EP0290517B1 - Integrated detector dewar cryoengine - Google Patents
Integrated detector dewar cryoengine Download PDFInfo
- Publication number
- EP0290517B1 EP0290517B1 EP87907368A EP87907368A EP0290517B1 EP 0290517 B1 EP0290517 B1 EP 0290517B1 EP 87907368 A EP87907368 A EP 87907368A EP 87907368 A EP87907368 A EP 87907368A EP 0290517 B1 EP0290517 B1 EP 0290517B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- expander
- detector means
- thermal energy
- dewar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 5
- 238000005057 refrigeration Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 3
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- 229910000755 6061-T6 aluminium alloy Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- UCHOFYCGAZVYGZ-UHFFFAOYSA-N gold lead Chemical compound [Au].[Pb] UCHOFYCGAZVYGZ-UHFFFAOYSA-N 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/061—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J2005/065—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding
Definitions
- This invention relates to the field of infrared sensing, and more particularly to an integrated detector dewar cryoengine.
- Infrared detectors are often used in conjunction with missiles and night vision systems to sense the presence of electromagnetic radiation having a wavelength of 1-15 ⁇ m. Because they are often most sensitive when operating at approximately 77°K, infrared detectors such as those fabricated from mercury-cadmium-telluride often require a cryoengine assembly to produce and maintain the required operating temperature. Such cryoengine assemblies are typically used in conjunction with an evacuated dewar in which the infrared detector is placed. The dewar is evacuated to remove thermally conductive gases which would otherwise occupy the region surrounding the detector.
- the dewar is cooled by placing an indented region ("coldwell”) of the dewar in contact with an expansion chamber ("expander”) of the cryoengine assembly which is supplied with a cooling fluid such as helium.
- the coldwell and the expander are separated by a gap to allow for variation in the dimensional characteristics of the dewar and expander, as well as to accomodate for differences in their thermal expansion characteristics.
- the cryoengine assembly To supply the expander with the cooling fluid, the cryoengine assembly often includes a compressor which delivers the fluid to the expander through a transfer line. As the fluid expands in the expander, it absorbs thermal energy from both the expander and the dewar causing the detector to cool. Because the temperature of the expander is related to the amount of fluid delivered by the compressor, the temperature of the detector may be controlled by varying the compressor speed.
- the infrared detector assemblies described above were able to produce and maintain the temperature levels required for sensitive operation of the mercury-cadmium-telluride detectors, they often had several disadvantages in terms of thermal conduction between the expander and the environment. Because the dewar and expander are structurally independent, the gap between the expander and the dewar acted as an insulator to prevent optimal conduction between the expander and the detector. In addition, the cross-sectional area through which cold loss occurred not only included the cross-sectional area of expander, but also included the walls of the dewar which were adjacent to the expander. These two features necessarily meant that the capacity of the cryoengine had to be somewhat larger than would otherwise be required.
- EP-A-0115698 discloses a cold radiation detector assembly comprising a coldwell with a detector at one end, and supported at the other end by a housing.
- the housing comprises an outer container and a connector, the connector being coupled to the detector by a flexible tape cable which passes through the space between the coldwell and the outer container.
- an apparatus for detecting electromagnetic radiation as specified in claim 1 hereinafter there is provided an apparatus for detecting electromagnetic radiation as specified in claim 1 hereinafter.
- the integrated detector dewar cryoengine 10 includes an infrared detector 12 for receiving infrared radiation and generating responsive electrical signals. While the detector 12 may be made from a layer of mercury-cadmium-telluride on a sapphire substrate material, other suitable materials such as CdTe and CdSe may also be used.
- the detector 12 is secured on a detector platform 14 by thermally conductive adhesive, which permits thermal energy to flow from the detector 12. While the detector platform 14 may be fabricated from beryllium, other suitable materials may be used.
- the integrated detector dewar cryoengine 10 further comprises an expander assembly 16 (see FIG. 2).
- the Expander assembly 16 includes an expander end cap 18 which mechanically communicates with the detector platform 14 so that thermal energy can flow from the detector platform 14 to the expander end cap 18.
- the detector platform 14 is disposed between two of four castellations located on the expander end cap 18 and is secured to the expander end cap 18 by means of a thermally conductive adhesive.
- the expander end cap 18 is disc shaped so as to have a low thermal mass and a high thermal conductivity.
- the expander end cap 18 is preferably fabricated from beryllium so as to provide a relatively high degree of thermal conductivity, though it is to be understood that other suitable materials may be used.
- the expander assembly 16 also includes an expander tube 20 which is brazed to the expander end cap 18.
- the expander tube 20 houses the refrigeration mechanism for cooling the detector 12 and receives cooling fluid such as helium from a compressor (not shown). By expansion of the fluid inside the expander tube 20, thermal energy is drawn from the expander end cap 18 thereby cooling the detector 12.
- the expander tube 20 is preferably fabricated from Inconel so as to have low thermal conductivity while being sufficiently rigid to minimize detector movement during operation.
- an expander housing 22 is provided to support the expander tube 20.
- the expander housing 22 is brazed to the expander tube 20 and is connected to the cryoengine compressor (not shown).
- the expander assembly 16 also includes a cable support 24 which is used to support the flex cables described below.
- thermal sensors 26 are located adjacent to the detector 12 on the flex cables described below. The outputs from the thermal sensors 26 are used to control the compressor speed which in turn controls the temperature of the expander assembly 16. Each of the thermal sensors 26 may be a 2N2222 switching diode, though it is to be understood that other suitable temperature sensors which are sensitive to temperature variation in the requisite ranges may be used.
- a thermal sensor mount 28 is provided to mount the thermal sensors 26 on the expander end cap 18.
- the thermal sensors 26 are secured to the thermal sensor mount 28 by means of a thermally conductive adhesive.
- the thermal sensor mount 28 may be fabricated from a ceramic, though other suitable materials may be used.
- the flex cables 30 permit signals generated by the detector 12 to be delivered to a distribution board 32.
- the flex cables 30 are attached at one end to the conductive pads of the detector 12 through gold lead wires.
- the other end of the flex cables 30 connect to a distribution board 32.
- the flex cables shown in FIG. 1 have been rotated by 45°.
- the flex cables 30 comprise a flexible etched circuit having metallic conductors disposed between layers of polymide base dielectric material attached by means of an acrylic adhesive.
- the distribution board 32 includes a plurality of internal conductors oriented to permit access to the electrical signals delivered to one side of the distribution board by the flex cables 30 to the opposing side of the distribution board 32.
- a plurality of load springs 34 and screws 36 are provided to clamp the flex cables 30 to the distribution board 32.
- a connector 38 is provided.
- the connector 38 receives the electrical signals from the distribution board 32 through a plurality of conductive pins 40.
- the conductive pins 40 extend from the distribution board 32 through the connector 38 to a position above the connector 38 where they can be accessed.
- a shroud 39 is provided to protect the distribution board 32 from the environment.
- the bias resistor board 42 is provided which electrically communicates with the connector 38.
- the bias resistor board 42 functions as a voltage divider so that the appropriate voltages are delivered to the detector 12 to ensure proper operation.
- the integrated detector dewar cryoengine 10 further comprises an assembly housing 44 and a mount plate 46.
- the assembly housing 44 is used to provide structural support to the components of the integrated detector dewar cryoengine 10, and may be fabricated from a low expansion alloy. It is to be understood, however, that other suitable materials may be used.
- the mount plate 46 is used to secure the integrated detector dewar cryoengine 10 in its appropriate position.
- the mount plate 46 mechanically communicates with a base adjustment nut 48, which permits rotation of the mount plate 46 independent of the expander housing 22.
- An O-ring 50 is disposed between expander housing 22 and the mount plate 46 to provide friction upon rotation of the mount plate 46.
- the integrated detector dewar cryoengine 10 further comprises a bulkhead 52 and a shield 54.
- the bulkhead 52 is welded to the assembly housing 44 and mechanically communicates with an evacuation tube 56.
- the evacuation tube 56 is used to withdraw gases from the integrated detector dewar cryoengine 10 to maximize the thermal isolation.
- the bulkhead 52 also communicates with two getter feedthrus 58 which communicate with two getters 60.
- the getters 60 are used during the evacuation process to further eliminate gases inside the integrated detector dewar cryoengine 10.
- the bulkhead 52 mechanically communicates with shield 54 and a frame 64 to form the sides of the vacuum chamber.
- a window 66 and a window housing 68 are provided to form the top of the vacuum chamber.
- the window 66 is fabricated from germanium or zinc selenide to produce the desired transmission band, and is used to transmit incoming infrared radiation on the detector 12.
- the window housing 68 is used to support the window 66 and to permit the integrated detector dewar cryoengine 10 to be evacuated.
- a coldshield 70 is provided which is centrally located over the detector 12.
- the coldshield 70 is connected to two of four castellations on the expander end cap 18 and has an aperture which provides an unobstructed path for infrared radiation from the environment to be received by the detector 12.
- the coldshield 70 has a thin wall and is fabricated from a high conductivity material so as to have a relatively low thermal mass which reduces cooldown time. While the coldshield may be fabricated from 6061-T6 aluminum, it is to be understood that other suitable materials may be used.
- the detector 12 is in direct thermal communication with the expander end cap 18, the detector 12 may be cooled more rapidly than would otherwise be possible.
- the dewar and the expander form an integrated unit, the cross-sectional area through which cold loss can occur is reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Measurement Of Radiation (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93350786A | 1986-11-21 | 1986-11-21 | |
US933507 | 1986-11-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0290517A1 EP0290517A1 (en) | 1988-11-17 |
EP0290517B1 true EP0290517B1 (en) | 1994-03-16 |
Family
ID=25464100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87907368A Expired - Lifetime EP0290517B1 (en) | 1986-11-21 | 1987-10-08 | Integrated detector dewar cryoengine |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0290517B1 (ja) |
JP (1) | JPH0695046B2 (ja) |
DE (1) | DE3789380T2 (ja) |
WO (1) | WO1988004037A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2629912B1 (fr) * | 1988-08-05 | 1992-01-10 | Detecteurs Infrarouges Ste Fse | Dispositif de detection infra-rouge fonctionnant a basse temperature |
FR2638023B1 (fr) * | 1988-10-13 | 1992-07-31 | Telecommunications Sa | Dispositif cryostatique pour detecteur de rayonnements |
US5187939A (en) * | 1991-06-03 | 1993-02-23 | Hughes Aircraft Company | Rapid cooldown dewar |
DE102008014003B4 (de) * | 2008-03-13 | 2010-02-11 | Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Kryosensorpositioniervorrichtung und kryostatische Anlage |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2027181B (en) * | 1978-06-21 | 1982-09-02 | Philips Electronic Associated | Detectors and envelope arrangements for detectors |
JPS5731181A (en) * | 1980-07-08 | 1982-02-19 | Fujitsu Ltd | Cooling type photoelectric converter |
JPS5727075A (en) * | 1980-07-24 | 1982-02-13 | Fujitsu Ltd | Cooling type photoelectric converter |
US4528449A (en) * | 1982-12-27 | 1985-07-09 | Honeywell Inc. | Detector dewar assembly |
US4719353A (en) * | 1985-09-03 | 1988-01-12 | Santa Barbara Research Center | Integrated infrared detector and cryoengine assembly |
-
1987
- 1987-10-08 JP JP62506868A patent/JPH0695046B2/ja not_active Expired - Lifetime
- 1987-10-08 EP EP87907368A patent/EP0290517B1/en not_active Expired - Lifetime
- 1987-10-08 WO PCT/US1987/002572 patent/WO1988004037A1/en active IP Right Grant
- 1987-10-08 DE DE3789380T patent/DE3789380T2/de not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
Patent Abstracts of Japan, vol. 6, no. 95 (E-110)(973), 3 June 1982 & JP-A-5727075 * |
Patent Abstracts of Japan, vol. 6, no. 99 (E-111)(977), 8 June 1982 & JP-A-5731181 * |
Also Published As
Publication number | Publication date |
---|---|
DE3789380D1 (de) | 1994-04-21 |
JPH01502134A (ja) | 1989-07-27 |
EP0290517A1 (en) | 1988-11-17 |
WO1988004037A1 (en) | 1988-06-02 |
DE3789380T2 (de) | 1994-12-15 |
JPH0695046B2 (ja) | 1994-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5645349A (en) | Noncontact active temperature sensor | |
US5382797A (en) | Fast cooldown cryostat for large infrared focal plane arrays | |
US4990782A (en) | Radiation shield for thermoelectrically cooled infrared detectors | |
US5371369A (en) | Conformal cold baffle for optical imaging systems | |
US5251095A (en) | Low temperature conduction module for a cryogenically-cooled processor | |
US5179283A (en) | Infrared detector focal plane | |
US5187939A (en) | Rapid cooldown dewar | |
EP0136687B1 (en) | Infrared receiver | |
GB2147739A (en) | A housing for a radiation sensitive semiconductor component | |
US4918308A (en) | Integrated detector dewar cryoengine | |
EP0290517B1 (en) | Integrated detector dewar cryoengine | |
US4954708A (en) | Low distortion focal plane platform | |
US6698224B2 (en) | Electronic apparatus having at least two electronic parts operating at different temperatures | |
EP0234644B1 (en) | Infrared detectors | |
US3227877A (en) | Cooled infrared detector system with means to eliminate radiation from the instrument itself | |
EP0235284B1 (en) | Integrated infrared detector and cryoengine assembly | |
US4873843A (en) | Multiple source and/or sensor coldhead mount | |
US4412427A (en) | Noncontact thermal interface | |
US5485005A (en) | Cooled x-ray sensitive photoconductor | |
US4991399A (en) | Device for temporarily overcooling a cooled detector and detector comprising such a cooling device | |
US4399661A (en) | Prolonged cold temperature cryogenic cooler | |
JP3110456B2 (ja) | 大型赤外線焦点面アレイ用の急速冷却クライオスタット | |
GB2186741A (en) | Infrared detectors | |
CN117062515A (zh) | 一种热屏蔽装置及约瑟夫森结阵芯片系统 | |
JPH0453246B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880719 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19900703 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3789380 Country of ref document: DE Date of ref document: 19940421 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960911 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960920 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960923 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960926 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971008 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051008 |