EP0293367B1 - Device for adjusting the smooth running of internal combustion engines - Google Patents

Device for adjusting the smooth running of internal combustion engines Download PDF

Info

Publication number
EP0293367B1
EP0293367B1 EP86905739A EP86905739A EP0293367B1 EP 0293367 B1 EP0293367 B1 EP 0293367B1 EP 86905739 A EP86905739 A EP 86905739A EP 86905739 A EP86905739 A EP 86905739A EP 0293367 B1 EP0293367 B1 EP 0293367B1
Authority
EP
European Patent Office
Prior art keywords
controllers
segments
smooth running
segment
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86905739A
Other languages
German (de)
French (fr)
Other versions
EP0293367A1 (en
Inventor
Thomas KÜTTNER
Wolf Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0293367A1 publication Critical patent/EP0293367A1/en
Application granted granted Critical
Publication of EP0293367B1 publication Critical patent/EP0293367B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • a device for regulating the smooth running of an internal combustion engine is known, with the aid of which the vibration of a motor vehicle in the lower speed range, in particular when idling, is eliminated.
  • This swinging of the motor vehicle is often referred to as "shaking" and is a result of manufacturing tolerances that occur in the series production of the injection equipment.
  • EP-A-0 140 065 shows and describes a device for smooth running control of an internal combustion engine.
  • a control is assigned to each cylinder of the internal combustion engine, a control value S being formed from the actual value assigned to a cylinder and an average value. Pulse times of a segment wheel connected to the crankshaft of the internal combustion engine are used for averaging.
  • the object of the invention is therefore to provide a device with which good conditions can be achieved especially with regard to the dynamics. This task is solved with the features of the main claim.
  • the device according to the invention for regulating the smooth running of an internal combustion engine is distinguished by good results in dynamic operation of the internal combustion engine. It has proven to be particularly advantageous that the compensation of the phase shift between the setpoint and the actual value is achieved in that the setpoint is z-1 segments of a known segment wheel, which has z segments when it is attached to the crankshaft, compared to the actual value is delayed.
  • Another advantage is the use of 2 * z proportional-integral controllers instead of z proportional-integral controllers, since this eliminates the need for a synchronization device for the smooth running control. If only z proportional-integral controllers are installed in the injection system, synchronization is necessary.
  • FIG. 1 shows that with large signal speed fluctuations there is a greater delay or phase shift of the setpoint compared to the actual value.
  • FIG. 2 shows the moving average over 2 segments and the moving average over 8 segments, which is delayed by 3 segments.
  • this measure enables the smoothness control to recognize the correct measure for the deviation of the actual value from the mean value, even in the case of large signal speed fluctuations.
  • FIG. 3 shows a first possibility of the principle of the smooth running control LRR with proportional-integral controllers (PI controllers) without synchronization.
  • PI controllers proportional-integral controllers
  • the following variables are plotted over the time axis t.
  • Be Calculation times of target and actual values are given.
  • the calculated actual value was 3 segments behind.
  • FIG. 4 illustrates the principle of the smooth running control LRR with 8 proportional integral controllers (PI controllers), the same variables as in FIG. 3 being plotted over the time axis t.
  • PI controllers proportional integral controllers
  • FIG. 5 shows a second possibility of the principle of the smooth running control LRR with 4 proportional integral controllers (PI controllers) without synchronization.
  • FIG. 5 can be compared with FIG. 3.
  • This second option like the first option in FIG. 3, permits stable LRR control.
  • FIG. 5 shows that the reaction to the injection in cylinder 1 (Z1) is then detected in the second and third segments, in FIG. 3 already in the first and second segments.
  • the times for the controller calculation and the manipulated variable each shift by one segment compared to the first option. Since there are these two setting options, no synchronization is necessary, and it is left to chance which setting is set from the start.
  • FIG. 6 shows the principle of the smooth running control LRR with 4 proportional integral controllers (PI controllers) with synchronization, the reaction to the injection in cylinder 1 (Z1) being subsequently recorded in the second and third segments.
  • PI controllers proportional integral controllers
  • FIG. 7 shows a simplified block diagram with integration of the smooth running control LRR into the injection system.
  • the idle controller is divided into a proportional component, LL-P component, and an integral component, LL-I component, and an integral gain calculation, I-component.
  • the integral increase is added to the manipulated variables and integrators of the idle idle control LRR.
  • the mean MW of the smooth-running integrators is formed. This mean value MW is fed to a conversion point U, which uses the timer value to determine the amount of fuel that is fed to the cylinder. This conversion point U is connected to an addition point 1.
  • the idle controller proportional component is also linked to this addition point 1.
  • the addition point 1 is supplied with a third signal via the change in the driving behavior of the motor vehicle KFZ.
  • the vehicle speed control FGR and the addition point 1 are connected to a maximum value limiter MAX which, together with a full load / smoke limitation VL / R, emits signals to a minimum limiter MIN.
  • This minimum limiter MIN supplies signals to a subtraction point 2 via a fuel temperature correction KTK, a pump map (pump KF) and a timer value normalization TN.
  • the output signal of the formed mean value MW of the smoothness integrators is also fed to the subtraction point 2.
  • the output signal of the subtraction point 2 is fed to an addition point 3, which receives a further signal from the smooth running control LRR via a manipulated variable switch SGU.
  • the output signal of the addition point 3 is fed to the control path setpoint output of the injection system.
  • the minimum limiter MIN is coupled to the smooth running control LRR, in such a way that the integrator setting is stored below the zero line outside of idle mode.
  • FIG. 8 shows the course of the smooth running control LRR integrators 1 to 4 when idling LL and outside of idling LL.
  • the integrator settings are retained and the correct integrator positions are already set the next time the system is idle.
  • the characteristic curve a shows the mean value MW of the integrators of the smooth running control during idling and outside of idling.
  • FIGS. 9 and 10 show two possibilities for forming the setpoint and actual value, which have the advantage that fewer memory cells are required. Only one segment time is used as the actual value. The segment in which the reaction of the corresponding injection has the best effect is used. The setpoint is formed over z segments. Depending on the actual value, the long (Fig. 9) or short (Fig. 10) seg used for setpoint creation. Instead of processing the segment times, the corresponding speed value can also be used for the setpoint and actual value formation.
  • FIG. 11 shows a possibility for shortening the actuating time in fuel quantity interlockings with a specific actuating time (e.g. magnetic interlockings). Shortly after the time of issue for the next manipulated variable, it is not the new final value (e.g. S1) that is output, but a pilot control variable VS1, which is formed as follows:
  • the pilot control variable VS1 is pending for the time dt.
  • the factor and the time dt must be matched to the actuating speed.

Abstract

The device proposed compensates, in the event of large-signal/rotation speed variations, for a time-lag or phase-shift arising between an actual value and a specified average value, both of which are fed to a control unit for the injection of fuel into a cylinder. If 2 x z proportional-integral regulators (Pi-regulators) are used for adjusting the smooth running for a z number of cylinder, automatic synchronization is ensured. In the case of a cylinder number where z is less than 6, it is sufficient to install z proportional-integral regulators (Pi-regulators), whereby synchronization is automatically effected.

Description

Stand der TechnikState of the art

Es ist eine Einrichtung zur Regelung der Laufruhe einer Brennkraftmaschine bekannt, mit deren Hilfe das Schwingen eines Kraftfahrzeuges im unteren Drehzahlbereich, insbesondere im Leerlauf, behoben wird. Dieses Schwingen des Kraftfahrzeuges wird oftmals als «Schütteln» bezeichnet und ist eine Folge von Fertigungstoleranzen, die in der Serienherstellung der Einspritzausrüstung auftreten.A device for regulating the smooth running of an internal combustion engine is known, with the aid of which the vibration of a motor vehicle in the lower speed range, in particular when idling, is eliminated. This swinging of the motor vehicle is often referred to as "shaking" and is a result of manufacturing tolerances that occur in the series production of the injection equipment.

Die EP-A-0 140 065 zeigt und beschreibt eine Einrichtung zur Laufruheregelung einer Brennkraftmaschine. Dabei wird jedem Zylinder der Brennkraftmaschine eine Regelung zugeordnet, wobei aus dem einem Zylinder zugeordneten Istwert und einem Mittelwert ein Stellwert S gebildet wird. Für die Mittelwertbildung dienen dabei Impulszeiten eines mit der Kurbelwelle der Brennkraftmaschine verbundenen Segmentrades.EP-A-0 140 065 shows and describes a device for smooth running control of an internal combustion engine. A control is assigned to each cylinder of the internal combustion engine, a control value S being formed from the actual value assigned to a cylinder and an average value. Pulse times of a segment wheel connected to the crankshaft of the internal combustion engine are used for averaging.

Es hat sich nun gezeigt, dass die dynamischen Verhältnisse der bekannten Einrichtung nicht in jedem Fall zufriedenstellend sind. Aufgabe der Erfindung ist es deshalb, eine Einrichtung zu schaffen, mit der speziell bezüglich der Dynamik gute Verhältnisse erzielt werden. Gelöst wird diese Aufgabe mit den Merkmalen des Hauptanspruchs.It has now been shown that the dynamic conditions of the known device are not always satisfactory. The object of the invention is therefore to provide a device with which good conditions can be achieved especially with regard to the dynamics. This task is solved with the features of the main claim.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemässe Einrichtung zur Regelung der Laufruhe einer Brennkraftmaschine zeichnet sich durch gute Ergebnisse im dynamischen Betrieb der Brennkraftmaschine aus. Dabei hat es sich als besonders vorteilhaft erwiesen, dass die Kompensation der Phasenverschiebung zwischen Sollwert und Istwert dadurch erreicht wird, dass der Sollwert um z-1 Segmente eines bekannten Segmentrades, das z Segmente aufweist, wenn es an der Kurbelwelle angebracht ist, gegenüber dem Istwert verzögert wird.The device according to the invention for regulating the smooth running of an internal combustion engine is distinguished by good results in dynamic operation of the internal combustion engine. It has proven to be particularly advantageous that the compensation of the phase shift between the setpoint and the actual value is achieved in that the setpoint is z-1 segments of a known segment wheel, which has z segments when it is attached to the crankshaft, compared to the actual value is delayed.

Ein weiterer Vorteil bietet sich bei der Verwendung von 2*z Proportional-Integral-Reglern statt z Proportional-Integral-Reglern, da dadurch auf eine Synchronisationseinrichtung der Laufruheregelung verzichtet werden kann. Sind nur z Proportional-Integral-Regler in das Einspritzsystem eingebaut, so ist eine Synchronisation notwendig.Another advantage is the use of 2 * z proportional-integral controllers instead of z proportional-integral controllers, since this eliminates the need for a synchronization device for the smooth running control. If only z proportional-integral controllers are installed in the injection system, synchronization is necessary.

Bei einer Erhöhung der Drehzahl wird der Leerlaufregler-Integral-Zuwachs negativ und alle Leerlaufregler-Integratoren werden kleiner bis sie Regelweg = 0 erreichen. Der Integrator wird für die Regelweg-Sollwert-Ausgabe auf 0 begrenzt, intern wird aber der Integrator so lange reduziert, bis alle Integratoren Regelweg = 0 erreicht haben. Durch diese Massnahmen wird gewährleistet, dass bei höheren Drehzahlen die Kraftstoffmenge nicht verfälscht wird und die Integratoreneinstellungen beibehalten werden, damit beim nächsten Leerlaufbetrieb die richtigen Integratorstellungen schon eingestellt sind. Um die Stellzeit für die Laufruhe-Stellgrössen bei Kraftstoffmengenstellwerken mit bestimmter Einstellzeit zu verkürzen, wird eine Formung der Stellgrösse durchgeführt. Diese Stellgrössenformung bringt besonders bei hoher Zylinderzahl z, erhöhter Leerlaufdrehzahl und begrenzter Stellwerksstellzeit Vorteile. Die Formung erfolgt derart, dass dem Stellwerk kurzzeitig eine zu grosse bzw. zu kleine Stellgrösse vorgetäuscht und damit die Stellgeschwindigkeit erhöht wird.When the speed increases, the idle controller integral gain becomes negative and all idle controller integrators become smaller until they reach control path = 0. The integrator is limited to 0 for the control path setpoint output, but internally the integrator is reduced until all integrators have reached control path = 0. These measures ensure that the fuel quantity is not falsified at higher engine speeds and the integrator settings are retained so that the correct integrator positions are already set the next time the engine is idling. In order to shorten the actuating time for the smooth running actuating variables in fuel quantity signal boxes with a specific adjusting time, the actuating variable is shaped. This manipulated variable shaping offers advantages particularly when there are a high number of cylinders z, increased idling speed and a limited interlocking time. The shaping takes place in such a way that the interlocking is briefly simulated to be too large or too small an actuating variable, thus increasing the actuating speed.

Zeichnungdrawing

Die Erfindung und Vergleichsbeispiele werden nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:

  • Figur 1 die gleitenden Mittelwerte über 2 und 8 Segmente,
  • Figur 2 den gleitenden Mittelwert über 2 Segmente und den gleitenden Mittelwert über 8 Segmente und 3 Segmente verzögert,
  • Figur 3 eine erste Möglichkeit des Prinzips der Laufruheregelung mit 4 Proportional-Integral-Reglern ohne Synchronisation,
  • Figur 4 das Prinzip der Laufruheregelung mit 8 Proportional-Integral-Reglern,
  • Figur 5 eine zweite Möglichkeit des Prinzips der Laufruheregelung mit 4 Proportional-Integral-Reglern ohne Synchronisation,
  • Figur 6 das Prinzip der Laufruheregelung mit 4 Proportional-Integral-Reglern mit Synchronisation,
  • Figur 7 ein vereinfachtes Blockschaltbild mit Einbindung der Laufruheregelung in das Einspritzsystem,
  • Figur 8 den Verlauf der Laufruheregelung-Integratoren im Leerlauf und ausserhalb des Leerlaufs,
  • Figur 9 eine erste Alternative zur Soll- und Istwertbildung,
  • Figur 10 eine zweite Alternative zur Soll- und Istwertbildung und
  • Figur 11 das Prinzip der Stellgrössenformung zur Verkürzung der Stellzeit.
The invention and comparative examples are explained in more detail below with reference to the drawings. Show it:
  • FIG. 1 shows the moving averages over 2 and 8 segments,
  • FIG. 2 delayed the moving average over 2 segments and the moving average over 8 segments and 3 segments,
  • FIG. 3 shows a first possibility of the principle of smooth running control with 4 proportional integral controllers without synchronization,
  • FIG. 4 shows the principle of smooth running control with 8 proportional integral controllers,
  • FIG. 5 shows a second possibility of the principle of smooth running control with 4 proportional-integral controllers without synchronization,
  • FIG. 6 the principle of smooth running control with 4 proportional integral controllers with synchronization,
  • FIG. 7 shows a simplified block diagram with integration of the smooth running control into the injection system,
  • FIG. 8 shows the course of the smooth running control integrators during idling and outside of idling,
  • FIG. 9 shows a first alternative to the setpoint and actual value formation,
  • Figure 10 shows a second alternative to the target and actual value formation and
  • Figure 11 shows the principle of manipulated variable shaping to shorten the actuating time.

In Figur 1 sind die gleitenden Mittelwerte über 2 und 8 Segmente aufgezeichnet. Die Zylinderzahl beträgt z = 4. Der Sollwert wird dadurch erstellt, dass der Mittelwert über die zurückliegenden 2*z = 8 Segmentzeiten gebildet wird. Der Istwert ergibt sich als Mittelwert der beiden zurückliegenden Segmentzeiten, was einem Arbeitshub eines Zylinders entspricht. Weiterhin zeigt Figur 1, dass bei Grosssignal-Drehzahlschwankungen eine grössere Verzögerung bzw. Phasenverschiebung des Sollwerts gegenüber dem Istwert auftritt.In Figure 1, the moving averages over 2 and 8 segments are recorded. The number of cylinders is z = 4. The setpoint is created by averaging the past 2 * z = 8 segment times. The actual value is the average of the two previous segment times, which corresponds to one working stroke of a cylinder. Furthermore, FIG. 1 shows that with large signal speed fluctuations there is a greater delay or phase shift of the setpoint compared to the actual value.

Figur 2 zeigt den gleitenden Mittelwert über 2 Segmente und den gleitenden Mittelwert über 8 Segmente, der um 3 Segmente verzögert ist. Diese Massnahme ermöglicht, wie aus Figur 2 zu entnehmen ist, dass die Regelung der Laufruhe auch bei Grosssignal- Drehzahlschwankungen das richtige Mass für die Abweichung des Istwerts bezüglich des Mittelwerts erkennt.FIG. 2 shows the moving average over 2 segments and the moving average over 8 segments, which is delayed by 3 segments. As can be seen from FIG. 2, this measure enables the smoothness control to recognize the correct measure for the deviation of the actual value from the mean value, even in the case of large signal speed fluctuations.

Figur 3 weist eine erste Möglichkeit des Prinzips der Laufruheregelung LRR mit Proportional-Integral-Reglern (PI-Regler) ohne Synchronisation auf. Hierzu sind folgende Grössen über der Zeitachse t aufgetragen. Momentandrehzahl, Segmentimpulse, Einspritzung, Zeit, Timerwert-Normierung TN über 1 Segment, Stellgrösse und Segmentzähler. In diesem Zeitdiagramm sind Berechnungszeitpunkte von Soll- und Istwert angegeben. Im Zeitpunkt der Sollwert- und Stellgrössenberechnungfürden Regler liegt der berechnete Istwert bereits 3 Segmente zurück.FIG. 3 shows a first possibility of the principle of the smooth running control LRR with proportional-integral controllers (PI controllers) without synchronization. For this purpose, the following variables are plotted over the time axis t. Instantaneous speed, segment impulses, injection, time, timer value normalization TN over 1 segment, manipulated variable and segment counter. In this timing diagram, Be Calculation times of target and actual values are given. At the time of the setpoint and manipulated variable calculation for the controller, the calculated actual value was 3 segments behind.

Figur 4 veranschaulicht das Prinzip der Laufruheregelung LRR mit 8 Proportional-Integral-Reglern (PI-Regler), wobei dieselben Grössen wie in Figur 3 über der Zeitachse t aufgetragen sind. Dieses Zeitdiagramm zeigt, dass nach jedem Segmentimpuls die Stellgrösse eines Reglers berechnet und 2 Segmente später ausgegeben wird. Die Istwertbildung im Regler 1 erfolgt über die Segmente 1 und 1 b, für Regler 2 über die Segmente 1 b und 2a, usw. Dabei wirken sich die Stellgrössen der Regler 2, 4, 6, 8 nicht auf eine Einspritzung aus. Ferner verdeutlicht dieses Zeitdiagramm, dass die Einspritzung die Segmentzeit 2a beeinflusst, und dass Regler 1 und Regler 2 die Drehzahlabweichung ausregeln mit dem Unterschied, dass die Stellgrösse 1 eine Auswirkung auf die Einspritzung hat und Stellgrösse 2 nicht, wobei Regler 1 und Regler 2 über die Segmentzeiten gekoppelt sind. Es korrigieren also immer z Regler die Kraftstoffmenge so, dass die Drehzahlabweichungen gleich 0 werden, so dass eine Synchronisation nicht notwendig ist.FIG. 4 illustrates the principle of the smooth running control LRR with 8 proportional integral controllers (PI controllers), the same variables as in FIG. 3 being plotted over the time axis t. This timing diagram shows that after each segment pulse, the manipulated variable of a controller is calculated and 2 segments are output later. The actual value formation in controller 1 takes place via segments 1 and 1 b, for controller 2 via segments 1 b and 2a, etc. The manipulated variables of controllers 2, 4, 6, 8 do not affect injection. Furthermore, this time diagram shows that the injection influences the segment time 2a, and that controller 1 and controller 2 regulate the speed deviation with the difference that the manipulated variable 1 has an effect on the injection and manipulated variable 2 does not, whereby controller 1 and controller 2 via the Segment times are coupled. So z controllers always correct the fuel quantity so that the speed deviations become 0, so that synchronization is not necessary.

In Figur 5 ist eine zweite Möglichkeit des Prinzips der Laufruheregelung LRR mit 4 Proportional-Integral-Reglern (PI-Regler) ohne Synchronisation gebildet. Die Figur 5 ist mit Figur 3 zu vergleichen. Diese zweite Möglichkeit lässt ebenfalls wie die erste Möglichkeit in Figur 3 eine stabile Laufruheregelung LRR zu. Die Figur 5 zeigt, dass die Reaktion auf die Einspritzung im Zylinder 1 (Z1) im zweiten und dritten Segment danach erfasst wird, in Figur 3 bereits im ersten und zweiten Segment. Die Zeitpunkte für die Reglerberechnung und die Stellgrösse verschieben sich bei der zweiten Möglichkeit jeweils um ein Segment gegenüber der ersten Möglichkeit. Da es diese beiden Einstellmöglichkeiten gibt, ist keine Synchronisation notwendig, und es bleibt dem Zufall überlassen, welche Einstellung sich vom Start weg einstellt.5 shows a second possibility of the principle of the smooth running control LRR with 4 proportional integral controllers (PI controllers) without synchronization. FIG. 5 can be compared with FIG. 3. This second option, like the first option in FIG. 3, permits stable LRR control. FIG. 5 shows that the reaction to the injection in cylinder 1 (Z1) is then detected in the second and third segments, in FIG. 3 already in the first and second segments. With the second option, the times for the controller calculation and the manipulated variable each shift by one segment compared to the first option. Since there are these two setting options, no synchronization is necessary, and it is left to chance which setting is set from the start.

Die Figur 6 zeigt das Prinzip der Laufruheregelung LRR mit 4 Proportional-Integral-Reglern (PI-Regler) mit Synchronisation, wobei die Reaktion auf die Einspritzung im Zylinder 1 (Z1) im zweiten und dritten Segment danach erfasst wird. Bei Zylinderzahlen z > 6 werden die Bereiche schlechter Dynamik gleich oder grösser als ein Segment, so dass hier auf eine Synchronisation nicht verzichtet werden kann. Eine Synchronisation für Zylinderzahlen z < 6 ist auch notwendig, wenn das Stellwerk der Kraftstoffzumesseinrichtung nicht schnell genug ist, während eines Segments den Endwert zu erreichen und wenn eine grössere Einstellmöglichkeit der Segmentimpulslage gewünscht wird.FIG. 6 shows the principle of the smooth running control LRR with 4 proportional integral controllers (PI controllers) with synchronization, the reaction to the injection in cylinder 1 (Z1) being subsequently recorded in the second and third segments. With cylinder numbers z> 6, the areas of poor dynamics become equal to or larger than a segment, so that synchronization cannot be dispensed with here. A synchronization for number of cylinders z <6 is also necessary if the signal box of the fuel metering device is not fast enough to reach the final value during a segment and if a greater possibility of setting the segment pulse position is desired.

Die Figur 7 zeigt ein vereinfachtes Blockschaltbild mit Einbindung der Laufruheregelung LRR in das Einspritzsystem. Der Leerlaufregler ist in einen Proportional-Anteil, LL-P-Anteil, und einen Integral-Anteil, LL-I-Anteil, und eine Integralzuwachsberechnung, I-Zuwachs, aufgeteilt. Der Integralzuwachs wird zu den Stellgrössen und Integratoren der Leerlaufruheregelung LRR addiert. Es wird der Mittelwert MW der Laufruhe-Integratoren gebildet. Dieser Mittelwert MW wird einer Umrechnungsstelle U zugeführt, die über den Timerwert die Kraftstoffmenge bestimmt, die dem Zylinderzugeführtwird. Diese Umrechnungsstelle U wird mit einer Additionsstelle 1 verbunden. Der Leerlauf-Regler-Proportional-Anteil wird ebenso mit dieser Additionsstelle 1 verknüpft. Der Additionsstelle 1 wird bei Betätigung des Fahrpedals FP über die Änderung des Fahrverhaltens des Kraftfahrzeugs KFZ ein drittes Signal zugeführt. Die Fahrgeschwindigkeitsregelung FGR und die Additionsstelle 1 sind an einen Maximalwertbegrenzer MAX angeschlossen, der zusammen mit einerVollast/Rauch-Begrenzung VL/R Signale an einen Minimalbegrenzer MIN abgibt. Dieser Minimalbegrenzer MIN führt über eine Kraftstofftemperaturkorrektur KTK, einem Pumpenkennfeld (Pumpen-KF) und einer Timerwert-Normierung TN Signale einer Subtraktionsstelle 2 zu. Das Ausgangssignal des gebildeten Mittelwerts MW der Laufruhe-Integratoren wird ebenfalls der Subtraktionsstelle 2 zugeleitet. Das Ausgangssignal der Subtraktionsstelle 2 wird einer Additionsstelle 3 zugeführt, die ein weiteres Signal durch die Laufruheregelung LRR über eine Stellgrössenumschaltung SGU erhält. Das Ausgangssignal der Additionsstelle 3 wird der Regelweg-Sollwert-Ausgabe des Einspritzsystems zugeführt. Der Minimalbegrenzer MIN ist mit der Laufruheregelung LRR gekoppelt, in der Form, dass ausserhalb des Leerlauf-Betriebs die Integratoreinstellung unter der Nullinie gespeichert werden.FIG. 7 shows a simplified block diagram with integration of the smooth running control LRR into the injection system. The idle controller is divided into a proportional component, LL-P component, and an integral component, LL-I component, and an integral gain calculation, I-component. The integral increase is added to the manipulated variables and integrators of the idle idle control LRR. The mean MW of the smooth-running integrators is formed. This mean value MW is fed to a conversion point U, which uses the timer value to determine the amount of fuel that is fed to the cylinder. This conversion point U is connected to an addition point 1. The idle controller proportional component is also linked to this addition point 1. When the accelerator pedal FP is actuated, the addition point 1 is supplied with a third signal via the change in the driving behavior of the motor vehicle KFZ. The vehicle speed control FGR and the addition point 1 are connected to a maximum value limiter MAX which, together with a full load / smoke limitation VL / R, emits signals to a minimum limiter MIN. This minimum limiter MIN supplies signals to a subtraction point 2 via a fuel temperature correction KTK, a pump map (pump KF) and a timer value normalization TN. The output signal of the formed mean value MW of the smoothness integrators is also fed to the subtraction point 2. The output signal of the subtraction point 2 is fed to an addition point 3, which receives a further signal from the smooth running control LRR via a manipulated variable switch SGU. The output signal of the addition point 3 is fed to the control path setpoint output of the injection system. The minimum limiter MIN is coupled to the smooth running control LRR, in such a way that the integrator setting is stored below the zero line outside of idle mode.

Die Figur 8 zeigt den Verlauf der Laufruheregelung LRR-Integratoren 1 bis 4 im Leerlauf LL und ausserhalb des Leerlaufs LL. Wenn die Laufruheregelung LRR arbeitet und der Motor ruhig läuft, stellen sich die Integratoren ein wie im Zeitpunkt to. Tritt der Fahrer das Fahrpedal FP, dann erhöht sich die Drehzahl und der Zuwachs des Leerlauf-Regler-Integrals wird negativ und alle LRR-Integratoren werden kleiner, bis sie Regelweg RW = 0 erreichen. Im Zeitpunkt t, hat der Integrator 2 den Regelweg RW = 0 erreicht. Für die Regelweg(RW)-Sollwert-Ausgabe wird der Integrator auf 0 begrenzt, intern wird der Integrator so lange reduziert, bis alle Integratoren = 0 sind, so dass bei höheren Drehzahlen die Kraftstoffmenge nicht verfälscht wird. Die Integratoreinstellungen werden beibehalten, und somit sind beim nächsten Leerlauf-Betrieb die richtigen Integratorstellungen schon eingestellt. Die Kennlinie a zeigt den Mittelwert MW der Integratoren der Laufruheregelung im Leerlauf und ausserhalb des Leerlaufs.FIG. 8 shows the course of the smooth running control LRR integrators 1 to 4 when idling LL and outside of idling LL. When the LRR smoothness control is working and the engine is running smoothly, the integrators adjust as at time t o . If the driver presses the accelerator pedal FP, the speed increases and the increase in the idle controller integral becomes negative and all LRR integrators become smaller until they reach control path RW = 0. At time t, the integrator 2 has reached the control path RW = 0. For the control path (RW) setpoint output, the integrator is limited to 0, internally the integrator is reduced until all integrators = 0, so that the fuel quantity is not falsified at higher speeds. The integrator settings are retained and the correct integrator positions are already set the next time the system is idle. The characteristic curve a shows the mean value MW of the integrators of the smooth running control during idling and outside of idling.

In Figur 9 und 10 sind zwei Möglichkeiten der Soll- und Istwertbildung dargestellt, die den Vorteil haben, dass weniger Speicherzellen notwendig sind. Als Istwert wird nur eine Segmentzeitverwendet. Es wird das Segment verwendet, in dem sich die Reaktion der entsprechenden Einspritzung am besten auswirkt. Der Sollwert wird über z Segmente gebildet. Es werden abhängig vom Istwert die langen (Fig. 9) oder kurzen (Fig. 10)Segmente zur Sollwertbildung verwendet. Statt der Verarbeitung der Segmentzeiten kann auch der entsprechende Drehzahlwert zur Soll- und Istwertbildung verwendet werden.FIGS. 9 and 10 show two possibilities for forming the setpoint and actual value, which have the advantage that fewer memory cells are required. Only one segment time is used as the actual value. The segment in which the reaction of the corresponding injection has the best effect is used. The setpoint is formed over z segments. Depending on the actual value, the long (Fig. 9) or short (Fig. 10) seg used for setpoint creation. Instead of processing the segment times, the corresponding speed value can also be used for the setpoint and actual value formation.

In Figur 11 ist eine Möglichkeit zur Verkürzung der Stellzeit bei Kraftstoffmengen-Stellwerken mit einer bestimmten Stellzeit (z. B. Magnet-Stellwerke) gezeigt. Kurz nach dem Ausgabezeitpunkt für die nächste Stellgrösse wird nicht der neue Endwert (z. B. S1) ausgegeben, sondern eine Vorsteuergrösse VS1, die wie folgt gebildet wird:

Figure imgb0001
FIG. 11 shows a possibility for shortening the actuating time in fuel quantity interlockings with a specific actuating time (e.g. magnetic interlockings). Shortly after the time of issue for the next manipulated variable, it is not the new final value (e.g. S1) that is output, but a pilot control variable VS1, which is formed as follows:
Figure imgb0001

Der Faktor muss grösser als 1 (z. B. = 2) gewählt werden. Die Vorsteuerstellgrösse VS1 steht für die Zeit dt an. Der Faktor und die Zeit dt müssen auf die Stellgeschwindigkeit abgestimmt sein.The factor must be selected to be greater than 1 (e.g. = 2). The pilot control variable VS1 is pending for the time dt. The factor and the time dt must be matched to the actuating speed.

Claims (9)

1. Device for adjusting the smooth running of an internal-combustion engine, in which each cylinder of the internal-combustion engine is assigned a feedback control, and each control forms from an actual value assigned to it and a set value a value of a manipulated variable forthefuel metering into the cylinder assigned to it, with a number of cylinders z there are a corresponding number z of proportional-integral controllers (PI controllers), the set value is formed equal to the mean value of times over segments of a known segmental wheel, with z segments, fitted to the crankshaft, characterized in that the set value is delayed with respect to the actual value by z-1 segments of the segmental wheel.
2. Device according to Claim 1, characterized in that the actual value is formed over the next and second-next segment after an injection or over the second-next or third-next segment.
3. Device according to one of Claims 1 or 2, characterized in that the actual value is formed over one segment and the set value is formed over z segments, there always being one segment between the z segments for the set value formation which is not used.
4. Device according to one of the preceding claims, characterized in that a manipulated variable for the quantity of injection is calculated after every segment pulse when using 2z PI controllers, after every second segment pulse when using z PI controllers.
5. Device according to one of the preceding claims, characterized in that the manipulated variable is bufferstored and is delayed by z-2 seg- mentswhen using 2z controllers, byz-3 segments when using z controllers without synchronisation and by z-4 segments when using z controllers with synchronisation.
6. Device according to one of the preceding claims, characterized in that, when using a control unit which can set the required quantity of fuel only after a certain time, a manipulated variable shaping is performed with the aim of setting the quantity of fuel more quickly.
7. Device according to Claim 6, characterized in that the manipulated variable shaping is formed from the difference of successive manipulated variables multiplied by a factor greater than 1 and is effective during the time dt after a manipulated variable output time.
8. Device according to one of the preceding claims, characterized in that, in the case of a number of cylinders z which is equal to or greater than 6, an arrangement of 2*z proportional-integral controllers (PI controllers) automatically produces a synchronisation.
9. Device according to one of the preceding claims, characterized in that, if the smooth running control (LRR) is integrated in the injection system, during idling (LL) an integral increment (I increment) of the idling controller (L controller) is added to all integrators of the smooth running control (LRR) and thus all integrators of the smooth running control (LRR) are altered together.
EP86905739A 1986-02-17 1986-09-19 Device for adjusting the smooth running of internal combustion engines Expired EP0293367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3604904 1986-02-17
DE19863604904 DE3604904A1 (en) 1986-02-17 1986-02-17 DEVICE FOR REGULATING THE RUNNING TIME OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0293367A1 EP0293367A1 (en) 1988-12-07
EP0293367B1 true EP0293367B1 (en) 1989-12-20

Family

ID=6294227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905739A Expired EP0293367B1 (en) 1986-02-17 1986-09-19 Device for adjusting the smooth running of internal combustion engines

Country Status (4)

Country Link
EP (1) EP0293367B1 (en)
JP (1) JP2545521B2 (en)
DE (2) DE3604904A1 (en)
WO (1) WO1987005074A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58908423D1 (en) * 1989-07-07 1994-10-27 Siemens Ag METHOD AND DEVICE FOR SPEED CONTROL OF A SLOW-RUNNING, MULTI-CYLINDRICAL DIESEL ENGINE.
DE4005735A1 (en) * 1990-02-23 1991-08-29 Bosch Gmbh Robert METHOD AND DEVICE FOR REGULATING / CONTROLLING THE RUNNING TIME OF AN INTERNAL COMBUSTION ENGINE
IT1279073B1 (en) * 1994-12-23 1997-12-04 Bosch Gmbh Robert PROCEDURE AND DEVICE FOR ADJUSTING THE SILENT OPERATION OF AN ENDothermic Engine
DE19725233B4 (en) * 1997-06-14 2005-03-24 Volkswagen Ag Method for adjusting the injection quantity of an internal combustion engine for rudder control
DE19961292C2 (en) * 1999-12-18 2003-04-24 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE10147589B4 (en) * 2001-09-27 2011-01-27 Volkswagen Ag Method for operating an internal combustion engine
JP4424380B2 (en) * 2007-06-20 2010-03-03 株式会社デンソー Injection amount control device and fuel injection system using the same
DE102013210741A1 (en) * 2013-06-10 2014-12-11 Robert Bosch Gmbh Method for determining a mean segment time of a sensor wheel of an internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906782A1 (en) * 1979-02-22 1980-09-04 Bosch Gmbh Robert DEVICE FOR DAMPING VIBRATION VIBRATIONS IN AN INTERNAL COMBUSTION ENGINE
US4475511A (en) * 1982-09-01 1984-10-09 The Bendix Corporation Fuel distribution control system for an internal combustion engine
JPS5993945A (en) * 1982-11-19 1984-05-30 Nippon Denso Co Ltd Control of idle operation of internal-combustion engine
JPS59119039A (en) * 1982-12-24 1984-07-10 Nippon Denso Co Ltd Engine idling control device
DE3336028C3 (en) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Device for influencing control variables of an internal combustion engine
JPS60184944A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method of respective cylinder of electronically-controlled diesel engine

Also Published As

Publication number Publication date
JP2545521B2 (en) 1996-10-23
EP0293367A1 (en) 1988-12-07
WO1987005074A1 (en) 1987-08-27
DE3604904A1 (en) 1987-08-20
JPH01501643A (en) 1989-06-08
DE3667701D1 (en) 1990-01-25

Similar Documents

Publication Publication Date Title
DE3416369C2 (en) Vehicle speed control device
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
EP0154710B1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
DE3533900C2 (en) Device for controlling an idling operation of a multi-cylinder internal combustion engine
DE3311892C2 (en)
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE2949151C2 (en) Device for regulating the idling speed for an internal combustion engine as a function of the operating parameters
DE19739564A1 (en) Method and device for controlling a drive unit of a vehicle
DE3023350A1 (en) ELECTRONIC CONTROL DEVICE FOR THE SPEED CONTROL OF AN INTERNAL COMBUSTION ENGINE WITH AUTO IGNITION
DE2924649A1 (en) CONTROL SYSTEM FOR CONTROLLING THE AIR / FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE
DE3221640A1 (en) METHOD AND DEVICE FOR THE OPTIMAL CONTROL OF INTERNAL COMBUSTION ENGINES
EP0151768B1 (en) Measuring system for the fuel-air mixture of a combustion engine
DE3545808C2 (en)
DE3705278A1 (en) ELECTRONIC CONTROL DEVICE FOR FUEL AMOUNT MODULATION OF AN INTERNAL COMBUSTION ENGINE
DE3937082A1 (en) SPEED CONTROLLER FOR AN INTERNAL COMBUSTION ENGINE
DE19836845B4 (en) Method and device for controlling a drive unit of a motor vehicle
EP0347446B1 (en) Process and device for regulating the air feed in an internal combustion engine, in particular during idling and coasting
EP0190268B1 (en) Method and device for regulating the idle-running number of revolutions of an internal combustion engine
EP0293367B1 (en) Device for adjusting the smooth running of internal combustion engines
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
DE3819395C2 (en)
DE4333896B4 (en) Method and device for controlling an internal combustion engine
DE3924953A1 (en) DEVICE FOR CONTROLLING THE FUEL SUPPLY FOR AN INTERNAL COMBUSTION ENGINE
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
EP0460126B1 (en) System for the electronic control and/or regulation of the power of an internal combustion engine of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19890206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3667701

Country of ref document: DE

Date of ref document: 19900125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050913

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051229

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060918

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20