gekennzeichnet, dass die Temperatur ausserhalb des Dämpfergehäuses (1) in einer Rohrleitung (3) gemessen wird, die mit der Dampfat­mospähre im Dämpfergehäuse und mit der Aussenatmosphäre frei kommuniziert.2. The method according to claim l, characterized in that the temperature outside the damper housing (1) is measured in a pipe (3) which communicates freely with the vapor atmosphere in the damper housing and with the outside atmosphere. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass beim Absinken der Temperatur am Messpunkt (f) dem Dämpfergehäuse (1) so lange Dampf zugeführt wird, bis die Temperatur am Messpunkt wieder steigt.3. The method according to claim 1 or 2, characterized in that when the temperature at the measuring point (f) drops to the damper housing (1), steam is fed until the temperature at the measuring point rises again. 4. Vorrichtung zum Regeln der Dampfzufuhr in einem Dämpfer­gehäuse (1) für die kontinuierliche Behandlung von Tex­tilgut (2), mit einer Messvorrichtung zum Messen des Istzustandes im Dämpfergehäuse (1) und mit reglerge­steuerten Mitteln zum dauernden Angleichen des Istzustan­des an einen Sollwert, dadurch gekennzeichnet, dass die Messvorrichtung ein Temperaturfühler (4) ist, der im Bereich der im Dämpfergehäuse vorhandenen untersten Dampfschicht angeordnet ist und dass die reglergesteuer­ten Mittel durch Temperaturveränderungen am Temperatur­fühler aktivierbar sind.4.Device for regulating the steam supply in a damper housing (1) for the continuous treatment of textile material (2), with a measuring device for measuring the actual state in the damper housing (1) and with controller-controlled means for continuously adapting the actual state to a setpoint, characterized that the measuring device is a temperature sensor (4) which is arranged in the region of the lowest vapor layer in the damper housing and that the controller-controlled means can be activated by temperature changes on the temperature sensor. 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Temperaturfühler in einer Rohrleitung (3) ausserhalb des Dämpfergehäuses (1) angeordnet ist, die an einem Ende an das Dämpfergehäuse (1) angeschlossen ist und die am anderen Ende (22) zur Aussenatmosphäre geöffnet ist.5. The device according to claim 4, characterized in that the temperature sensor is arranged in a pipe (3) outside the damper housing (1), which is connected at one end to the damper housing (1) and at the other end (22) to the outside atmosphere is open. 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass sich die Rohrleitung (3) unter das Dämpfergehäuse (1) erstreckt und dass der Temperaturfühler (4) unterhalb des Dämpfergehäuses (4) angeordnet ist.6. The device according to claim 5, characterized in that the pipe (3) extends under the damper housing (1) and that the temperature sensor (4) is arranged below the damper housing (4). 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Rohrleitung (3) einen geraden Abschnitt aufweist, der mehrere im Abstand zueinander angeordnete Anschlussstel­len (7) für einen Temperaturfühler (4) aufweist.7. The device according to claim 6, characterized in that the pipeline (3) has a straight section which has a plurality of spaced-apart connection points (7) for a temperature sensor (4). 8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeich­net, dass die Rohrleitung (3) an einer Seitenwand (21) des Dämpfergehäuses (1) angeschlossen ist.8. The device according to claim 6 or 7, characterized in that the pipeline (3) on a side wall (21) of the damper housing (1) is connected. 9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass die reglergesteuerten Mittel ein Dampfregelventil (16) in einer zum Dämpfergehäuse (1) führenden Dampfspeiseleitung (15) aufweisen und dass das Dampfregelventil (16) durch einen Regler (17) betätigbar ist, der die am Temperaturfühler (4) gemessene Temperatur mit einer Solltemperatur vergleicht, die einem vollstän­dig mit Dampf gefüllten Dämpfergehäuse (1) entspricht.9. Device according to one of claims 4 to 8, characterized in that the controller-controlled means have a steam control valve (16) in a steam feed line (15) leading to the damper housing (1) and that the steam control valve (16) can be actuated by a controller (17) which compares the temperature measured on the temperature sensor (4) with a target temperature which corresponds to a damper housing (1) completely filled with steam.
EP88810283A 1987-06-19 1988-05-03 Method and apparatus for regulating the supply of steam in a steaming chamber Expired - Lifetime EP0297029B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2321/87 1987-06-19
CH2321/87A CH673855A5 (en) 1987-06-19 1987-06-19

Publications (2)

Publication Number Publication Date
EP0297029A1 true EP0297029A1 (en) 1988-12-28
EP0297029B1 EP0297029B1 (en) 1990-07-18

Family

ID=4231073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88810283A Expired - Lifetime EP0297029B1 (en) 1987-06-19 1988-05-03 Method and apparatus for regulating the supply of steam in a steaming chamber

Country Status (5)

Country Link
EP (1) EP0297029B1 (en)
JP (1) JPS646163A (en)
CH (1) CH673855A5 (en)
DE (1) DE3860336D1 (en)
ES (1) ES2016420B3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663440A1 (en) * 1989-05-26 1991-12-20 Babcock Textilmasch Process and device for adjusting the vapour flow rate in a vaporising apparatus or the like
EP0620306A1 (en) * 1993-04-15 1994-10-19 SPEROTTO RIMAR S.p.A. Apparatus for continuous steaming and dimensional stabilization of continuous fabric webs and relevant method
BE1007796A3 (en) * 1993-01-18 1995-10-24 Kuesters Eduard Maschf Method and system for processing liquid and vapor fabric belts.
EP1063337A2 (en) * 1999-05-28 2000-12-27 Babcock Textilmaschinen GmbH Method and device for the continuous heat treatment of a textile fabric, particularly for fixing of dyestuffs
CN113829545A (en) * 2021-09-27 2021-12-24 江西宏柏新材料股份有限公司 Roll type production device and method for aerogel composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393479B1 (en) * 1996-12-30 2003-12-31 주식회사 효성 Melt extractor for manufacturing nonwoven fabric artificial leather

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318114A (en) * 1964-08-14 1967-05-09 Pottsville Bleaching And Dyein Method and apparatus for setting the color of dyed tubular fabrics
FR92751E (en) * 1964-06-08 1968-12-27 Julien Dungler New ultra-fast scouring and bleaching process.
DE1937100A1 (en) * 1968-07-26 1970-01-29 Bradford Dyers Ass Ltd Method and device for regulating the dryness in a dampening room used when drying colored materials
EP0073915A2 (en) * 1981-09-08 1983-03-16 A. Monforts GmbH & Co Method and apparatus to control a continuous thermal process for a textile sheet-like material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR92751E (en) * 1964-06-08 1968-12-27 Julien Dungler New ultra-fast scouring and bleaching process.
US3318114A (en) * 1964-08-14 1967-05-09 Pottsville Bleaching And Dyein Method and apparatus for setting the color of dyed tubular fabrics
DE1937100A1 (en) * 1968-07-26 1970-01-29 Bradford Dyers Ass Ltd Method and device for regulating the dryness in a dampening room used when drying colored materials
EP0073915A2 (en) * 1981-09-08 1983-03-16 A. Monforts GmbH & Co Method and apparatus to control a continuous thermal process for a textile sheet-like material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663440A1 (en) * 1989-05-26 1991-12-20 Babcock Textilmasch Process and device for adjusting the vapour flow rate in a vaporising apparatus or the like
BE1007796A3 (en) * 1993-01-18 1995-10-24 Kuesters Eduard Maschf Method and system for processing liquid and vapor fabric belts.
EP0620306A1 (en) * 1993-04-15 1994-10-19 SPEROTTO RIMAR S.p.A. Apparatus for continuous steaming and dimensional stabilization of continuous fabric webs and relevant method
US5369968A (en) * 1993-04-15 1994-12-06 Sperotto Rimar S.P.A. Apparatus for continuous steaming and dimensional stabilization of continuous fabric webs
EP1063337A2 (en) * 1999-05-28 2000-12-27 Babcock Textilmaschinen GmbH Method and device for the continuous heat treatment of a textile fabric, particularly for fixing of dyestuffs
EP1063337A3 (en) * 1999-05-28 2002-01-30 Babcock Textilmaschinen GmbH Method and device for the continuous heat treatment of a textile fabric, particularly for fixing of dyestuffs
US6485526B1 (en) 1999-05-28 2002-11-26 Babcock-Textilmaschinen Gmbh Method of and an arrangement for continuous thermal treatment of a textile product web, in particular for dye fixing
CN113829545A (en) * 2021-09-27 2021-12-24 江西宏柏新材料股份有限公司 Roll type production device and method for aerogel composite material

Also Published As

Publication number Publication date
ES2016420B3 (en) 1990-11-01
JPS646163A (en) 1989-01-10
EP0297029B1 (en) 1990-07-18
JPH022988B2 (en) 1990-01-22
DE3860336D1 (en) 1990-08-23
CH673855A5 (en) 1990-04-12

Similar Documents

Publication Publication Date Title
DE2653108A1 (en) Constant pressure of foam in coating fountain - is maintained by pressure sensor in fountain controlling air supply to foam generator and flow to fountain
DE3215812A1 (en) DEVICE FOR HEAT TREATING SUBSTANCES, IN PARTICULAR FOODSTUFFS
DE4325915A1 (en) Method for measuring humidity of a material web on a continuous drier and device for carrying out the method
DE3741680A1 (en) Method and device for glazing the surface of a paper web
EP0297029B1 (en) Method and apparatus for regulating the supply of steam in a steaming chamber
DE3148576C2 (en) Device for controlling the continuous heat treatment of a textile web of material
DE2824483C3 (en) Device for moistening, soaking or finishing a web made of paper, cardboard or foil
EP0139852B1 (en) Process for a drying and an immediately following fixing treatment of a running web material and tenter for carrying out the process
DE1959743A1 (en) Device for the wet treatment of strand or sheet-like textile goods
DE2634491B2 (en) Control system for absorption columns
EP2060184B1 (en) Method for heating food and cooker for same
DE68906404T2 (en) Method for monitoring the room humidity of a heat treatment furnace and system therefor.
DE9300554U1 (en) System for the liquid and steam treatment of textile webs
DE19808636A1 (en) Pressure testing method of liquid gas or liquid petroleum gas container
DE69831735T2 (en) METHOD AND DEVICE FOR HEATING A LIQUID
DE4223200C2 (en) Process and plant for the liquid and steam treatment of textile webs
DE3321015C2 (en) Device for determining the saturation temperature of a hot, pressurized liquid
CH637490A5 (en) Circuit for rules of fluessigkeitsniveaus in a container.
DE3403189C2 (en) Method and device for controlling the ripening process of foodstuffs, in particular raw sausage
CH641888A5 (en) Method of extracting gases from containers
DE1635172B2 (en) DEVICE FOR THE TREATMENT OF RAIL-SHAPED TEXTILE GOODS, PAPER RAILS OR THE DGL. WITH GAS
DE2021980C (en) Arrangement for air treatment devices
DE2523411A1 (en) Hot air drying system for items of variable moisture content - has exhaust air valve flap with coupled setting motor to control air flows
DE959099C (en) Device for operating a comparison heating surface in boilers or heated heat consumers, in particular forced flow boilers
DE1635172C3 (en) Device for the treatment of web-shaped textiles, paper webs or the like. with gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR IT LI NL

17P Request for examination filed

Effective date: 19890308

17Q First examination report despatched

Effective date: 19890811

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR IT LI NL

REF Corresponds to:

Ref document number: 3860336

Country of ref document: DE

Date of ref document: 19900823

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VEPA AG

Effective date: 19910420

Opponent name: EDUARD KUESTERS MASCHINENFABRIK GMBH & CO. KG

Effective date: 19910412

NLR1 Nl: opposition has been filed with the epo

Opponent name: VEPA AG

Opponent name: EDUARD KUESTERS MASCHINENFABRIK GMBH & CO. KG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930408

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930428

Year of fee payment: 6

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

ITTA It: last paid annual fee
27O Opposition rejected

Effective date: 19930129

NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060413

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060816

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070503