EP0290840B1 - Gap-ball mill for continuously grinding, especially disintegrating microorganisms, and dispersing solids in fluids - Google Patents

Gap-ball mill for continuously grinding, especially disintegrating microorganisms, and dispersing solids in fluids Download PDF

Info

Publication number
EP0290840B1
EP0290840B1 EP88106483A EP88106483A EP0290840B1 EP 0290840 B1 EP0290840 B1 EP 0290840B1 EP 88106483 A EP88106483 A EP 88106483A EP 88106483 A EP88106483 A EP 88106483A EP 0290840 B1 EP0290840 B1 EP 0290840B1
Authority
EP
European Patent Office
Prior art keywords
gap
grinding
ball mill
mill according
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106483A
Other languages
German (de)
French (fr)
Other versions
EP0290840A2 (en
EP0290840A3 (en
Inventor
Gerhard Bühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proxes Technology GmbH
Original Assignee
Fryma Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fryma Maschinenbau GmbH filed Critical Fryma Maschinenbau GmbH
Priority to AT88106483T priority Critical patent/ATE90886T1/en
Publication of EP0290840A2 publication Critical patent/EP0290840A2/en
Publication of EP0290840A3 publication Critical patent/EP0290840A3/en
Application granted granted Critical
Publication of EP0290840B1 publication Critical patent/EP0290840B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/166Mills in which a fixed container houses stirring means tumbling the charge of the annular gap type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/911Axial flow

Definitions

  • Ball mills of this type are known in various designs.
  • the term "balls” should not be understood exclusively to mean the preferred, precisely spherical grinding media, but basically all grinding media of a similar configuration which are suitable for comminuting the solid particles of the material to be ground by rolling them against one another and on the boundary surfaces of the grinding chamber.
  • finely ground balls made of hard wear-resistant steel, hard metal, glass or ceramic are used, but grinding media made of other materials are also used.
  • grains of sand were used, which could often only be made sufficiently passable during the pre-grinding process.
  • CH-PS 639 567 already discloses a split ball mill set up for continuous operation which engages a cross-sectionally wedge-shaped displacement body of the rotor, which surrounds the mill axis at a radial distance, in an equally shaped grinding chamber of the stator.
  • the regrind rotates around the entire displacement body attached to a rotor disk in a long acceleration phase around the wedge nose and is guided inwards by half the radius of rotation to the outlet.
  • the grinding media which basically rotate in the same direction as the material to be ground, are separated out before the outlet by a separating device and conveyed back through a ball return channel, which is passed obliquely outwards through the rotor disk, under centrifugal force into the inlet area of the material, from where they return to their closed orbit.
  • the invention is based on the gap ball mill defined at the outset and pursues the task of developing this mill, primarily for the disintegration of microorganisms, in the simplest possible manner in such a way that it is without danger and disadvantages of a ball jam formation for a variety of tasks, in particular for breaking up extremely solid microbes with correspondingly large pressing forces, and can also be easily maintained, that is to say, requires little downtime.
  • the design of individual, partly identical, partly individually or in groups interchangeable components within a grinding unit also has the advantage that almost any number of individual grinding units can be easily joined together, which only requires different, possibly again composed of unit elements mill housing with drive shafts .
  • one or more grinding units can be operated in a larger housing, each with its own closed grinding media circulation.
  • the individual grinding stages can therefore be loaded with grinding media of different sizes, for example in such a way that in the first grinding unit larger grinding media are used, in the subsequent grinding units in each case with gradually thinner grinding media. This in turn enables an increase in the intensity and uniformity of the shredding processes at least on average increased energy density and thus higher output with reduced mill volume.
  • the design is also still relatively simple, since it is primarily about rotational shapes on stator disks and rotor disks, which can be accomplished inexpensively by conventional manufacturing methods.
  • the flow paths can be made relatively long in the smallest space and therefore the exposure time can be made relatively long.
  • the rotor disks in particular can be given a relatively large cross section with a corresponding thickness, which increases the breaking strength even in the case of material which is sensitive to bending and sensitive, such as ceramic.
  • the split ball mill according to the invention is particularly suitable for disrupting microorganisms or microbes, the evaluation of which is of particular importance for biotechnology.
  • microbes consist of a capsule-like cell with a cell fluid that has a species-specific active ingredient that should be obtained as completely as possible.
  • Wet grinding in agitator ball mills has already been proposed for mechanical extraction. The one scored there However, yield is still limited. The percentage of recovery is largely determined by the pressure applied during the grinding process. Due to the rubber-like elasticity of the cell wall, the cell remains intact if the pressure is too low and is deformed elastically. If the pressure is too high, the cell wall, cell fluid and active substance are often processed so strongly that the separation to be carried out later is made more difficult.
  • the pressure to be applied can be largely predetermined and possibly adjusted in order to achieve optimal digestion and extraction ratios.
  • the split ball mill shown in FIGS. 1 and 2 consists essentially of a mill housing (1), which receives three grinding units (2) from a multi-part stator (3) and a likewise multi-part rotor (4), which the mill axis (5th ) rotates and is driven by a particularly controllable electric motor (6).
  • This motor (6) is flanged to the stationary mill housing (1).
  • the motor pin (7) engages in a rotationally fixed manner with a wedge (8) in the bore (9) in the rotor shaft (10) made at the left end in FIG. 1.
  • the other end sits with a journal bearing (11) in an outer cover (12), which closes the pot-like mill housing (1) and receives the product outlet (13).
  • Each of the three grinding units (2) comprises a stator unit (16) with a first stator disc (17) and a second stator disc (18). These each form a grinding chamber unit (19) between them, in which a rotor disk (20) designed as a friction disk rotates.
  • the individual rotor disks (20) of the multi-stage rotor (4) sit with their hubs (21), separated by spacer bushings (23), one behind the other on the rotor shaft (10) between their shoulder (24) and that screwed towards the journal bearing (11) Mother (25).
  • the spacer bushes (23) can in principle have the same length, but are preferably kept in stock in slightly different lengths in order to be able to precisely determine the position of the rotor disks (20).
  • the first stator disks (17) have a central, conical part (171) with an inclination of 60 ° to the mill axis (5).
  • An S-shaped part (172) follows on the inside and an approximately cylindrical partial flange (173) on the outside.
  • every second stator disk (18) has an inner, approximately flat part (181) with an outer conical part (182), the surface line of which in turn encloses an angle of 60 ° with the mill axis (5). They each end inside and outside in radial surfaces and are sealed there against each other and against the mill housing (1) by sealing rings (33, 34) and support rings (35), the latter in particular ensuring a flexible and damping support effect.
  • Each rotor disc (20) widens from its hub (21) initially by means of an approximately flat intermediate part (22) to form an outer conical ring (28), which is largely in the center of the grinding chamber unit (19) between conical parts (171, 182) of the two stator discs (17, 18) comes to rest, whereby a grinding gap (36) of approximately the same width is formed around the entire rotor disc (20), which forms a gap loop (37) which is closed towards the outside around the cone ring (28).
  • the gap loop (37) is connected via approximately radially extending connecting gaps (38, 39) with connecting gaps (40, 41) and thereby with the radial end faces (42) of the stators of the individual grinding units (2) formed by the stator disks (17, 18) Connection.
  • the grinding media (48) are preferably made of ceramic. However, they can also consist of specifically particularly heavy rock. In this way it can be achieved that the grinding media, as shown in the middle grinding unit in FIGS. 1 and 1a, rotate on a spatial ring path closed by at least two ball return channels (47), that is to say they remain in the respective grinding unit.
  • the separation process can also be influenced by changing an angle, such as the inclination of the intermediate gap (49) of the inner edge surface of the cone ring (28).
  • the grinding media (48) can also be filled separately into each grinding unit through a filling tube (51), which is placed in a holding bush (52) in the mill housing (1) and directly in a bore (53) of the ring flange (173) covering the loop (37) ) sits.
  • the filling tube (51) is normally closed by a stopper (54) which is held by a screwed-on union nut (55).
  • a probe or a measuring device (56) for example for pressure, temperature, viscosity or the like, of the material to be ground can also be inserted or attached.
  • Spacer rings (61) can be inserted between adjacent stators (17, 18) in order to be able to influence the axial distances between the stators, but also between the stator and rotor disks.
  • devices for continuous adjustment by means of pressure screws or the like can also be used.
  • the screws (62) on the outer cover (12) can also be used for such adjustment processes.
  • cooling spaces (64, 65) are provided on the outside, and annular cooling spaces (64) are also provided between adjacent grinding units (2). These are individually connected to jacket cooling chambers (85), which are each formed between the jacket of the mill housing (1) and the ring flange (172) of the associated first stator disk (17).
  • the spacer rings (61) there are approximately radial openings for connecting the jacket cooling spaces (85) to the coolant circuit.
  • a coolant another heat transfer medium can also be used, for example for heating or for optional cooling and / or heating. All cold rooms are e.g. Connected to a cold and / or heat source via two manifolds (66) offset at 180 ° to the mill axis (5) in order to be able to adjust the operating temperature during the grinding process as required.
  • Stator disks (17, 18) and rotor disks (20) are made of sintered ceramic material with high temperature resistance and abrasion resistance. The compressive strength of these materials is sufficient for the stresses that occur. However, in order to compensate for the tensile stress caused in particular by centrifugal forces, on the one hand the rotor disks can be designed as prestressed construction elements in a manner known per se. On the other hand, the pressure of the cooling liquid is dimensioned much higher than is the case with comparable cooling systems. As a result, the stators are pressed radially inward out of the jacket cooling spaces (85) in order to at least compensate for the expansion deformations resulting from centrifugal forces and the like. The stator disks can also be mechanically preloaded.
  • the grinding rooms or grinding gaps and other surfaces that come into contact with the material to be ground, as well as the rooms that contain the cooling or tempering agents should be largely sterilized.
  • this is mainly done by passing steam through these rooms at a pressure which is about 1 bar higher than the usual grinding pressure, the temperature being constantly increased to a maximum value of about 140.degree. This maximum value is maintained for a certain time, which depends on various operating factors and is expediently determined by tests.
  • regrind is fed continuously to the inlet and flows through the serpentine annular gap from one grinding unit to the next until it comes from the second friction gap (58) to the material outlet (14), which leads to the motor through a mechanical seal (68) is completed.
  • the grinding media which may be provided in different sizes, are filled while the mill is at a standstill, they usually have a diameter of 0.3 to 3 mm and are classified, for example in the right grinding unit with a diameter of 3 mm, in the middle with 1.5 mm and in the left with 0.8 mm.
  • the balls which have initially accumulated at the bottom of the gap loop (37), are distributed to the remaining part of the ring-shaped gap loop and cyclically flung outwards and concentrated in the area of the grinding loop by the centrifugal forces.
  • a single return channel (47) there are expediently provided a plurality - six according to FIG. 2 - distributed uniformly around the circumference, depending on the rotational speed of the balls with regard to the processed material.
  • the end faces here, as a whole, in particular the outer part of the rotor disk (20) are designed in a zigzag cross section. They can also have a wave-like shape. If possible, however, the mutually assigned surfaces, for example the end surfaces (76) and (77) leading to the outer edge (75), should run at least approximately parallel to one another and, if appropriate, also have constant distances.
  • the outer cone ring (28) according to FIG. 1 thus becomes a Z flange (80) with the cross-sectional shape of a rune.
  • the gap loop (37 ') of the two arms of the grinding gap (36') surrounding the Z flange is designed accordingly.
  • ball return channels (47 ') attached to the lower end of the Z-flange.
  • the grinding balls are also first introduced in the direction of flow and sharply deflected outwards at the exit from the ball return channel (47 '), so that they remain concentrated in their gap loop (37'), ie in the two outer parts of the grinding gap arms, during operation.
  • the ball return channels (47 ') as the parts and arrangements not mentioned are formed in the same manner as in Figs. 1 and 2, so that on the remaining parts of the second embodiment need not be discussed.
  • the grinding gap loop (37) for example of the conical surfaces provided with straight surface lines, can be formed by concave and / or convexly curved conical barrel surfaces or the like, so that the loop has an approximately egg-shaped or elliptical cross-section.
  • the angles of the surface line to the mill axis can be chosen to be the same or different, and the rotor disks can form a rotational connection with the rotor shaft over the entire circumference, for example that they form a polygonal cross section, in particular triangular and with rounded corners or with side surfaces curved transversely to the rotor axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crushing And Grinding (AREA)

Abstract

Three mill units are mounted axially in series in a mill housing with a cover. Each mill unit has a rotor disc between two stator discs. The rotor discs are secured to the rotor shaft at their radially interior region. The stator discs are secured to the housing wall at their radially outer region. Individual pulverization gaps are formed between the stator discs, which gaps run around the rotor discs and in longitudinal cross section extend sequentially with a serpentine shape. The outer parts of the pulverization gaps form individual gap loops the inner ends of which are connected or "short-circuited" via ball return channels. During operation, the grinding elements are accelerated outward by centrifugal forces, and are concentrated into the gap loops. The grinding elements in each of the individual stages may be kept separated from the grinding elements in other stages; and they may have different sizes from stage to stage. The individual mill stages can be replaced as units. Alternatively, the rotor discs and stator discs which are rotationally symmetric can be replaced individually. They can have different axial cross sections, containing a single bend or multiple bends. The processing pressure for the material being pulverized which is passed through the serpentine pulverization gap system can be set accurately based on the rotational speed (rpm), so that microorganisms are recovered without the hyaloplasm leaking out or being worked into (i.e. intermixing with or being forced into intercalation with) the other materials.

Description

Kugelmühlen dieser Art sind in verschiedener Ausführung bekannt. Mit dem Begriff "Kugeln" sollen nicht ausschließlich die bevorzugten exakt sphärisch gestalteten Mahlkörper verstanden werden, sondern grundsätzlich alle Mahlkörper ähnlicher Konfiguration, die geeignet sind, durch Abwälzen aneinander und an den Begrenzungsflächen des Mahlraumes eine Zerkleinerung der Festkörperteilchen des Mahlgutes zu bewirken.Ball mills of this type are known in various designs. The term "balls" should not be understood exclusively to mean the preferred, precisely spherical grinding media, but basically all grinding media of a similar configuration which are suitable for comminuting the solid particles of the material to be ground by rolling them against one another and on the boundary surfaces of the grinding chamber.

In der Regel werden feingeschliffene Kugeln aus hartem verschleißfesten Stahl, Hartmetall, Glas oder Keramik eingesetzt, es kommen aber auch Mahlkörper aus anderen Werkstoffen zum Einsatz. Früher hat man Sandkörner verwendet, die sich oft erst beim Vormahlvorgang hinreichend abwälzbar gestalten ließen.As a rule, finely ground balls made of hard wear-resistant steel, hard metal, glass or ceramic are used, but grinding media made of other materials are also used. In the past, grains of sand were used, which could often only be made sufficiently passable during the pre-grinding process.

Durch die CH-PS 639 567 ist bereits eine für kontinuierlichen Betrieb eingerichtete Spalt-Kugelmühle bekannt, bei der ein die Mühlenachse mit radialem Abstand umgebender im Querschnitt keilförmiger Verdrängungskörper des Rotors in einen ebenso geformten Mahlraum des Stators eingreift. Das Mahlgut umläuft dabei den ganzen an einer Rotorscheibe angebrachten Verdrängungskörper in einer langdauernden Beschleunigungsphase um die Keilnase herum und wird um den halben Umlaufradius zum Auslaß nach innen geführt.CH-PS 639 567 already discloses a split ball mill set up for continuous operation which engages a cross-sectionally wedge-shaped displacement body of the rotor, which surrounds the mill axis at a radial distance, in an equally shaped grinding chamber of the stator. The regrind rotates around the entire displacement body attached to a rotor disk in a long acceleration phase around the wedge nose and is guided inwards by half the radius of rotation to the outlet.

Die grundsätzlich gleichsinnig mit dem Mahlgut umlaufenden Mahlkörper werden jedoch vor dem Auslaß durch eine Trennvorrichtung ausgesondert und durch einen schräg nach außen durch die Rotorscheibe hindurchgeführten Kugelrückführkanal unter Fliehkraftwirkung in den Einlaßbereich des Mahlgutes zurückgefördert, von wo sie erneut auf ihre geschlossene Umlaufbahn gelangen.The grinding media, which basically rotate in the same direction as the material to be ground, are separated out before the outlet by a separating device and conveyed back through a ball return channel, which is passed obliquely outwards through the rotor disk, under centrifugal force into the inlet area of the material, from where they return to their closed orbit.

Auf diese Weise wird große Energiedichte auf kleiner Fläche bzw. auf kleinem Raum konzentriert, was hohe Mahlleistung bei kleinen Mühlenabmessungen und geringem Herstellungsaufwand ermöglicht. Dabei erfordert jedoch die Ausbildung der Trennvorrichtung und der Kugelrückführeinrichtung besondere Sorgfalt, um die Gefahr eines Kugelstaus zu vermeiden. Dies zumal dort die zusammenwirkenden Teile wie Rotor und Stator einstückig ausgeführt sind und nur als Ganzes ausgewechselt bzw. zur Reparatur gegeben werden können.In this way, high energy density is concentrated in a small area or in a small space, which enables high grinding performance with small mill dimensions and low manufacturing costs. However, the design of the separating device and the ball return device requires special care in order to avoid the risk of a ball jam. Especially since the interacting parts such as rotor and stator are made in one piece and can only be replaced as a whole or given for repair.

Es gibt zwar andere bekannte Ausführungen, insbesondere bei Ringspaltmühlen, wobei mahlaktive Teile auswechselbar vorgesehen sind, wie etwa nach der DE-PS 35 26 724, aber dies führt vor allem bei schnelllaufenden Mühlen zu besonderen Problemen beim Wechselvorgang und bei der Halterung der auswechselbaren Mühlenelemente. Auf diese Weise können zwar auch mehrstufige und ggf. unterschiedliche Mahlvorgänge hintereinandergeschaltet werden, und es sind Rotor- und Statorscheiben mit axialen Durchbrechungen vorgesehen. Bei großem Gutdurchsatz müssen aber sämtliche umzuwälzende Mahlkörper von einer einzigen Trennvorrichtung angehalten werden. Die große Anzahl der Mahlkörper kann dadurch leicht kompaktiert werden und die Mühle blockieren.There are other known designs, in particular in the case of annular gap mills, with active grinding parts being provided interchangeably, such as according to DE-PS 35 26 724, but this leads to particular problems in the changing process and in the holding of the interchangeable mill elements, especially in high-speed mills. In this way, even multi-stage and possibly different grinding processes can be connected in series, and rotor and stator disks with axial openings are provided. In the case of large throughput, however, all grinding media to be circulated must be be stopped by a single separator. The large number of grinding media can be easily compacted and block the mill.

Während jedoch bei der eingangs genannten CH-PS 639 567 verhältnismäßig große Umlaufwege auf der Rotoroberseite gewählt sind, was eine nur begrenzte Steigerung der Kugelpressung zur Folge hat, kommen hier kurze Wege mit großer Steigerungsgeschwindigkeit zur Anwendung, wobei die Mahlkörper stets an die in der Verlängerung des Kugelrückführkanals anschließenden Innenfläche gegen den äußeren Kegelring gepreßt werden, wodurch ein Hochleistungsmahlgang mit erhöhter Pressung und Mahlleistung ermöglicht wird, was auch das Erstellen hochfeiner gleichmässiger Dispersionen in kurzer Zeit ermöglicht.However, while in the aforementioned CH-PS 639 567 relatively large orbital paths are selected on the top of the rotor, which results in only a limited increase in the ball pressure, short paths with a high rate of increase are used here, the grinding media always being in the extension of the ball return channel connecting the inner surface against the outer cone ring, which enables a high-performance grinding with increased pressing and grinding performance, which also enables the creation of very fine, uniform dispersions in a short time.

Bekannt ist schließlich auch durch die DE-A 1 913 147 eine Rührwerks-Kugelmühle mit lotrechter Mühlenachse, deren Rührwerk mindestens zwei übereinander in einem Behälter umlaufender Rührelemente und mehrere trichterartige Ringscheiben aufweist, die durch Umlenkelemente verbunden sind, so daß das Mahlgut von oben in einen Mahleinsatz eingeleitet werden kann, zum unteren Ende des Behälters hin durchströmt und von dort wieder hochgefördert wird. Auch dabei sind die Mahlkörper unter größeren Zwischenabständen wieder frei beweglich, so daß auch beim Mahlvorgang nur geringe Anlagekräfte zwischen den Mahlkörpern aufgebracht werden können. Zudem dauert der Aufbau höherer Presskräfte dort verhältnismäßig lang und ist in aller Regel nicht hinreichend kontrollierbar. Gerade beim Aufschließen von Mikroben werden aber bestimmte vorgegebene Presskräfte benötigt, die in exakter Größe aufgebaut und eingesetzt werden sollen. Das ist bei Rührwerks-Mühlen bisher nicht in angemessener Weise erreicht worden.Finally, it is also known from DE-A 1 913 147 an agitator ball mill with a vertical mill axis, the agitator of which has at least two agitating elements rotating one above the other in a container and a plurality of funnel-like ring disks which are connected by deflecting elements, so that the ground material from above into one Grinding insert can be initiated, flows through to the lower end of the container and is pumped up from there again. Here, too, the grinding media are freely movable again at larger intervals, so that only slight contact forces can be applied between the grinding media during the grinding process. In addition, the build-up of higher press forces takes a relatively long time there and is generally not sufficiently controllable. Especially when microbes are opened, however, certain predetermined pressing forces are required, which are to be built up and used in an exact size. So far, this has not been adequately achieved with agitator mills.

Die Erfindung geht aus von der eingangs definierten Spalt-Kugelmühle und verfolgt die Aufgabe, diese Mühle, vornehmlich zum Aufschließen von Mikroorganismen, auf möglichst einfache Weise so weiterzubilden, daß sie ohne die Gefahr und Nachteile einer Kugelstaubildung für vielseitige Aufgaben, insbesondere zum Aufbrechen extrem fester Mikroben mit entsprechend großen Preßkräften eingesetzt werden kann und sich zudem leicht instandhalten läßt, also mit geringen Stillstandszeiten auskommt.The invention is based on the gap ball mill defined at the outset and pursues the task of developing this mill, primarily for the disintegration of microorganisms, in the simplest possible manner in such a way that it is without danger and disadvantages of a ball jam formation for a variety of tasks, in particular for breaking up extremely solid microbes with correspondingly large pressing forces, and can also be easily maintained, that is to say, requires little downtime.

Eine Spalt-Kugelmühle zum kontinuierlichen Feinzerkleinern, insbesondere zum Aufschließen von Mikroorganismen und Dispergieren von Feststoffen in Flüssigkeit weist erfindungsgemäß die nachstehenden Merkmale auf:

  • a) In einem Mühlengehäuse (1) sind zentrisch zur Mühlenachse (5) erste und zweite Statorscheiben (17,18) leicht auswechselbar mit ihrem Außenrand festgelegt und
  • b) einander wenigstens paarweise so zugeordnet und angepaßt, daß sie zwischen sich eine von der Mühlenachse (5) etwa radial erstreckte Statoreinheit (16) mit einer rotationssymmetrischen Mahlraumeinheit (19) bilden.
  • c) Die Statorscheiben (17,18) haben jeweils einen zur Mühlenachse (5) geneigten kegelförmigen Teil (171,182), an den sich bei der ersten Statorscheibe (17) innen ein S-förmiger Teil (172) anschließt.
  • d) In der Mahlraumeinheit (19) ist zentrisch zur Mühlenachse (5) mindestens eine rotierbar angetriebene tellerartige Rotorscheibe (20) gelagert, die zum Außenrand hin einen kegelartig geformten Ringteil (Kegelring 28) aufweist.
  • e) Vorder- und Rückseite (71,72) der Rotorscheibe (20) bilden mit zwei Statorscheiben (17,18) in der Mahlraumeinheit (19) gemeinsam einen die Rotorscheibe (20) umschließenden Mahlspalt (36), der sich von der Mühlenachse (5) aus allseits etwa radial erstreckt.
  • f) Im inneren Teil der Mahleinheit (2) ist eine um den Kegelring (28) gelegte Spaltschleife (37,37') nach außen durch mindestens zwei Kugelrückführkanäle (47,47') kurzgeschlossen,
  • g) die als Zentrifugal-Leitelemente von der Mühlenachse (5) weg radial nach außen erstreckt sind.
A split ball mill for continuous grinding, in particular for disintegrating microorganisms and dispersing solids in liquid, has the following features according to the invention:
  • a) In a mill housing (1), the first and second stator disks (17, 18) are easily exchangeable with their outer edge and centered on the mill axis (5)
  • b) assigned and adapted to one another at least in pairs so that they form between them a stator unit (16) which extends approximately radially from the mill axis (5) and has a rotationally symmetrical grinding chamber unit (19).
  • c) The stator disks (17, 18) each have a conical part (171, 182) inclined to the mill axis (5), to which an S-shaped part (172) adjoins the inside of the first stator disk (17).
  • d) In the grinding chamber unit (19) at least one rotatably driven plate-like rotor disk (20) is mounted centrally to the mill axis (5) and has a cone-shaped ring part (cone ring 28) towards the outer edge.
  • e) The front and rear sides (71, 72) of the rotor disk (20) together with two stator disks (17, 18) in the grinding chamber unit (19) together form a grinding gap (36) which surrounds the rotor disk (20) and which extends from the mill axis ( 5) extends approximately radially from all sides.
  • f) in the inner part of the grinding unit (2), a split loop (37, 37 ') placed around the cone ring (28) is short-circuited to the outside by at least two ball return channels (47, 47'),
  • g) which, as centrifugal guide elements, extend radially outward from the mill axis (5).

Hier sind zunächst alle für den Mahlvorgang wesentlichen Teile, insbesondere die Statorscheiben und die Rotorscheiben, als Ganzes leicht auswechselbar vorgesehen. Dies mindert nicht nur die Verlustzeiten bei Ausbesserungen, sondern ermöglicht auch den gezielten Einsatz besonderer Werkstoffe nach den örtlich auftretenden Beanspruchungen, was sich trotz der Verwendung teurer Werkstoffe an einzelnen Stellen, evtl. in Form dünner Oberflächenschichten, als preisgünstig erweist. Vor allem aber wird ein Kugelumlaufbereich in den mittleren Teil der Mahleinheit verlegt und damit die Mahlkörper mit Abstand vom Auslaß der Einheit gehalten. Dort wird sicherheitshalber auch wieder eine Art Trenneinrichtung in Form eines Reibspaltes oder dergleichen vorgesehen, aber es ist vermieden, daß sich die Masse der Mahlkörper vor einer solchen Trenneinrichtung ansammeln und damit sich in der Mühle kompaktieren kann.First of all, all parts essential for the grinding process, in particular the stator disks and the rotor disks, are provided as easily replaceable as a whole. This not only reduces the loss times in the case of repairs, but also enables the targeted use of special materials according to the local stresses, which despite the use of expensive materials in individual places, possibly in the form of thin surface layers, proves to be inexpensive. Above all, however, a recirculating ball area is installed in the middle part of the grinding unit and thus the grinding media are kept at a distance from the outlet of the unit. For safety's sake, a type of separating device in the form of a friction gap or the like is again provided, but it is avoided that the mass of the grinding media collects in front of such a separating device and can thus compact in the mill.

Die Gestaltung aus einzelnen, teils identischen, teils einzeln oder in Gruppen auswechselbaren Bauelementen innerhalb einer Mahleinheit hat ferner den Vorteil, daß sich ohne weiteres eine nahezu beliebige Anzahl einzelner Mahleinheiten aneinanderfügen lassen, was lediglich unterschiedliche, ggf. wieder aus Einheitselementen zusammengesetzte Mühlengehäuse mit Antriebswellen erfordert. Im Prinzip kann man auch in einem größeren Gehäuse nach Bedarf eine oder mehrere Mahleinheiten betreiben, die jeweils ihren eigenen geschlossenen Mahlkörperumlauf besitzen. Die einzelnen Mahlstufen lassen sich daher mit unterschiedlich großen Mahlkörpern beschikken, etwa dergestalt, daß in der ersten Mahleinheit mit größeren Mahlkörpern,in den nächstfolgenden Mahleinheiten jeweils mit stufenweise dünneren Mahlkörpern gearbeitet wird. Dies wiederum ermöglicht eine Steigerung der Intensität und Gleichmäßigkeit der Zerkleinerungsvorgänge, eine wenigstens im Mittel gesteigerte Energiedichte und dadurch bei verringertem Mühlenvolumen höhere Leistung.The design of individual, partly identical, partly individually or in groups interchangeable components within a grinding unit also has the advantage that almost any number of individual grinding units can be easily joined together, which only requires different, possibly again composed of unit elements mill housing with drive shafts . In principle, one or more grinding units can be operated in a larger housing, each with its own closed grinding media circulation. The individual grinding stages can therefore be loaded with grinding media of different sizes, for example in such a way that in the first grinding unit larger grinding media are used, in the subsequent grinding units in each case with gradually thinner grinding media. This in turn enables an increase in the intensity and uniformity of the shredding processes at least on average increased energy density and thus higher output with reduced mill volume.

Das aber läßt sich ohne weiteres erreichen, wenn man nur dafür sorgt, daß durch Gestaltung der unterschiedlichen Strömungswege von Mahlkörpern und Mahlgut an der Trennstelle entsprechend differenzierte und unterschiedlich gerichtete Kräfte zur Einwirkung kommen, wobei die Aussonderung der Mahlkörper vornehmlich durch entsprechend erhöhte Fliehkräfte bewirkt wird und der Ablenkwinkel so groß ist, daß das Mahlgut, Trägheit und Druckgefälle folgend, auf der vorgegebenen Bahn weiterströmt. Besser ist es noch, die Mahlkörper der einzelnen Mahleinheiten durch mechanische Trenneinrichtungen wie Reibspalte zu separieren.But this can easily be achieved if you only ensure that by designing the different flow paths of grinding media and regrind at the separation point, appropriately differentiated and differently directed forces come into play, the rejection of the grinding media being primarily caused by correspondingly increased centrifugal forces and the deflection angle is so large that, following inertia and pressure drop, the regrind continues to flow on the specified path. It is even better to separate the grinding media of the individual grinding units using mechanical separation devices such as friction gaps.

Die Ausgestaltung ist zudem noch verhältnismäßig einfach, da es vornehmlich um Rotationsformen an Statorscheiben und Rotorscheiben geht, was durch herkömmliche Fertigungsmethoden preisgünstig bewerkstelligt werden kann. Dabei lassen sich die Strömungswege auf kleinstem Raum verhältnismäßig lang und daher die Einwirkungszeit verhältnismäßig groß gestalten.The design is also still relatively simple, since it is primarily about rotational shapes on stator disks and rotor disks, which can be accomplished inexpensively by conventional manufacturing methods. The flow paths can be made relatively long in the smallest space and therefore the exposure time can be made relatively long.

Zudem können vor allem die Rotorscheiben verhältnismäßig großen Querschnitt mit entsprechender Dicke erhalten, was auch bei biege- und zugempfindlichem Werkstoff wie Keramik die Bruchfestigkeit steigert.In addition, the rotor disks in particular can be given a relatively large cross section with a corresponding thickness, which increases the breaking strength even in the case of material which is sensitive to bending and sensitive, such as ceramic.

Die erfindungsgemäße Spalt-Kugelmühle eignet sich vorzüglich zum Aufschließen von Mikroorganismen bzw. Mikroben, deren Auswertung besondere Bedeutung für die Biotechnik zukommt. Solche Mikroben bestehen aus einer kapselartigen Zelle mit einer Zellflüssigkeit, die einen arteigenen Wirkstoff aufweist, der möglichst vollständig gewonnen werden sollte. Zur mechanischen Gewinnung ist bereits die Naßvermahlung in Rührwerkskugelmühlen vorgeschlagen worden. Die dort erzielte Ausbeute ist jedoch noch begrenzt. Dabei ist der Gewinnungsanteil maßgeblich bestimmt durch den beim Mahlvorgang angewendeten Druck. Wegen der gummiartigen Elastizität der Zellwand bleibt die Zelle bei zu geringem Druck unter elastischer Verformung intakt. Bei zu hohem Druck werden Zellwand, Zellflüssigkeit und Wirkstoff oft so stark ineinander verarbeitet, so daß die später durchzuführende Trennung erschwert wird. Bei der erfindungsgemäßen Spalt-Kugelmühle läßt sich jedoch der aufzuwendende Druck weitgehend vorausbestimmen und ggf. einstellen, um optimale Aufschluß-und Gewinnungsverhältnisse zu erzielen.The split ball mill according to the invention is particularly suitable for disrupting microorganisms or microbes, the evaluation of which is of particular importance for biotechnology. Such microbes consist of a capsule-like cell with a cell fluid that has a species-specific active ingredient that should be obtained as completely as possible. Wet grinding in agitator ball mills has already been proposed for mechanical extraction. The one scored there However, yield is still limited. The percentage of recovery is largely determined by the pressure applied during the grinding process. Due to the rubber-like elasticity of the cell wall, the cell remains intact if the pressure is too low and is deformed elastically. If the pressure is too high, the cell wall, cell fluid and active substance are often processed so strongly that the separation to be carried out later is made more difficult. In the case of the split ball mill according to the invention, however, the pressure to be applied can be largely predetermined and possibly adjusted in order to achieve optimal digestion and extraction ratios.

Gerade für die Biotechnik ist aber auch die Möglichkeit einer intensiven Sterilisierung der mit dem Mahlgut in Berührung kommenden Flächen von erheblicher Bedeutung. Beim Erfindungsgegenstand wird sehr weitgehend mit großen glatten Flächen gearbeitet, die keine scharfkantigen Teile, Winkelecken, Nuten oder dergleichen aufweisen, welche die Bildung von Verunreinigungsnestern zulassen. Diese Flächen lassen sich daher leicht und gründlich sterilisieren.Especially for biotechnology, the possibility of intensive sterilization of the surfaces that come into contact with the regrind is of considerable importance. The subject matter of the invention is very largely worked with large smooth surfaces which have no sharp-edged parts, angular corners, grooves or the like, which allow the formation of contamination nests. These surfaces can therefore be sterilized easily and thoroughly.

Weitere Ausgestaltungen und Vorteile der Erfindung sind in den Unteransprüchen festgehalten und sollen jetzt anhand der Zeichnung ausführlicher erläutert werden.Further refinements and advantages of the invention are set out in the subclaims and will now be explained in more detail with reference to the drawing.

Die Zeichnung gibt eine bevorzugte Ausführungsform der Erfindung beispielsweise wieder. Es zeigen:

Fig. 1
einen Längsschnitt durch eine erfindungsgemäße Spalt-Kugelmühle,
Fig. 2
eine Ansicht einer Rotorscheibe von links in Fig. 1 gesehen,
Fig. 3
einen der Fig. 1 entsprechenden Axialschnitt mit geänderter Mahlspaltform,
Fig. 4
den zugehörigen Längsschnitt durch eine Rotorscheibe und
Fig. 5
eine weitgehend der Fig. 2 entsprechende Stirnansicht einer solchen Rotorscheibe.
The drawing shows a preferred embodiment of the invention, for example. Show it:
Fig. 1
2 shows a longitudinal section through a split ball mill according to the invention,
Fig. 2
2 shows a view of a rotor disk from the left in FIG. 1,
Fig. 3
1 corresponding axial section with modified grinding gap shape,
Fig. 4
the associated longitudinal section through a rotor disk and
Fig. 5
a largely similar to FIG. 2 front view of such a rotor disk.

Die in den Fig. 1 und 2 dargestellte Spalt-Kugelmühle besteht im wesentlichen aus einem Mühlengehäuse (1), das drei Mahleinheiten (2) aus einem mehrteiligen Stator (3) und einem ebenfalls mehrteiligen Rotor (4) aufnimmt, der die Mühlenachse (5) umläuft und von einem insbesondere regelbaren Elektromotor (6) angetrieben wird.The split ball mill shown in FIGS. 1 and 2 consists essentially of a mill housing (1), which receives three grinding units (2) from a multi-part stator (3) and a likewise multi-part rotor (4), which the mill axis (5th ) rotates and is driven by a particularly controllable electric motor (6).

Dieser Motor (6) ist am ortsfest angebrachten Mühlengehäuse (1) angeflanscht. Der Motorzapfen (7) greift dabei drehfest mit Keil (8) in die am linken Ende in Fig. 1 angebrachte Bohrung (9) der Rotorwelle (10). Deren anderes Ende sitzt mit einem Zapfenlager (11) in einem Außendeckel (12), der das topfartige Mühlengehäuse (1) abschließt und den Gutauslaß (13) aufnimmt.This motor (6) is flanged to the stationary mill housing (1). The motor pin (7) engages in a rotationally fixed manner with a wedge (8) in the bore (9) in the rotor shaft (10) made at the left end in FIG. 1. The other end sits with a journal bearing (11) in an outer cover (12), which closes the pot-like mill housing (1) and receives the product outlet (13).

Jeder der drei Mahleinheiten (2) umfaßt eine Statoreinheit (16) mit einer ersten Statorscheibe (17) und einer zweiten Statorscheibe (18). Diese bilden jeweils zwischen sich eine Mahlraumeinheit (19), in der eine als Reibscheibe ausgebildete Rotorscheibe (20) umläuft.Each of the three grinding units (2) comprises a stator unit (16) with a first stator disc (17) and a second stator disc (18). These each form a grinding chamber unit (19) between them, in which a rotor disk (20) designed as a friction disk rotates.

Die einzelnen Rotorscheiben (20) des Mehrstufen-Rotors (4) sitzen mit ihren Naben (21), durch Abstandsbuchsen (23) getrennt, hinbtereinander auf der Rotorwelle (10) zwischen deren Schulter (24) und der zum Zapfenlager (11) hin aufgeschraubten Mutter (25). Die Abstandsbuchsen (23) können grundsätzlich gleiche Länge haben, werden aber vorzugsweise in leicht abweichenden Längen vorrätig gehalten, um die Lage der Rotorscheiben (20) exakt festlegen zu können.The individual rotor disks (20) of the multi-stage rotor (4) sit with their hubs (21), separated by spacer bushings (23), one behind the other on the rotor shaft (10) between their shoulder (24) and that screwed towards the journal bearing (11) Mother (25). The spacer bushes (23) can in principle have the same length, but are preferably kept in stock in slightly different lengths in order to be able to precisely determine the position of the rotor disks (20).

Zur Drehmomentübertragung dienen einzelne, auf die Länge der Naben (21) abgestimmte zylindrische Polygonprofil-Mitnahmebolzen (26), die in einer durchgehenden längslaufenden, annähernd halbzylindrischen Nut (27) der Rotorwelle (10) sitzen. Die ersten Statorscheiben (17) haben einen mittleren, kegelförmigen Teil (171) mit einer Neigung von 60° zur Mühlenachse (5). Innen schließt sich ein S-förmiger Teil (172) an und außen ein angenähert zylindrischer Teilflansch (173). Jede zweite Statorscheibe (18) hat dagegen einen inneren, etwa ebenen Teil (181) mit einem äußeren kegelförmigen Teil (182), dessen Mantellinie mit der Mühlenachse (5) wiederum einen Winkel von 60° einschließt. Sie enden jeweils innen und außen in Radialflächen und sind dort gegeneinander und gegenüber dem Mühlengehäuse (1) durch Dichtungsringe (33,34) und Auflageringe (35) abgedichtet, wobei vor allem die letzteren für eine nachgiebige und dämpfende Stützwirkung sorgen.Individual, polygonal profile driving bolts (26), which are matched to the length of the hubs (21) and are seated in a continuous longitudinal, approximately semi-cylindrical groove (27) of the rotor shaft (10), are used for torque transmission. The first stator disks (17) have a central, conical part (171) with an inclination of 60 ° to the mill axis (5). An S-shaped part (172) follows on the inside and an approximately cylindrical partial flange (173) on the outside. In contrast, every second stator disk (18) has an inner, approximately flat part (181) with an outer conical part (182), the surface line of which in turn encloses an angle of 60 ° with the mill axis (5). They each end inside and outside in radial surfaces and are sealed there against each other and against the mill housing (1) by sealing rings (33, 34) and support rings (35), the latter in particular ensuring a flexible and damping support effect.

Jede Rotorscheibe (20) erweitert sich von ihrer Nabe (21) aus zunächst mittels eines etwa ebenen Zwischenteiles (22) zu einem äußeren Kegelring (28), der weitgehend in der Mitte der Mahlraumeinheit (19) zwischen kegelförmigen Teilen (171,182) der beiden Statorscheiben (17,18) zu liegen kommt, wodurch rings um die ganze Rotorscheibe (20) ein etwa gleich breiter Mahlspalt (36) geformt wird, der eine nach radialaußen geschlossene Spaltschleife (37) um den Kegelring (28) bildet. Die Spaltschleife (37) steht über etwa radial verlaufende Verbindungsspalte (38,39) mit Anschlußspalten (40,41) und dadurch mit den radialen Endflächen (42) der durch die Statorscheiben (17,18) gebildeten Statoren der einzelnen Mahleinheiten (2) in Verbindung.Each rotor disc (20) widens from its hub (21) initially by means of an approximately flat intermediate part (22) to form an outer conical ring (28), which is largely in the center of the grinding chamber unit (19) between conical parts (171, 182) of the two stator discs (17, 18) comes to rest, whereby a grinding gap (36) of approximately the same width is formed around the entire rotor disc (20), which forms a gap loop (37) which is closed towards the outside around the cone ring (28). The gap loop (37) is connected via approximately radially extending connecting gaps (38, 39) with connecting gaps (40, 41) and thereby with the radial end faces (42) of the stators of the individual grinding units (2) formed by the stator disks (17, 18) Connection.

Dicht an der Innenfläche (46) des Kegelringes (28) sind die oberen Enden der Verbindungsspalte (38,39), jeweils durch wenigstens zwei Kugelrückführkanäle (47) verbunden, die ebenfalls um etwa 60° zur Rotorachse (5) geneigt sein können bzw. nach Fig.2 spiralförmig verlaufen. Dadurch werden auf schwere Partikel, insbesondere auf die Mahlkörper (48), größere Fliehkräfte ausgeübt als auf die unter Pumpendruck weitergeförderten Festkörperteilchen des Mahlgutes. Um diesen Effekt zu vergrößern, werden die Mahlkörper (48) vorzugsweise aus Keramik gefertigt. Sie können aber auch aus spezifisch besonders schwerem Gestein bestehen. Auf diese Weise läßt sich erreichen, daß die Mahlkörper, wie dies in der mittleren Mahleinheit in den Figuren 1 und 1a gezeigt ist, auf einer durch wenigstens zwei Kugelrückführkanäle (47) geschlossenen räumlichen Ringbahn rotieren, also in der jeweiligen Mahleinheit verbleiben.Close to the inner surface (46) of the conical ring (28) are the upper ends of the connecting gaps (38, 39), each connected by at least two ball return channels (47) which can also be inclined by approximately 60 ° to the rotor axis (5) or run spirally according to FIG. As a result, larger centrifugal forces are exerted on heavy particles, in particular on the grinding media (48), than on the solid particles of the grinding material which are conveyed further under pump pressure. To increase this effect, the grinding media (48) are preferably made of ceramic. However, they can also consist of specifically particularly heavy rock. In this way it can be achieved that the grinding media, as shown in the middle grinding unit in FIGS. 1 and 1a, rotate on a spatial ring path closed by at least two ball return channels (47), that is to say they remain in the respective grinding unit.

Der Trennvorgang kann ferner dadurch beeinflußt werden, daß man einen Winkel verändert, etwa die Neigung des Zwischenspaltes (49) der inneren Randfläche des Kegelringes (28).The separation process can also be influenced by changing an angle, such as the inclination of the intermediate gap (49) of the inner edge surface of the cone ring (28).

Die Mahlkörper (48) können auch in jede Mahleinheit gesondert durch ein Füllrohr (51) eingefüllt werden, das in einer Haltebuchse (52) im Mühlengehäuse (1) und unmittelbar in einer Bohrung (53) des die Schleife (37) überdeckenden Ringflansches (173) sitzt. Normalerweise ist das Füllrohr (51) durch einen Stopfen (54) verschlossen, der durch eine aufgeschraubte Überwurfmutter (55) gehalten wird. Anstelle des Stopfens (54) kann auch ein Meßtaster oder ein Meßgerät (56), etwa für Druck, Temperatur, Viskosität oder dgl. des Mahlgutes ein- bzw. aufgesetzt werden.The grinding media (48) can also be filled separately into each grinding unit through a filling tube (51), which is placed in a holding bush (52) in the mill housing (1) and directly in a bore (53) of the ring flange (173) covering the loop (37) ) sits. The filling tube (51) is normally closed by a stopper (54) which is held by a screwed-on union nut (55). Instead of the stopper (54), a probe or a measuring device (56), for example for pressure, temperature, viscosity or the like, of the material to be ground can also be inserted or attached.

Der Guteinlaß (13) ist ebenso wie der Gutauslaß (14) gegenüber dem benachbarten Mahlspalt durch einen Reibspaltring (57) abgeschlossen, der zwischen dem Gehäusesteg (59) bzw. dem Außendeckel (12) und der dort jeweils vorhandenen Abstandsbuchse (23) eingefügt ist. Die dadurch gebildeten, sich nach außen erweiternden Reibspalte (58) dienen zur Sicherung gegen den Verlust von Mahlkörpern, die aus irgendeinem Grund, z.B. beim Anfahren, ihre Umlaufbahn in der Spaltschleife (37) verlassen haben. Bei einem zwischenzeitigen Stillstand der Mühle sammeln sich solche Mahlkörper unten in der Spaltschleife (37) und werden beim Anlauf wieder nach außen geschleudert und dadurch in der Mahlschleife verteilt.The product inlet (13), like the product outlet (14), is closed off from the adjacent grinding gap by a friction gap ring (57) which is inserted between the housing web (59) or the outer cover (12) and the spacer bush (23) present there . The friction gaps (58) formed in this way, which widen outwards, serve to secure against the loss of grinding media for some reason, for example when starting off, have left their orbit in the gap loop (37). If the mill comes to a standstill in the meantime, such grinding media collect in the bottom of the gap loop (37) and are thrown outwards again during start-up and are thus distributed in the grinding loop.

Zwischen benachbarten Statoren (17,18) können Distanzringe (61) eingeschaltet werden, um die axialen Abstände zwischen den Statoren, aber auch zwischen Stator- und Rotorscheiben beeinflussen zu können. Abweichend von der dargestellten Ausführung mit Distanzringen und dgl. können auch Vorrichtungen zum kontinuierlichen Verstellen mittels Druckschrauben oder dgl. zum Einsatz kommen. Beispielsweiselassen sich auch die Schrauben (62) am Außendeckel (12) für solche Einstellvorgänge heranziehen.Spacer rings (61) can be inserted between adjacent stators (17, 18) in order to be able to influence the axial distances between the stators, but also between the stator and rotor disks. In contrast to the embodiment shown with spacer rings and the like, devices for continuous adjustment by means of pressure screws or the like can also be used. For example, the screws (62) on the outer cover (12) can also be used for such adjustment processes.

An den Längsenden der Mühle sind außen Kühlräume (64,65) vorgesehen, zwischen benachbarten Mahleinheiten (2) ebenfalls ringförmige Kühlräume (64). Diese stehen einzeln mit Mantel-Kühlräumen (85) in Verbindung, die jeweils zwischen dem Mantel des Mühlengehäuses (1) und dem Ringflansch (172) der zugehörigen ersten Statorscheibe (17) eingeformt sind.At the longitudinal ends of the mill, cooling spaces (64, 65) are provided on the outside, and annular cooling spaces (64) are also provided between adjacent grinding units (2). These are individually connected to jacket cooling chambers (85), which are each formed between the jacket of the mill housing (1) and the ring flange (172) of the associated first stator disk (17).

In den Distanzringen (61) sind dabei etwa radiale Durchbrechungen zum Anschluß der Mantel-Kühlräume (85) an den Kühlmittelkreislauf angebracht. Anstelle eines Kühlmittels kann auch ein anderes Wärmeträgermedium, etwa zum Aufheizen oder zum wahlweisen Kühlen und/oder Heizen verwendet werden. Alle Kühlräume sind dabei z.B. über zwei unter 180° zur Mühlenachse (5) versetzte Rohrverzweiger (66) an eine Kälte-und/oder Wärmequelle angeschlossen, um die Betriebstemperatur beim Mahlvorgang nach Bedarf einstellen zu können.In the spacer rings (61) there are approximately radial openings for connecting the jacket cooling spaces (85) to the coolant circuit. Instead of a coolant, another heat transfer medium can also be used, for example for heating or for optional cooling and / or heating. All cold rooms are e.g. Connected to a cold and / or heat source via two manifolds (66) offset at 180 ° to the mill axis (5) in order to be able to adjust the operating temperature during the grinding process as required.

Statorscheiben (17,18) und Rotorscheiben (20) bestehen aus gesintertem Keramikwerkstoff mit großer Temperaturbeständigkeit und Abriebfestigkeit. Die Druckfestigkeit dieser Werkstoffe ist für die auftretenden Beanspruchungen hinreichend. Um jedoch die insbesondere auch durch Fliehkräfte verursachte Zugbeanspruchung zu kompensieren, können einerseits die Rotorscheiben in an sich bekannter Weise als vorgespannte Konstruktionselemente ausgeführt werden. Andererseits ist der Druck der Kühlflüssigkeit wesentlich höher bemessen, als dies bei vergleichbaren Kühlanlagen der Fall ist. Dadurch werden die Statoren aus den Mantel-Kühlräumen (85) heraus radial nach innen zusammengepreßt, um wenigstens die aus Fliehkräften und dgl. herrührenden Ausdehnungs-Verformungen zu kompensieren. Auch die Statorscheiben können in mechanischer Weise vorgespannt werden.Stator disks (17, 18) and rotor disks (20) are made of sintered ceramic material with high temperature resistance and abrasion resistance. The compressive strength of these materials is sufficient for the stresses that occur. However, in order to compensate for the tensile stress caused in particular by centrifugal forces, on the one hand the rotor disks can be designed as prestressed construction elements in a manner known per se. On the other hand, the pressure of the cooling liquid is dimensioned much higher than is the case with comparable cooling systems. As a result, the stators are pressed radially inward out of the jacket cooling spaces (85) in order to at least compensate for the expansion deformations resulting from centrifugal forces and the like. The stator disks can also be mechanically preloaded.

Um kleine Durchmesser zu erhalten, empfiehlt sich die Verwendung von zwei oder mehr, ggf. bis zu fünf oder mehr Mahleinheiten. Dadurch ist eine relativ große Zahl identischer Einzelelemente erforderlich, die eine Herstellung in größerer Serie und damit eine Verbilligung auch bei komplizierter Technik ermöglicht.In order to obtain small diameters, the use of two or more, possibly up to five or more grinding units is recommended. As a result, a relatively large number of identical individual elements is required, which enables production in a larger series and thus a reduction in price even with complicated technology.

Vor Betriebsaufnahme sollten bei Bearbeitung von kontaminationsempfindlichem Gut, etwa für die Lebensmittel- und Pharmaindustrie bzw. die Biotechnik, die Mahlräume bzw. Mahlspalte und andere mit dem Mahlgut in Berührung kommende Flächen ebenso wie die Kühl- bzw. Temperiermittel führenden Räume weitgehend sterilisiert werden. Dies geschieht nach den vorangehenden Reinigungsvorgängen vornehmlich dadurch, daß Dampf mit einem Druck, der etwa 1 bar größer ist als der übliche Mahldruck, durch diese Räume hindurchgeleitet wird, wobei man die Temperatur ständig bis auf einen Maximalwert von etwa 140° C steigert. Dieser Höchstwert wird für eine bestimmte Zeit aufrechterhalten, die von verschiedenen Betriebsfaktoren abhängig ist und zweckmäßigerweise durch Versuche festgelegt wird.Before commencing operations, the processing of contamination-sensitive goods, for example for the food and pharmaceutical industries or biotechnology, the grinding rooms or grinding gaps and other surfaces that come into contact with the material to be ground, as well as the rooms that contain the cooling or tempering agents, should be largely sterilized. After the previous cleaning processes, this is mainly done by passing steam through these rooms at a pressure which is about 1 bar higher than the usual grinding pressure, the temperature being constantly increased to a maximum value of about 140.degree. This maximum value is maintained for a certain time, which depends on various operating factors and is expediently determined by tests.

Nach Anlaufen des Motors (6) wird Mahlgut kontinuierlich dem Einlaß zugeführt und strömt durch den serpentinenartigen Ringspalt von einer Mahleinheit zur nächsten, bis es aus dem zweiten Reibspalt (58) zum Gutauslaß (14) gelangt, der durch eine Gleitringdichtung (68) zum Motor hin abgeschlossen ist.After the motor (6) has started, regrind is fed continuously to the inlet and flows through the serpentine annular gap from one grinding unit to the next until it comes from the second friction gap (58) to the material outlet (14), which leads to the motor through a mechanical seal (68) is completed.

Die ggf. in verschiedenen Größen vorgesehenen Mahlkörper werden noch im Stillstand der Mühle eingefüllt, sie haben in der Regel einen Durchmesser von 0,3 bis 3 mm und werden klassifiziert zugegeben, etwa in die rechte Mahleinheit mit einem Durchmesser von 3 mm, in die mittlere mit 1,5 mm und in die linke mit 0,8 mm. Beim Anlauf werden die Kugeln, die sich zunächst am Boden der Spaltschleife (37) angesammelt haben, auf den restlichen Teil der ringförmigen Spaltschleife verteilt und zyklisch nach außen geschleudert und durch die Fliehkräfte im Bereich der Mahlschleife konzentriert. Statt eines einzigen Rückführkanals (47) sind zweckmäßigerweise deren mehrere - nach Fig.2 sechs - gleichmäßig am Umfang verteilt vorgesehen, je nachdem, welche Umlaufgeschwindigkeit der Kugeln im Hinblick auf das verarbeitete Gut angestrebt wird.The grinding media, which may be provided in different sizes, are filled while the mill is at a standstill, they usually have a diameter of 0.3 to 3 mm and are classified, for example in the right grinding unit with a diameter of 3 mm, in the middle with 1.5 mm and in the left with 0.8 mm. When starting up, the balls, which have initially accumulated at the bottom of the gap loop (37), are distributed to the remaining part of the ring-shaped gap loop and cyclically flung outwards and concentrated in the area of the grinding loop by the centrifugal forces. Instead of a single return channel (47) there are expediently provided a plurality - six according to FIG. 2 - distributed uniformly around the circumference, depending on the rotational speed of the balls with regard to the processed material.

Beim Umlauf werden die Mahlkörper stets an der sich in Verlängerung des Kugelrückführkanals anschließenden Innenfläche (46) gegen den äußeren Kegelring (28) gepreßt, wobei eine Art Hochleistungsmahlgang bewirkt wird, während beim Rücklauf aus der Spaltschleife (37) zum Zwischenspalt (49) hin sich die Anlagekräfte mindern und bei geringerer spezifischer Mahlleistung der Mahlvorgang vergleichmäßigt und vervollständigt wird. Es werden also drei voneinander weitgehend unabhängige und auch unterschiedliche Mahlzyklen durchlaufen, bis das Mahlgut zum Auslaß (14) gelangt. Es lassen sich daher hochfeine und besonders gleichmäßige Dispersionen in verhältnismäßig kurzer Zeit erstellen.During the circulation, the grinding media are always pressed against the outer conical ring (28) on the inner surface (46), which is an extension of the ball return channel, whereby a kind of high-performance grinding action is brought about, while when returning from the gap loop (37) to the intermediate gap (49) reduce the plant forces and, with a lower specific grinding capacity, the grinding process is evened out and completed. Three grinding cycles, which are largely independent of one another and also different, are run through until the ground material reaches the outlet (14). It is therefore possible to create extremely fine and particularly uniform dispersions in a relatively short time.

Bei der abgewandelten Ausführung gemäß den Fig. 3 bis 5 sind gleiche Bauteile mit den selben Bezugszeichen versehen, wobei abgewandelte Ausführungen durch einen hochgestellten Strich gekennzeichnet sind.3 to 5 are in the modified embodiment Identify the same components with the same reference numerals, modified versions being identified by a prime.

Der Unterschied dieser zweiten Ausführung gegenüber der erstbeschriebenen besteht im Prinzip darin, daß im Querschnitt eines jeden Mahlspaltes (36′), insbesondere der Spaltschleife (37′) in beiden Strömungszweigen eine zusätzliche Ringsicke bzw. Umlenkung angebracht ist, wobei an den Stirnseiten (71) und (72) zum Beispiel des Rotors sich jeweils ringförmige Erhebungen (73) und Vertiefungen (74) abwechseln. Die Stirnflächen sind hier wie insgesamt vor allem der Außenteil der Rotorscheibe (20) im Querschnitt zickzackförmig gestaltet. Sie können auch wellenartige Gestalt haben. Nach Möglichkeit sollten jedoch die einander zugeordneten Flächen, beispielsweise die zum Außenrand (75) hinführenden Endflächen (76) und (77) wenigstens annähernd parallel zueinander verlaufen und gegebenenfalls auch gleichbleibende Abstände haben. Dies gilt auch für die an den Statorscheiben (17′) und (18′) vorgesehenen Stirnflächen (78) und (79). Der äußere Kegelring (28) nach Fig. 1 wird dadurch zu einem Z-Flansch (80) mit der Querschnittsform einer Rune. Entsprechend gestaltet ist die den Z-Flansch umschließende Spaltschleife (37′) der beiden Arme des Mahlspaltes (36′).The difference of this second embodiment compared to the first described is in principle that in the cross section of each grinding gap (36 '), in particular the gap loop (37'), an additional ring bead or deflection is attached in both flow branches, with the end faces (71) and (72) for example of the rotor, alternate annular elevations (73) and depressions (74). The end faces here, as a whole, in particular the outer part of the rotor disk (20) are designed in a zigzag cross section. They can also have a wave-like shape. If possible, however, the mutually assigned surfaces, for example the end surfaces (76) and (77) leading to the outer edge (75), should run at least approximately parallel to one another and, if appropriate, also have constant distances. This also applies to the end faces (78) and (79) provided on the stator disks (17 ') and (18'). The outer cone ring (28) according to FIG. 1 thus becomes a Z flange (80) with the cross-sectional shape of a rune. The gap loop (37 ') of the two arms of the grinding gap (36') surrounding the Z flange is designed accordingly.

Diese beiden Mahlspaltarme sind durch am unteren Ende des Z-Flansches angebrachte Kugelrückführkanäle (47′) verbunden. Die Mahlkugeln werden auch hierbei zunächst in Strömungsrichtung eingeführt und am Austritt aus dem Kugelrückführkanal (47′) scharf nach außen umgelenkt, sodaß sie während des Betriebes jeweils in ihrer Spaltschleife (37′), d.h. in den beiden äußeren Teilen der Mahlspaltarme konzentriert bleiben. Hierbei sind die Kugelrückführkanäle (47′) so wie die nicht erwähnten Teile und Anordnungen in der gleichen Weise ausgebildet wie in den Fig. 1 und 2, sodaß auf die restlichen Teile der zweiten Ausführungsform nicht eingegangen werden muß.These two grinding gap arms are connected by ball return channels (47 ') attached to the lower end of the Z-flange. The grinding balls are also first introduced in the direction of flow and sharply deflected outwards at the exit from the ball return channel (47 '), so that they remain concentrated in their gap loop (37'), ie in the two outer parts of the grinding gap arms, during operation. Here, the ball return channels (47 ') as the parts and arrangements not mentioned are formed in the same manner as in Figs. 1 and 2, so that on the remaining parts of the second embodiment need not be discussed.

Die dargestellten Ausführungsformen können in mancherlei Weise abgewandelt werden, ohne daß der Erfindungsbereich verlassen wird. So kann die Mahlspaltschleife (37) etwa der mit geraden Mantellinien versehenen Kegelflächen durch konkav und/oder konvex gewölbte Kegeltonnenflächen oder dgl. gebildet werden, so daß die Schleife etwa eiförmigen oder ellipsenförmigen Querschnitt erhält. Die Winkel der Mantellinie zur Mühlenachse können gleich oder unterschiedlich gewählt sein, und die Rotorscheiben können am ganzen Umfang einen Drehschluß mit der Rotorwelle bilden, etwa daß sie einen polygonalen Querschnitt, insbesondere dreieckförmig und mit abgerundeten Ecken bzw. mit quer zur Rotorachse gewölbten Seitenflächen bilden.The illustrated embodiments can be modified in various ways without leaving the scope of the invention. For example, the grinding gap loop (37), for example of the conical surfaces provided with straight surface lines, can be formed by concave and / or convexly curved conical barrel surfaces or the like, so that the loop has an approximately egg-shaped or elliptical cross-section. The angles of the surface line to the mill axis can be chosen to be the same or different, and the rotor disks can form a rotational connection with the rotor shaft over the entire circumference, for example that they form a polygonal cross section, in particular triangular and with rounded corners or with side surfaces curved transversely to the rotor axis.

Claims (24)

  1. Gap-ball mill for continuously grinding, in particular disintegrating, microorganisms and dispersing solids in fluid and having the following features:
    a) first and second stator discs (17, 18) are secured in a mill housing (1) centrally relative to the mill axis (5) such that they can be easily interchanged; and
    b) are associated with and adapted to one another at least in pairs such that they form between them a stator unit (16) which extends approximately radially from the mill axis (5) and has a rotationally symmetrical grinding chamber unit (19);
    c) the stator discs (17, 18) in each case have a conical section (171, 182) which is inclined towards the mill axis (5) and which is adjoined at the interior by an S-shaped section (172) in the case of the first stator disc (17);
    d) in the grinding chamber unit (19) there is mounted centrally relative to the mill axis (5) at least one rotatably driven plate-like rotor disc (20) which comprises a conically shaped annular section (tapered ring 28) towards the outer edge;
    e) the front and rear (71, 72) of the rotor disc (20) together with two stator discs (17, 18) in the grinding chamber unit (19) form a grinding gap (36) which surrounds the rotor disc (20) and extends approximately radially on all sides from the grinding axis (5);
    f) in the interior of the grinding unit (2) a gap loop (37, 37') which is disposed about the tapered ring (28) is short circuited outwardly by at least two ball return ducts (47, 47');
    g) which extend radially outwards from the grinding axis (5) as centrifugal guide elements.
  2. Gap-ball mill according to Claim 1, characterised in that the ball return ducts (47) are inserted in the gap loop (37) in such a way that the grinding medium (48) enters the outwardly directed flow of material at least approximately tangentially but is thrown back abruptly and radially outwards at the inlet to the ball return duct (47) from the inwardly directed flow of material there.
  3. Gap-ball mill according to Claim 1 or 2, characterised in that the ball return duct (47) is in each case disposed in the extension of a generated surface (28, 46) of an inner gap section and is curved helically approximately in the manner of a centrifugal pump duct (Figure 2).
  4. Gap-ball mill according to any one of Claims 1 to 3, characterised in that the ball return duct (47) forms an angle of 50 to 67° in each case with the mill axis (5) and merges at the point of deflection of the short inner loop section (intermediate gap 49) into the associated approximately radial connection gap (38, 39).
  5. Gap-ball mill according to Claim 4, characterised in that the angle between the ball return duct (47) and the mill axis (5) is approximately 60 to 62°.
  6. Gap-ball mill according to Claim 4 or 5, characterised in that the angle of inclination of the centre section (28) of at least a first stator disc (17) is approximately 60° relative to the mill axis (5).
  7. Gap-ball mill according to any one of Claims 1 to 6, characterised in that a plurality of grinding units (2) consisting of a stator unit (16) and a rotor disc (20) in each case are joined together along the mill axis (5) and form between the material inlet (13) and material outlet (14) a continuous grinding gap (36) which in cross-section is in the shape of a multi-stage serpentine loop.
  8. Gap-ball mill according to Claim 7, characterised by spacer sleeves (26) secured on the rotor shaft (10) between the rotor discs (20) for adjusting the width of the grinding gap (36).
  9. Gap-ball mill according to any one of Claims 1 to 8, characterised in that the stator discs (17, 18) are delimited on at least one side in each case by a cooling chamber (64, 65) through which a heat exchanger medium flows.
  10. Gap-ball mill according to Claim 9, characterised in that at least one annular casing-cooling chamber (85) is also formed between the radial outer surface of the stator (3) and the inner surface of the mill housing (1).
  11. Gap-ball mill according to Claim 9 or 10, characterised in that one stator disc (17) in each case is provided, in particular integrally, with an outer annular flange (173) which inwardly delimits the annular casing-cooling chamber (85) and is sealed by means of at least two annular seals (34) with respect to a second stator disc (18) acting as a cover for the grinding chamber unit (19).
  12. Gap-ball mill according to Claim 10 or 11, characterised in that the pressure at least in the annular casing-cooling chamber (85) is at least one bar greater than in the grinding gap (36) and is in particular 2 to 3 bars.
  13. Gap-ball mill according to any one of Claims 1 to 12, characterised in that each grinding gap of a grinding unit (2) comprises, closely about the rotor shaft (10), two connection gaps (40, 41) which face in opposite directions and each end in a primarily radial end surface (45) for radially outwardly extending connection gaps (38, 39) which extend to the grinding gap loop (37) provided with the ball return duct (47).
  14. Gap-ball mill according to any one of Claims 1 to 13, characterised in that the grinding gap loops (37) are disposed such that they are predominantly inclined towards the mill axis (5) and are formed by at least approximately parallel, preferably obtuse-angled, conical gaps.
  15. Gap-ball mill according to any one of Claims 1 to 14, characterised in that friction gap rings (57) forming a friction gap (58) are disposed at the material inlet (13) and material outlet (14) in a sealing manner in order to retain the grinding medium (48).
  16. Gap-ball mill according to Claim 15, characterised in that retaining devices such as friction gap rings (57) for the grinding medium (48) are also provided between adjacent grinding units (2) in the grinding gap (36).
  17. Gap-ball mill according to Claim 8 or 16, characterised in that the spacer sleeves (23) are sealed with respect to one another and with respect to the rotor shaft (10).
  18. Gap-ball mill according to any one of the preceding claims, characterised in that a ball filler duct extending in a sealed manner through the casing-cooling chamber (85) is associated with each grinding chamber unit (2).
  19. Gap-ball mill according to Claim 18, characterised in that the ball filler duct comprises a filler pipe (51) which is mounted interchangeably in an insertion sleeve (52) which is sealed with respect to the mill housing (1) and the annular flange (172).
  20. Gap-ball mill according to Claim 18 or 19, characterised in that the filler pipe (51) can be closed by a plug (54) and optionally accommodates instead of the plug a measuring gauge (60) for operating values, such as pressure, temperature or the like for example.
  21. Gap-ball mill according to any one of Claims 1 to 20, characterised in that at least the rotor disc (20) which acts as the friction disc and additionally the stator discs (17, 18) in particular are made of sintered material.
  22. Gap-ball mill according to Claim 21, characterised in that at least the rotor disc (20) consists of ceramic material with non-abrasive granular material.
  23. Gap-ball mill according to Claim 21 or 22, characterised in that the rotor discs (20) are mounted with a noncircular, edge-free aperture on the likewise noncircular rotor shaft (10).
  24. Gap-ball mill according to Claim 23, characterised in that the cross-section of contact between the rotor discs (20) and the rotor shaft (10) is built on the basic shape of a polygon, in particular a triangle.
EP88106483A 1987-05-15 1988-04-22 Gap-ball mill for continuously grinding, especially disintegrating microorganisms, and dispersing solids in fluids Expired - Lifetime EP0290840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106483T ATE90886T1 (en) 1987-05-15 1988-04-22 SPLIT BALL MILL FOR CONTINUOUS FINE GRINDING, IN PARTICULAR DECOMPOSITION OF MICROORGANISMS AND DISPERSING OF SOLIDS IN LIQUID.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873716295 DE3716295A1 (en) 1987-05-15 1987-05-15 SPLIT BALL MILL FOR CONTINUOUS FINE-SIZING, ESPECIALLY UNLOCKING MICRO-ORGANISMS AND DISPERSING SOLIDS IN LIQUID
DE3716295 1987-05-15

Publications (3)

Publication Number Publication Date
EP0290840A2 EP0290840A2 (en) 1988-11-17
EP0290840A3 EP0290840A3 (en) 1990-01-10
EP0290840B1 true EP0290840B1 (en) 1993-06-23

Family

ID=6327628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106483A Expired - Lifetime EP0290840B1 (en) 1987-05-15 1988-04-22 Gap-ball mill for continuously grinding, especially disintegrating microorganisms, and dispersing solids in fluids

Country Status (5)

Country Link
US (1) US4824033A (en)
EP (1) EP0290840B1 (en)
JP (1) JP2652194B2 (en)
AT (1) ATE90886T1 (en)
DE (2) DE3716295A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918092C2 (en) * 1988-06-09 1999-08-12 Buehler Ag Geb Agitator mill
DE3943826B4 (en) * 1988-06-09 2004-12-09 Bühler AG Agitator-type grinder assembly - has rotor and/or stator with coolant channel and thermal expansion-compensating elements between adjacent parts
DE4029252A1 (en) * 1990-09-14 1992-03-19 Fryma Masch Ag METHOD AND DEVICE FOR CONTINUOUS FINE SIZING AND DISPERSING SOLIDS IN LIQUID
ES2030619A6 (en) * 1990-10-31 1992-11-01 Oliver & Battle Sa Grinding body separator in mills for triturating and breaking up solids dispersed in liquids.
ES2031788A6 (en) * 1991-06-27 1992-12-16 Oliver & Battle Sa Improvements in the separators of grinding bodies in mills for comminuting and crushing and deagglomerating solids, predispersed in liquids.
DE4402609C2 (en) * 1994-01-28 1997-05-07 Hosokawa Alpine Ag Agitator ball mill
KR100500480B1 (en) * 1997-07-30 2005-11-14 어네스트 센데스 Dry grinding method and apparatus of solid
DE29819508U1 (en) * 1998-11-02 1999-01-14 VMA-GETZMANN GmbH, 51580 Reichshof Dispersing device
GB9901828D0 (en) * 1999-01-27 1999-03-17 Withdeal Limited Milling machine
US8133527B2 (en) 2006-06-16 2012-03-13 Kraft Foods Global Brands Llc Production of stabilized whole grain wheat flour and products thereof
RU2504436C1 (en) * 2012-06-27 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" Multichamber mill
US20170056889A1 (en) * 2015-08-26 2017-03-02 Bayram Suha Aksoy Gravity aided grinding mill apparatus and method
CN105362230B (en) * 2015-11-27 2018-08-24 中牧南京动物药业有限公司 The process of hydrochloric acid sarafloxacin soluble powder is prepared based on solid dispersions technique
US20170252751A1 (en) * 2016-03-01 2017-09-07 Enagon Wave Technology, Llc Pressure Interference Wave Mill
DK3311922T3 (en) 2016-10-18 2019-03-18 Bachofen Willy A Ag Stirring Ball Mill
JP6679684B2 (en) * 2018-09-26 2020-04-15 杉山重工株式会社 Powder liquid dispersion device
DE102018009752A1 (en) * 2018-12-12 2020-06-18 Hugo Nienhaus Easily handled refinement of biochar in a shredding device with high sustainability of the use in feed
WO2020124263A1 (en) * 2018-12-21 2020-06-25 Nanorial Technologies Ltd. Apparatus, methods, and systems for mixing, dispersing substances
CH716047A2 (en) 2019-04-08 2020-10-15 Arcolor Ag Grinding device with a superimposed rotational and translational movement for comminuting particles in a liquid.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042254A (en) * 1932-01-18 1936-05-26 Godinez Manuel Pulverizer
FR792310A (en) * 1935-07-10 1935-12-28 Improvements to crushers and pulverizers
GB1024053A (en) * 1962-11-01 1966-03-30 British Titan Products Treatment of particulate solids
DE1183344B (en) * 1962-02-20 1964-12-10 Glasurit Werke Winkelmann Agitator mill for grinding and dispersing pigments
FR90527E (en) * 1966-04-13 1967-12-29 Improved device and method, usable in particular for the preparation of paints and printing inks
DE1913147A1 (en) * 1969-03-14 1970-09-24 Netzsch Maschinenfabrik Agitator mill
CH525028A (en) * 1970-06-09 1972-07-15 Bachofen Willy A Fa Device for fine dispersion of suspensions
DE2811899C2 (en) * 1978-03-18 1984-12-06 Fryma-Maschinen Ag, Rheinfelden Gap ball mill
JPS5946663B2 (en) * 1982-03-08 1984-11-14 大日本塗料株式会社 Kneading and dispersing machine
JPS5924143U (en) * 1982-08-02 1984-02-15 土師 陽子 ball mill
DE3242436A1 (en) * 1982-11-16 1984-05-17 Fryma-Maschinen AG, 4310 Rheinfelden MILL FOR FLOWABLE GROUND MATERIAL
DE3245825C2 (en) * 1982-12-10 1994-01-27 Buehler Ag Geb Agitator mill
SU1255203A1 (en) * 1984-07-27 1986-09-07 Институт Биохимии И Физиологии Микроорганизмов Ан Ссср Installation for ballistic disintegration of microorganisms phug-3
DE3526724A1 (en) * 1985-07-26 1987-01-29 Kaspar Engels Perlite mill

Also Published As

Publication number Publication date
DE3716295A1 (en) 1988-11-24
JPS63302962A (en) 1988-12-09
ATE90886T1 (en) 1993-07-15
EP0290840A2 (en) 1988-11-17
DE3881955D1 (en) 1993-07-29
US4824033A (en) 1989-04-25
JP2652194B2 (en) 1997-09-10
EP0290840A3 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
EP0290840B1 (en) Gap-ball mill for continuously grinding, especially disintegrating microorganisms, and dispersing solids in fluids
DE69431673T2 (en) SHOCK CHAIN TYPE CRUSHING DEVICE
EP2646160B1 (en) Dynamic element for the separating device of a stirring ball mill
EP3311922B1 (en) Agitator ball mill
DE4128074C2 (en) Agitator ball mill
DE19523704C2 (en) Device for the mechanical treatment of highly consistent fiber
DE4401384A1 (en) Stirring mill
DE69328944T2 (en) Apparatus for processing granular material
AT390455B (en) DEVICE FOR SHREDDING FIBER MATERIAL
DE202016106367U1 (en) Two-shaft shredder with exchangeable cutting blade set and detachable shaft ends
DE2931276C2 (en)
DE1200656B (en) Container mill
EP3311921A1 (en) Agitator ball mill
EP3584011A1 (en) Cutting mill for cutting down samples
DE69106886T2 (en) STORAGE SYSTEM IN A REFINER.
EP0504836B1 (en) Agitator mill
NZ227020A (en) Screw mill for comminuting and pressing
AT394588B (en) SHREDDING AREA SEGMENT FOR DRUM REFINER AND HIGHLY ARRANGED ARRANGEMENT
WO1989007012A1 (en) Rotary disintegrating device
EP1534435A1 (en) Ball mill provided with an agitator
EP0358790B1 (en) Milling system
DE4216939C2 (en) Agitator mill with dynamic grinding media separation
DE4332549A1 (en) Agitator grinding mill with grinding container of conical inner contour - has material inlet aperture(s) in container region of greatest periphery and outlet aperture(s) in region of smallest periphery
DE4234759C2 (en) Agitator mill for very fine grinding
EP2548648A2 (en) Mill for comminuting of material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19900108

17Q First examination report despatched

Effective date: 19910416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930623

Ref country code: NL

Effective date: 19930623

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930623

REF Corresponds to:

Ref document number: 90886

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930630

REF Corresponds to:

Ref document number: 3881955

Country of ref document: DE

Date of ref document: 19930729

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980224

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980316

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980409

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980414

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980619

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990422

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990721

Year of fee payment: 12

BERE Be: lapsed

Owner name: FRYMA-MASCHINENBAU G.M.B.H.

Effective date: 19990430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST