EP0294578B1 - Arrival regulating equipment for a lift - Google Patents

Arrival regulating equipment for a lift Download PDF

Info

Publication number
EP0294578B1
EP0294578B1 EP88106719A EP88106719A EP0294578B1 EP 0294578 B1 EP0294578 B1 EP 0294578B1 EP 88106719 A EP88106719 A EP 88106719A EP 88106719 A EP88106719 A EP 88106719A EP 0294578 B1 EP0294578 B1 EP 0294578B1
Authority
EP
European Patent Office
Prior art keywords
travel
phase
arrival
speed value
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106719A
Other languages
German (de)
French (fr)
Other versions
EP0294578A1 (en
Inventor
Klaus-Jürgen Dipl.-Ing. Klingbeil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to AT88106719T priority Critical patent/ATE65235T1/en
Publication of EP0294578A1 publication Critical patent/EP0294578A1/en
Application granted granted Critical
Publication of EP0294578B1 publication Critical patent/EP0294578B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/16Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of a single car or cage

Definitions

  • the invention relates to a drive-in control device for an elevator with a three-phase motor, which is coupled to a tachometer dynamo and whose speed can be regulated via an actuator during the run-in phase, a setpoint generator that can be switched on at the start of the run-in phase being provided, which has an integrator that has one of the tachometer dynamo The actual speed value generated is integrated and the output side is connected to a subtractor, which forms a path difference proportional to the speed setpoint from an actual path formed by the integrator and a path corresponding to the entry route.
  • a control device with a setpoint generator according to the generic term is known, for example, from CH-PS 550 736. If such control devices guaranteeing great stopping accuracy are used in elevators with three-phase motors, it is advantageous to let the phase of constant speed preceding the entrance run uncontrolled. The regulation during this phase could only consist of braking the motor to its lowest stationary speed with correspondingly high losses with every elevator load. However, difficulties arise during the transition from the unregulated to the regulated phase, since when the regulation for the entrance is used, there can be large differences between the load-dependent actual speed value and the suddenly occurring speed setpoint, which can be more or less hard impacts for the users of the elevator make it uncomfortably noticeable.
  • DE-OS 3 010 234 discloses a control device which is intended to avoid the disadvantage mentioned above.
  • a voltage-dependent cross-fader is provided, which influences the influence during a section of the driving diagram continuously changed by two independent control loops depending on the tachometer voltage.
  • One control loop controls the acceleration depending on the time, while the other control loop controls the speed depending on the path.
  • the b / t control At the beginning of the braking process, almost exclusively the b / t control is engaged.
  • their effectiveness is continuously reduced and that corresponding to the v / s control is increased, so that at the end of the braking phase the v / s control is practically exclusively engaged. This is to ensure a smooth transition when the braking phase begins and an exact entry on one floor.
  • the control device described above has a relatively complicated structure since, in addition to two b / t controllers and one v / s controller, there is also a cross-fader with at least five operational amplifiers.
  • the invention has for its object to provide a drive-in control device according to the preamble in which the difference between the actual speed and setpoint during the transition from an unregulated phase of travel to the controlled run-in phase does not come into effect and only one speed control loop is effective during the entire run-in phase .
  • the speed setpoint is adapted to the actual speed value by forming a factor from the actual speed value and an assigned nominal speed during the unregulated phase of the journey and storing it in a memory device during the braking phase.
  • Path-dependent speed setpoints are stored in a driving curve memory, which are multiplied by the factor and are supplied to a speed control loop as speed setpoints during the braking phase.
  • the advantages achieved by the invention are that when there is a transition from the unregulated phase of the journey to the regulated running-in phase, even with larger differences between the actual speed value and setpoint value, there are no impacts that impair driving comfort. Since this goal is achieved compared to the prior art with a setpoint generator improved by simple means and only one control loop, a simple, cost-saving solution to the problem mentioned at the outset results.
  • 1 denotes a three-phase motor, for example an asynchronous motor, which drives an elevator car 5 suspended on a conveyor cable 3 via a traction sheave 2 and balanced by a counterweight 4.
  • the asynchronous motor 1 is coupled to a tachometer dynamo 6, which generates a voltage proportional to the speed.
  • the elevator car 5 is guided in an elevator shaft 7, only one floor E n being shown.
  • With 8 is a magnetic switch attached to the elevator car 5, which interacts with switching magnets 9 arranged in the elevator shaft 7.
  • the switching magnets are arranged at a certain distance in front of the floors, corresponding to the entry path s o of the elevator car 5, and thus mark the point at which the brake is used.
  • the magnetic switch 8 is connected to an input of a brake application logic 10, which can be supplied with stop signals assigned to the upward or downward movement via further inputs.
  • the three-phase motor 1, the tachometer dynamo 6, a first subtractor 11, a first control amplifier 12, a second subtractor 13, a second control amplifier 14 and an actuator 15 form a speed control loop, which is subordinated to a current control loop for stabilization.
  • the first subtractor 11 is connected on the input side to a setpoint generator 16 and the tachometer dynamo 6. From a speed setpoint generated by the setpoint generator 16 and a speed actual value determined by the tachometer dynamo 6, the first subtractor 11 forms a speed control deviation ⁇ v, which is supplied to the second subtractor 13 via the first control amplifier 12 as a current setpoint.
  • the second subtractor 13 forms a current control deviation from the current setpoint and a current actual value of the three-phase motor 1, which is fed via the second control amplifier 14 to the actuator 15, which consists, for example, of thyristors controlled by adjusting the ignition angle.
  • the setpoint generator 16 has an integrator 17, which is connected on the input side to the tachometer dynamo 6 via a first contact 18.
  • the output of the integrator 17 is connected to an input of a further subtractor 19, the other input of which is supplied with a voltage corresponding to the entry path s o and the output of which is connected to the input of a driving curve memory 20 in which distance-dependent speed setpoints are stored.
  • 21 designates a divider, one input of which is connected via a second contact 22 to the tachometer dynamo 6 and the other input of which is connected to the output of the driving curve memory 20.
  • a memory device 23 is connected downstream of the divider 21 and is connected on the output side to an input of a multiplier 24, the other input of which is connected to the output of the driving curve memory 20.
  • the output of the multiplier 24 forms the output of the setpoint generator 16, which is connected to the first subtractor 11 of the speed control loop. 25 with a relay is referred to that with the output of the brake application logic 10 and a voltage source, not shown, is connected and actuates the first and second contacts 18, 22 when excited.
  • the drive-in control device is implemented by means of a microcomputer, the drive curve memory 20 and the memory device 23 are a fixed value or a read / write memory.
  • the entry control device described above works as follows:
  • the actual speed value v io depending on the elevator load, is smaller than the nominal speed value v so (time t o , FIG. 2).

Landscapes

  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • Elevator Control (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Types And Forms Of Lifts (AREA)
  • Harvester Elements (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Electric Motors In General (AREA)
  • Fluid-Damping Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Braking Arrangements (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Paper (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Invalid Beds And Related Equipment (AREA)

Abstract

An elevator system stopping control generates the difference between the actual speed value and a set point speed value on the transition from an unregulated travel phase to the regulated arrival or braking phase and prevents that difference from becoming effective so that the travel comfort is not impaired and the stopping accuracy remains assured. For this purpose, a multiplication factor is formed from the actual speed value and an associated nominal speed value by means of a divider during the travel phase before the onset point of braking and stored during the arrival phase in a memory. Stored in a travel curve memory are travel-dependent set point speed values, which values are multiplied by the factor by means of a multiplier and conducted as set point signals to a motor speed regulating circuit during the arrival phase.

Description

Die Erfindung betrifft eine Einfahrregelungseinrichtung für einen Aufzug mit einem Drehstrommotor, der mit einem Tachometerdynamo gekuppelt ist und dessen Drehzahl während der Einfahrphase über ein Stellglied regelbar ist, wobei ein bei Beginn der Einfahrphase einschaltbarer Sollwertgeber vorgesehen ist, welcher einen Integrierer aufweist, der einen vom Tachometerdynamo erzeugten Geschwindigkeitsistwert integriert und der ausgangsseitig mit einem Subtrahierer verbunden ist, welcher aus einem vom Integrierer gebildeten Istweg und einem der Einfahrstrecke entsprechenden Weg eine dem Geschwindigkeitssollwert proportionale Wegdifferenz bildet.The invention relates to a drive-in control device for an elevator with a three-phase motor, which is coupled to a tachometer dynamo and whose speed can be regulated via an actuator during the run-in phase, a setpoint generator that can be switched on at the start of the run-in phase being provided, which has an integrator that has one of the tachometer dynamo The actual speed value generated is integrated and the output side is connected to a subtractor, which forms a path difference proportional to the speed setpoint from an actual path formed by the integrator and a path corresponding to the entry route.

Eine Regelungseinrichtung mit einem Sollwertgeber gemäss Oberbegriff ist beispielsweise mit der CH-PS 550 736 bekannt geworden. Werden derartige, grosse Haltegenauigkeit garantierende Regelungseinrichtungen bei Aufzügen mit Drehstrommotoren angewendet, so ist es vorteilhaft, die der Einfahrt vorhergehende Phase konstanter Geschwindigkeit ungeregelt verlaufen zu lassen. Die Regelung während dieser Phase könnte nämlich nur darin bestehen, den Motor bei jeder Aufzugsbelastung auf seine kleinste stationäre Drehzahl unter entsprechend hohen Verlusten abzubremsen. Beim Übergang von der ungeregelten zur geregelten Phase treten jedoch Schwierigkeiten auf, da bei Einsetzen der Regelung für die Einfahrt zwischen dem belastungsabhängigen Geschwindigkeitsistwert und dem plötzlich auftretenden Geschwindigkeitssollwert grosse Differenzen entstehen können, die sich für die Benützer des Aufzuges in Form von mehr oder weniger harten Stössen unangenehm bemerkbar machen.A control device with a setpoint generator according to the generic term is known, for example, from CH-PS 550 736. If such control devices guaranteeing great stopping accuracy are used in elevators with three-phase motors, it is advantageous to let the phase of constant speed preceding the entrance run uncontrolled. The regulation during this phase could only consist of braking the motor to its lowest stationary speed with correspondingly high losses with every elevator load. However, difficulties arise during the transition from the unregulated to the regulated phase, since when the regulation for the entrance is used, there can be large differences between the load-dependent actual speed value and the suddenly occurring speed setpoint, which can be more or less hard impacts for the users of the elevator make it uncomfortably noticeable.

Mit der DE-OS 3 010 234 ist eine Regelungseinrichtung bekannt geworden, die vorstehend erwähnten Nachteil vermeiden soll. Hierbei ist ein spannungsabhängiger Überblendregler vorgesehen, der während eines Abschnittes des Fahrdiagrammes den Einfluss von zwei voneinander unabhängigen Regelkreisen in Abhängigkeit von der Tachospannung kontinuierlich verändert. Der eine Regelkreis regelt die Beschleunigung zeitabhängig, während der andere Regelkreis die Geschwindigkeit in Abhängigkeit vom Weg regelt. Zu Beginn des Bremsvorganges ist beinahe ausschliesslich die b/t-Regelung im Eingriff. Mit abnehmender Geschwindigkeit wird deren Wirksamkeit kontinuierlich verkleinert und die der v/s-Regelung entsprechend vergrössert, so dass am Ende der Bremsphase praktisch ausschliesslich die v/s-Regelung im Eingriff ist. Damit soll ein ruckfreier Übergang beim Einsetzen der Bremsphase und eine genaue Einfahrt auf einem Stockwerk erreicht werden. Vorstehend beschriebene Regelungseinrichtung ist relativ kompliziert aufgebaut, da ausser zwei b/t-Reglern und einem v/s-Regler noch ein wenigstens fünf Operationsverstärker aufweisender Überblendregler vorgesehen ist.DE-OS 3 010 234 discloses a control device which is intended to avoid the disadvantage mentioned above. In this case, a voltage-dependent cross-fader is provided, which influences the influence during a section of the driving diagram continuously changed by two independent control loops depending on the tachometer voltage. One control loop controls the acceleration depending on the time, while the other control loop controls the speed depending on the path. At the beginning of the braking process, almost exclusively the b / t control is engaged. As the speed decreases, their effectiveness is continuously reduced and that corresponding to the v / s control is increased, so that at the end of the braking phase the v / s control is practically exclusively engaged. This is to ensure a smooth transition when the braking phase begins and an exact entry on one floor. The control device described above has a relatively complicated structure since, in addition to two b / t controllers and one v / s controller, there is also a cross-fader with at least five operational amplifiers.

Der Erfindung liegt die Aufgabe zugrunde, eine Einfahrregelungseinrichtung gemäss Oberbegriff zu schaffen, bei der die beim Übergang von einer ungeregelten Phase der Fahrt zur geregelten Einfahrphase entstehende Differenz zwischen Geschwindigkeitsist- und -sollwert nicht zur Auswirkung kommt und während der gesamten Einfahrphase lediglich ein Geschwindigkeitsregelkreis wirksam ist.The invention has for its object to provide a drive-in control device according to the preamble in which the difference between the actual speed and setpoint during the transition from an unregulated phase of travel to the controlled run-in phase does not come into effect and only one speed control loop is effective during the entire run-in phase .

Diese Aufgabe wird durch die im Patentanspruch 1 gekennzeichnete Erfindung gelöst. Hierbei wird der Geschwindigkeitssollwert an den Geschwindigkeitsistwert angepasst, indem während der ungeregelten Phase der Fahrt aus dem Geschwindigkeitsistwert und einer zugeordneten Nenngeschwindigkeit ein Faktor gebildet und während der Bremsphase in einer Speichereinrich tung gespeichert wird. In einem Fahrkurvenspeicher sind wegabhängige Geschwindigkeitssollwerte gespeichert, die mit dem Faktor multipliziert und während der Bremsphase einem Geschwindigkeitsregelkreis als Geschwindigkeitssollwerte zugeführt werden.This object is achieved by the invention characterized in claim 1. Here, the speed setpoint is adapted to the actual speed value by forming a factor from the actual speed value and an assigned nominal speed during the unregulated phase of the journey and storing it in a memory device during the braking phase. Path-dependent speed setpoints are stored in a driving curve memory, which are multiplied by the factor and are supplied to a speed control loop as speed setpoints during the braking phase.

Die mit der Erfindung erzielten Vorteile liegen darin, dass bei Übergang von der ungeregelten Phase der Fahrt zur geregelten Einfahrphase auch bei grösseren Differenzen zwischen dem Geschwindigkeitsist- und -sollwert keine den Fahrkomfort beeinträchtigenden Stösse auftreten. Da dieses Ziel gegenüber dem Stand der Technik mit einem durch einfache Mittel verbesserten Sollwertgeber und lediglich einen Regelkreis erreicht wird, ergibt sich eine einfache, kostensparende Lösung des eingangs genannten Problemes.The advantages achieved by the invention are that when there is a transition from the unregulated phase of the journey to the regulated running-in phase, even with larger differences between the actual speed value and setpoint value, there are no impacts that impair driving comfort. Since this goal is achieved compared to the prior art with a setpoint generator improved by simple means and only one control loop, a simple, cost-saving solution to the problem mentioned at the outset results.

Im folgenden wird die Erfindung an Hand eines auf der Zeichnung dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung der erfindungsgemässen Einfahrregelungseinrichtung und
Fig. 2
ein Diagramm des zeitlichen Verlaufes des vorgegebenen und des angepassten Geschwindigkeitssollwertes während der Einfahrphase.
The invention is explained in more detail below with reference to an exemplary embodiment shown in the drawing. Show it:
Fig. 1
a schematic representation of the inventive retraction control device and
Fig. 2
a diagram of the time course of the predetermined and the adjusted speed setpoint during the running-in phase.

In der Fig. 1 ist mit 1 ein Drehstrommotor, beispielsweise ein Asynchronmotor, bezeichnet, der über eine Treibscheibe 2 eine an einem Förderseil 3 aufgehängte, über ein Gegengewicht 4 ausbalancierte Aufzugskabine 5 antreibt. Der Asynchronmotor 1 ist mit einem Tachometerdynamo 6 gekuppelt, der eine der Geschwindigkeit proportionale Spannung erzeugt. Die Aufzugskabine 5 ist in einem Aufzugsschacht 7 geführt, wobei lediglich ein Stockwerk En dargestellt ist. Mit 8 ist ein auf der Aufzugskabine 5 befestigter Magnetschalter bezeichnet, welcher mit im Aufzugsschacht 7 angeordneten Schaltmagneten 9 zusammenwirkt. Die Schaltmagnete sind in einem bestimmten, dem Einfahrweg so der Aufzugskabine 5 entsprechenden Abstand, vor den Stockwerken angeordnet und markieren damit den Bremseinsatzpunkt. Der Magnetschalter 8 ist mit einem Eingang einer Bremseinsatzlogik 10 verbunden, welcher über weitere Eingänge der Aufwärts- bzw. Abwärtsfahrt zugeordnete Haltesignale zugeführt werden können.In FIG. 1, 1 denotes a three-phase motor, for example an asynchronous motor, which drives an elevator car 5 suspended on a conveyor cable 3 via a traction sheave 2 and balanced by a counterweight 4. The asynchronous motor 1 is coupled to a tachometer dynamo 6, which generates a voltage proportional to the speed. The elevator car 5 is guided in an elevator shaft 7, only one floor E n being shown. With 8 is a magnetic switch attached to the elevator car 5, which interacts with switching magnets 9 arranged in the elevator shaft 7. The switching magnets are arranged at a certain distance in front of the floors, corresponding to the entry path s o of the elevator car 5, and thus mark the point at which the brake is used. The magnetic switch 8 is connected to an input of a brake application logic 10, which can be supplied with stop signals assigned to the upward or downward movement via further inputs.

Der Drehstrommotor 1, der Tachometerdynamo 6, ein erster Subtrahierer 11, ein erster Regelverstärker 12, ein zweiter Subtrahierer 13, ein zweiter Regelverstärker 14 und ein Stellglied 15 bilden einen Geschwindigkeitsregelkreis, welchem zwecks Stabilisierung ein Stromregelkreis unterlagert ist. Der erste Subtrahierer 11 ist eingangsseitig mit einem Sollwertgeber 16 und dem Tachometerdynamo 6 verbunden. Aus einem vom Sollwertgeber 16 erzeugten Geschwindigkeitssollwert und einem vom Tachometerdynamo 6 ermittelten Geschwindigkeitsistwert bildet der erste Subtrahierer 11 eine Geschwindigkeitsregelabweichung Δv, die dem zweiten Subtrahierer 13 über den ersten Regelverstärker 12 als Stromsollwert zugeführt wird. Der zweite Subtrahierer 13 bildet aus dem Stromsollwert und einem Stromistwert des Drehstrommotors 1 eine Stromregelabweichung, die über den zweiten Regelverstärker 14 dem Stellglied 15 zugeführt wird, welches beispielsweise aus mittels Zündwinkelverstellung gesteuerten Thyristoren besteht.The three-phase motor 1, the tachometer dynamo 6, a first subtractor 11, a first control amplifier 12, a second subtractor 13, a second control amplifier 14 and an actuator 15 form a speed control loop, which is subordinated to a current control loop for stabilization. The first subtractor 11 is connected on the input side to a setpoint generator 16 and the tachometer dynamo 6. From a speed setpoint generated by the setpoint generator 16 and a speed actual value determined by the tachometer dynamo 6, the first subtractor 11 forms a speed control deviation Δv, which is supplied to the second subtractor 13 via the first control amplifier 12 as a current setpoint. The second subtractor 13 forms a current control deviation from the current setpoint and a current actual value of the three-phase motor 1, which is fed via the second control amplifier 14 to the actuator 15, which consists, for example, of thyristors controlled by adjusting the ignition angle.

Der Sollwertgeber 16 weist einen Integrierer 17 auf, der eingangsseitig über einen ersten Kontakt 18 mit dem Tachometerdynamo 6 verbunden ist. Der Ausgang des Integrierers 17 ist an einem Eingang eines weiteren Subtrahieres 19 angeschlossen, dessem anderen Eingang eine dem Einfahrweg so entsprechende Spannung zugeführt wird und dessen Ausgang mit dem Eingang eines Fahrkurvenspeichers 20 in Verbindung steht, in welchem wegabhängige Geschwindigkeitssollwerte gespeichert sind. Mit 21 ist ein Dividierer bezeichnet, dessen einer Eingang über einen zweiten Kontakt 22 mit dem Tachometerdynamo 6 und dessen anderer Eingang mit dem Ausgang des Fahrkurvenspeichers 20 verbunden ist. Dem Dividierer 21 ist eine Speichereinrichtung 23 nachgeschaltet, die ausgangsseitig an einem Eingang eines Multiplizierers 24 angeschlossen ist, dessen anderer Eingang mit dem Ausgang des Fahrkurvenspeichers 20 in Verbindung steht. Der Ausgang des Multiplizierers 24 bildet den Ausgang des Sollwertgebers 16, der mit dem ersten Subtrahierer 11 des Geschwindigkeitsregelkreises verbunden ist. Mit 25 ist ein Relais bezeichnet, das mit dem Ausgang der Bremseinsatzlogik 10 und einer nicht dargestellten Spannungsquelle in Verbindung steht und bei Erregung den ersten und zweiten Kontakt 18, 22 betätigt. Wird die Einfahrregelungseinrichtung mittels eines Mikrocomputers realisiert, so sind der Fahrkurvenspeicher 20 und die Speichereinrichtung 23 ein Festwert- bzw. ein Schreib-Lesespeicher. Bei Ausführung in Analogtechnik ist die Speichereinrichtung 23 ein Abtast-Halte-Glied (Sample and Hold) und der Fahrkurvenspeicher 20 ein Radizierer, welcher gemäss der Beziehung v=√2bs wegabhängige Geschwindigkeitssollwerte erzeugt, wobei wie bekannt die Symbole v, b und s Geschwindigkeit, Verzögerung und Weg bedeuten.The setpoint generator 16 has an integrator 17, which is connected on the input side to the tachometer dynamo 6 via a first contact 18. The output of the integrator 17 is connected to an input of a further subtractor 19, the other input of which is supplied with a voltage corresponding to the entry path s o and the output of which is connected to the input of a driving curve memory 20 in which distance-dependent speed setpoints are stored. 21 designates a divider, one input of which is connected via a second contact 22 to the tachometer dynamo 6 and the other input of which is connected to the output of the driving curve memory 20. A memory device 23 is connected downstream of the divider 21 and is connected on the output side to an input of a multiplier 24, the other input of which is connected to the output of the driving curve memory 20. The output of the multiplier 24 forms the output of the setpoint generator 16, which is connected to the first subtractor 11 of the speed control loop. 25 with a relay is referred to that with the output of the brake application logic 10 and a voltage source, not shown, is connected and actuates the first and second contacts 18, 22 when excited. If the drive-in control device is implemented by means of a microcomputer, the drive curve memory 20 and the memory device 23 are a fixed value or a read / write memory. When implemented in analog technology, the memory device 23 is a sample-and-hold element and the driving curve memory 20 is an eraser, which generates path-dependent speed setpoints in accordance with the relationship v = √2bs, the symbols v, b and s representing speed, Delay and way mean.

Die vorstehend beschriebene Einfahrregelungseinrichtung arbeitet wie folgt:The entry control device described above works as follows:

Es sei angenommen, dass die Aufzugskabine 5 abwärts fährt und für das Stockwerk En ein Haltesignal vorliegt. Bei der Vorbeifahrt der Aufzugskabine 5 am diesem Stockwerk zugeordneten Schaltmagneten 9 wird ein Impuls erzeugt und das Relais 25 über die Bremseinsatzlogik 10 erregt (Zeitpunkt to, Fig. 2). Hierbei werden die Kontakte 18, 22 derart betätigt, dass der erste Kontakt 18 für die Dauer der Einfahrt geschlossen und der zweite Kontakt 22 geöffnet wird. Aus dem während der ungeregelten Phase der Fahrt über den zweiten Kontakt 22 zugeführten Geschwindigkeitsistwert vio und einem im Fahrkurvenspeicher 20 gespeicherten Nenngeschwindigkeitswert vso wird im Dividierer 21 ein Faktor y=vio/vso gebildet und in der Speichereinrichtung 23 für die Dauer der Einfahrt gespeichert. Dabei möge angenommen sein, dass der Geschwindigkeitsistwert vio in Abhängigkeit von der Aufzugsbelastung kleiner als der Nenngeschwindigkeitswert vso ist (Zeitpunkt to, Fig. 2). Die nun während der Dauer der Einfahrt über den ersten Kontakt 18 dem Integrierer 17 zugeführten Geschwindigkeitswerte vi werden zu einem Wegistwert si integriert, der im weiteren Subtrahierer 19 vom Einfahrweg so abgezogen wird, wobei ein der noch zu durchfahrenden Strecke entsprechender Restweg Δs=(so-si) gebildet wird. In Abhängigkeit vom derart gebildeten Restweg Δs wird der zugeordnete Geschwindigkeitssollwert vs=√2bΔs aus dem Fahrkurvenspeicher 20 abgerufen und dem Multiplizierer 24 zugeführt. Im Multiplizierer 24 wird durch Multiplikation mit dem Faktor y ein korrigierter Geschwindigkeitssollwert vs′=y·vs erzeugt, der zwecks Bildung der Geschwindigkeitsregelabweichung Δv=vi-vs′ dem ersten Subtrahierer 11 des Geschwindigkeitsregelkreises zugeführt wird.It is assumed that the elevator car 5 travels downwards and a stop signal is present for the floor E n . When the elevator car 5 drives past the switching magnet 9 assigned to this floor, a pulse is generated and the relay 25 is excited via the brake application logic 10 (time t o , FIG. 2). The contacts 18, 22 are actuated in such a way that the first contact 18 is closed for the duration of the entry and the second contact 22 is opened. A factor y = v io / v so is formed in the divider 21 from the actual speed value v io supplied via the second contact 22 during the uncontrolled phase of the journey via the second contact 22 and a nominal speed value v so stored in the driving curve memory 20 and in the storage device 23 for the duration of the entry saved. It may be assumed that the actual speed value v io , depending on the elevator load, is smaller than the nominal speed value v so (time t o , FIG. 2). The speed values v i now supplied to the integrator 17 via the first contact 18 during the entry are integrated into an actual path value s i , which is subtracted from the entry path s o in the further subtractor 19, with a remaining distance Δs = corresponding to the distance still to be traveled (s o -s i ) is formed. In Depending on the residual path Δs thus formed, the assigned speed setpoint v s = √2bΔs is retrieved from the driving curve memory 20 and fed to the multiplier 24. In the multiplier 24, a corrected speed setpoint v s '= y · v s is generated by multiplication by the factor y, which is supplied to the first subtractor 11 of the speed control loop for the purpose of forming the speed control deviation Δv = v i -v s '.

Da der Einfahrweg so=vso·t₁/2 konstant und unabhängig vom anfänglichen Geschwindigkeitswert vio ist, ergibt sich beim angenommenen Beispiel eine etwas längere Einfahrzeit t₂=so·2/vio, wobei jedoch die Haltegenauigkeit nicht beeinträchtigt wird (Zeitpunkte t₁ und t₂, Fig. 2).Since the entry path s o = v so · t₁ / 2 is constant and independent of the initial speed value v io , the adopted example results in a somewhat longer entry time t₂ = s o · 2 / v io , although the stopping accuracy is not impaired (times t₁ and t₂, Fig. 2).

Claims (2)

  1. Arrival regulating equipment for a lift with a polyphase alternating current motor (1), which is coupled with a tachometer dynamo (6) and the rotational speed of which during the arrival phase is regulable by a setting member (15), wherein a target value transmitter (16) is provided, which is switchable in at the beginning of the arrival phase and displays an integrator (17), which integrates an actual speed value produced by the tachometer dynamo (6) and is connected at the output side with a subtractor (19), which forms a travel difference proportional to the target speed value from an actual travel formed by the integrator (17) and a travel corresponding to the arrival distance, characterised thereby.
    - that a divider (21) is provided, the one input of which is connected with tachometer dynamo (6) and the other input of which is connected with the output of a travel curve store (20), in which travel-dependent target speed values (vs) are stored and the input of which stands in connection with the subtractor (19),
    - that the divider (21) before the beginning of the braking phase forms a factor (y) from an actual speed value (vio) and a nominal speed value (vso),
    - a storage equipment (23) is provided, which is connected with the output of the divider (21) and in which the factor (y) is stored during the arrival phase, and
    - that a multiplier (24) is provided, the one input of which is connected with the output of the storage equipment (23) and the other input of which is connected with the output of the travel curve store (20),
    - wherein the target speed values (vs) of the travel curve store (20), which correspond to the travel differences of the subtractor (19) are multiplied by the factor (y) and conducted to a speed regulating circuit.
  2. Arrival regulating equipment according to patent claim 1, characterised thereby, that the storage equipment (23) is a scanning-hold member.
EP88106719A 1987-06-12 1988-04-27 Arrival regulating equipment for a lift Expired - Lifetime EP0294578B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106719T ATE65235T1 (en) 1987-06-12 1988-04-27 ENTRY CONTROL DEVICE FOR AN ELEVATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2210/87 1987-06-12
CH221087 1987-06-12

Publications (2)

Publication Number Publication Date
EP0294578A1 EP0294578A1 (en) 1988-12-14
EP0294578B1 true EP0294578B1 (en) 1991-07-17

Family

ID=4228453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106719A Expired - Lifetime EP0294578B1 (en) 1987-06-12 1988-04-27 Arrival regulating equipment for a lift

Country Status (20)

Country Link
US (1) US4844205A (en)
EP (1) EP0294578B1 (en)
JP (1) JP2548603B2 (en)
CN (1) CN1010297B (en)
AT (1) ATE65235T1 (en)
AU (1) AU593447B2 (en)
BR (1) BR8802834A (en)
CA (1) CA1282194C (en)
DE (1) DE3863696D1 (en)
DK (1) DK165238C (en)
ES (1) ES2024580B3 (en)
FI (1) FI96300C (en)
HK (1) HK63292A (en)
HU (1) HU201492B (en)
IN (1) IN171501B (en)
MX (1) MX169657B (en)
NO (1) NO171965C (en)
PT (1) PT87664B (en)
TR (1) TR24921A (en)
ZA (1) ZA883771B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796423B2 (en) * 1989-07-18 1995-10-18 三菱電機株式会社 Elevator control equipment
CN1049365C (en) * 1993-07-01 2000-02-16 云浮硫铁矿企业集团公司自来水厂 High-efficient pulse settling pond
JP3170151B2 (en) * 1994-08-24 2001-05-28 株式会社東芝 Elevator control device
DE20103158U1 (en) * 2001-02-22 2001-09-27 Mueller Wolfgang T Multi-stage, position-controlled, responsive and precise triggering speed limiter for elevators
JP2006298645A (en) * 2005-04-21 2006-11-02 Inventio Ag Method for monitoring speed of elevator cage and detection system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1186184B (en) * 1961-06-24 1965-01-28 Siemens Ag Speed setpoint generator for traction sheave conveyor machines
CH550736A (en) * 1973-04-18 1974-06-28 Inventio Ag DEVICE FOR CONTROLLING AN ELEVATOR.
FR2313300A1 (en) * 1975-03-20 1976-12-31 Otis Ascinter ELEVATOR MOTOR CONTROL SYSTEM
JPS6013948B2 (en) * 1975-04-03 1985-04-10 株式会社明電舎 Elevator landing position control device
GB1524298A (en) * 1975-04-03 1978-09-13 Otis Elevator Japan Control apparatus for an elevator system
FR2338527A1 (en) * 1976-01-15 1977-08-12 Duriez Jean METHOD AND DEVICE FOR CONTROL AND REGULATION OF THE SPEED OF A MOBILE
US4161235A (en) * 1978-05-19 1979-07-17 Westinghouse Electric Corp. Elevator system
US4373612A (en) * 1980-11-25 1983-02-15 Westinghouse Electric Corp. Elevator system
US4527662A (en) * 1983-04-01 1985-07-09 Otis Elevator Company Elevator speed control
FR2579189B1 (en) * 1985-03-25 1988-04-08 Logilift Sarl CONTROLLED CONTROL METHOD FOR THE SLOWDOWN OF A MOBILE AND REGULATED CONTROL DEVICE FOR IMPLEMENTING THE METHOD
US4691807A (en) * 1986-03-05 1987-09-08 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus

Also Published As

Publication number Publication date
AU1756388A (en) 1988-12-15
EP0294578A1 (en) 1988-12-14
NO882550L (en) 1988-12-13
FI882704A0 (en) 1988-06-08
IN171501B (en) 1992-10-31
DK316388D0 (en) 1988-06-10
JPS63310479A (en) 1988-12-19
PT87664B (en) 1993-09-30
DK165238C (en) 1993-03-08
AU593447B2 (en) 1990-02-08
FI882704A (en) 1988-12-13
FI96300B (en) 1996-02-29
ATE65235T1 (en) 1991-08-15
DE3863696D1 (en) 1991-08-22
TR24921A (en) 1992-07-21
DK316388A (en) 1988-12-13
NO882550D0 (en) 1988-06-09
PT87664A (en) 1989-05-31
FI96300C (en) 1996-06-10
US4844205A (en) 1989-07-04
HU201492B (en) 1990-11-28
JP2548603B2 (en) 1996-10-30
BR8802834A (en) 1989-01-03
NO171965B (en) 1993-02-15
ES2024580B3 (en) 1992-03-01
DK165238B (en) 1992-10-26
CN1010297B (en) 1990-11-07
HK63292A (en) 1992-08-28
CA1282194C (en) 1991-03-26
ZA883771B (en) 1989-02-22
CN1031356A (en) 1989-03-01
MX169657B (en) 1993-07-16
HUT50082A (en) 1989-12-28
NO171965C (en) 1993-05-26

Similar Documents

Publication Publication Date Title
EP1624772B1 (en) Method for driving a movable part of a piece of furniture
EP0429835B2 (en) Method and arrangement to decrease the risk of being caught between automatic doors
DE2102583B2 (en) Elevator control circuit
DE102004013692A1 (en) Method for a magnetic levitation vehicle for controlling support columns and magnetic levitation vehicle with control circuits operating according to this method
EP0318660B1 (en) Process and device for the position control of a positioning drive, especially for lifts
DE68913506T2 (en) Elevator system with independent limitation of the speed setpoint in the end zones.
EP0294578B1 (en) Arrival regulating equipment for a lift
DE2055922C3 (en) Method for controlling an elevator for medium to high travel speed and control device for carrying out the method
DE2611067A1 (en) ELEVATOR MOTOR CONTROL
DE2004812C2 (en) Control device for controlling the speed of a fast moving elevator car
DE1266938B (en) Device for controlling the setpoint value during the deceleration process when lifting with a speed-controlled drive
DE3048536C2 (en)
DE3032310C2 (en)
DE19815222C1 (en) Elevator controller for controlling an elevator with a drive controller
DE2024798C3 (en) Safety device for an elevator car
DE2649319C3 (en) Control device for a freely movable industrial truck
DE2340930B2 (en) Speed control arrangement for a drive unit with two interconnected electric motors
DE2551974C3 (en) Towing cable device for portable devices
AT223776B (en) Method and control system for controlling elevator motors
DE2516448C3 (en) Method for determining the acceleration termination point for an elevator car
DE2058560A1 (en) Conveyor device
AT219163B (en) Method for controlling the braking device of elevators and device for carrying out the method
DE173988C (en)
DE1481711C3 (en)
AT218201B (en) Device for controlling a lifting device, in particular for elevators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890520

17Q First examination report despatched

Effective date: 19900817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 65235

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3863696

Country of ref document: DE

Date of ref document: 19910822

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024580

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88106719.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020327

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020404

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020412

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030427

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

BERE Be: lapsed

Owner name: *INVENTIO A.G.

Effective date: 20030430

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060411

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060413

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060420

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060427

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060714

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070427

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070427

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070427