EP0288988A1 - Système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences - Google Patents

Système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences Download PDF

Info

Publication number
EP0288988A1
EP0288988A1 EP88106723A EP88106723A EP0288988A1 EP 0288988 A1 EP0288988 A1 EP 0288988A1 EP 88106723 A EP88106723 A EP 88106723A EP 88106723 A EP88106723 A EP 88106723A EP 0288988 A1 EP0288988 A1 EP 0288988A1
Authority
EP
European Patent Office
Prior art keywords
guide
peripheral
antenna
radio
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88106723A
Other languages
German (de)
English (en)
Other versions
EP0288988B1 (fr
Inventor
Jean-Jacques Bernard
Jean Robieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Compagnie Generale dElectricite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Compagnie Generale dElectricite SA filed Critical Alcatel SA
Priority to AT88106723T priority Critical patent/ATE86412T1/de
Publication of EP0288988A1 publication Critical patent/EP0288988A1/fr
Application granted granted Critical
Publication of EP0288988B1 publication Critical patent/EP0288988B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave

Definitions

  • the present invention relates to an adaptive antenna system for radio waves, in particular of microwave frequencies.
  • an antenna system is said to be adaptive when, from a fixed antenna used in transmission, it is possible to modify the direction of the beam which is radiated by this antenna. If the latter is used in reception and can receive beams from various sources, only one of these beams being selected by a central organ of the system, it is the direction of the beam thus selected that an adaptive system makes it possible to modify.
  • the antenna can of course also be mobile. It is then the direction of the beam relative to the antenna that an adaptive system makes it possible to modify. This adaptation in direction can be supplemented by an adaptation relating to the shape of the radiation diagram.
  • a telecommunications satellite must allow information to be transmitted between points in a given area of the earth.
  • the antenna must continuously illuminate or target this area despite the translational and rotational movements of the satellite.
  • Radar will be more effective if the antenna beam can be directed in a flexible and rapid manner towards the various targeted targets, that is to say those which we want to observe more particularly.
  • the link is characterized by the ratio (Q) signal (S) to noise (B) plus interference (I), the source of interference being assumed to be in the field of view of the antenna, that is:
  • the object of the present invention is in particular to provide an adaptive antenna system for radio waves, in particular of microwave frequencies, which is simpler and / or lighter and / or less expensive than known systems.
  • an adaptive antenna system for radioelectric radiation comprising - An antenna consisting of a plurality of antenna elements distributed over a surface in a so-called peripheral zone of the system, each of these elements being able to emit and / or receive a fraction of the radiation energy which propagates in the external free space, at least one common predetermined radio frequency, in viewing directions distributed in space, each of these elements coupling this radiation to a peripheral radio signal of the same frequency propagating in the system and corresponding to this element , - a peripheral radio guide also corresponding to this element to transmit this radio signal, a peripheral transformation member corresponding to this antenna element and disposed on the corresponding peripheral guide for coupling this peripheral radio signal to a light signal corresponding to this antenna element, this coupling being carried out by modulation or demodulation of this light signal , - an interzonal optical guide joining this peripheral zone to a so-called internal zone of the system to transmit this light signal, an internal transformer corresponding to this antenna element for coupling this light signal by modulation or demodulation to an
  • said antenna elements are mixed elements that can operate both in transmission and in reception of said external radiation, the system comprising, in correspondence with each of these antenna elements, a mixed peripheral radio guide connected to this element, - a peripheral radio guide of emission, - a peripheral receiving radio guide, - And a circulator for coupling this transmission guide to this mixed guide with regard to the radio transmission signals, and this mixed guide to this reception guide with regard to the radio reception signals, two said corresponding composite channels to this element being a transmission channel and a reception channel and comprising in common this mixed peripheral radiofrequency guide and this circulator, the other said members of these two channels being distinct.
  • said phase control member is an optical phase shifter placed on an optical phase shift section of each said composite channel, this section receiving a light signal at a frequency specific to this channel, said internal transformation member modulating or demodulating a light signal. equivalent on an optical transformation section connected in parallel on this phase shift section.
  • the present invention uses, for example in the case of the emission of microwave radiation, a new method of distributing the amplitude and the phase of the electromagnetic field over the surface of the antenna, this in order to make it possible to realize the 'self-adaptation of the radiated beam. It takes advantage of the properties of optical waveguides and semiconductor lasers, the frequency of which can be chosen by adapting the composition of the material.
  • the self-adaptive beam control system In the case of a telecommunications satellite, the self-adaptive beam control system must be light despite the size of the antenna which may be large. Its reliability must be high and its price axxeptable. In all applications these characteristics are essential.
  • an optical method of distributing the amplitude and the phase of the microwave wave leads to light, efficient systems and of a cost which will often prove suitable.
  • a microwave signal or "wave” is produced in a central member located in the "internal” zone mentioned above, and this wave is distributed over the surface of the antenna by means of optical waveguides.
  • phase and possibly the amplitude of the field at each point of the antenna are developed in this internal area either by acting directly on the microwave wave or by passing through an optical wave.
  • An essential novelty of the invention is to take advantage of possibilities offered by optics to distribute in a simple, light and inexpensive manner the field of the microwave wave on the surface of the antenna.
  • the amplitude and the phase of the wave are worked out in the internal zone by methods which can be microwave or optical.
  • the amplitude and phase of the wave are controlled by electronic methods which make it possible to obtain rapid self-adaptivity of the radiated beam.
  • the number n of elementary sources to be excited on the radiating surface is determined as follows:
  • the radiation properties of an antenna can be characterized by two parameters: 2B0: width of the radiated beam 2B1: width of the angle within which the direction of the radiation can be displaced.
  • the ratio (B1 / B0) 2 is given by the relation (5). It is equal to the number n of elementary sources which can be supplied independently.
  • FIGS. 1 and 2 represent the means of excitation of an elementary source and of reception from an elementary receiver with an amplitude and a phase that can be controlled electrically, this source and this receiver both being constituted by the same antenna element EA1. All of these means constitute the composite transmission and reception channels previously mentioned and corresponding to this element.
  • a microwave transmitter EH constitutes the central organ previously mentioned. In reception it is an RH receiver which constitutes this organ (see fig. 2).
  • the transmitted wave propagates from this microwave transmitter to the element EA1 of the antenna where it is radiated.
  • the wave received in EA1 propagates to the RH receiver.
  • the waves transmitted and received are oriented on different paths by a non-reciprocal junction CI, called a circulator and containing for example ferrites. These paths of the waves transmitted and received are shown diagrammatically in FIG. 3.
  • an EH microwave signal transmitter modulated by the information signal to be transmitted, an emission varactor VE1 controlling the phase of this microwave signal and constituting said phase control member, an LE1 emission laser emitting light modulated by this microwave signal and constituting a said internal transformation member, - an interzonal optical emission waveguide GE, - an optical wave detector DE1 for reproducing the microwave signal, this detector constituting a said peripheral transformation member -
  • a transmission amplifier AE1 to supply the antenna element EA1, the gain of each of the analog amplifiers AE1, AE2 ... AEp being chosen and possibly controllable to carry out an adaptation of the radiation diagram.
  • an internal microwave guide HIE1 from the transmitter EH to the emission laser LE1 is required, and a peripheral microwave guide HPE1 from the detector DE1 to the amplifier AE1.
  • This amplifier is connected to the antenna element EA1 by a guide assembly HP1 comprising the members described using FIG. 3. It should be understood that the organs mentioned above with the number 1 at the end of their reference designation constitute examples corresponding to the antenna element EA1.
  • Each antenna element EAi corresponds to equivalent bodies whose reference designations end in the number i.
  • the reception channel includes analogous bodies in the reference designations of which the letter E is replaced by the letter R. These are notably, for the antenna element EA1: a reception amplifier AR1 receiving the microwave signal picked up by this antenna element, this via the guide assembly HP1, - a peripheral HPR1 reception microwave guide, - a LR1 laser constituting a said peripheral transformation member, - an interzonal optical reception waveguide GR, - a reception detector DR1 constituting a said internal transformation member, an internal microwave reception guide HIR1 with a varactor VR1 constituting said phase control member, and a RH microwave reception constituting said central organ.
  • This receiver adds the signals received from the various channels with suitable weights which can be controlled to adapt the shape of the reception diagram of the antenna system.
  • n transmitters n varactors, n modulators, etc.
  • 2 n optical waveguides are required.
  • antenna elements EA1, EA2 ... EAn are grouped into groups of p elements each, such as the elements EA1, EA2 ... EAp.
  • a microwave transmitter EH is common to all the antenna elements EA1, EA2 ... EAp of the same group. It emits a microwave signal which is modulated by the informative signal to be transmitted and which is received by p varactors of transmission VE1, VE2 ... VEp. The latter apply phase shifts corresponding to these antenna elements, respectively. Each signal thus phase shifted modulates a semiconductor laser of emission LE1, LE2 ... LEp whose power can correspond to the amplitude of the field which must radiate the corresponding antenna element EA1, EA2 ... EAp. The emission frequencies of all these lasers are different and each corresponds to an antenna element.
  • This filter constitutes said internal emission deflector. It transmits light from these various guides to a common guide GE which connects the central area in which the EH transmitter is located, to a peripheral antenna area where said circulating amplifiers and antennas are located.
  • This guide is said interzonal guide.
  • the lights of the various wavelengths are directed by a peripheral FPE emission deflector, also constituted by a filter, towards various corresponding optical guides GPE1, GPE2, ... GPEp which direct them to as many detectors DE1, DE2, ... DEp which are followed by as many microwave amplifiers AE1, AE2, ... AEp.
  • a peripheral FPE emission deflector also constituted by a filter
  • GPE1, GPE2, ... GPEp which direct them to as many detectors DE1, DE2, ... DEp which are followed by as many microwave amplifiers AE1, AE2, ... AEp.
  • the signals received by these antenna elements are amplified into AR1, AR2, ... ARp and modulate a number p of corresponding lasers LR1, LR2, ... LRp which emit at the same frequencies as previously indicated in guides optical waves GPR1, GPR2, ... GPRp.
  • These the latter converge on a filter constituting a peripheral FPR reception deflector which injects the corresponding lights into a common interzonal optical guide GR.
  • a filter constituting an internal FIR reception deflector directs the lights of the various frequencies on as many guides GIR1, GIR2, ... GIRp.
  • the light signals are detected in detectors DR1, DR2 ... DRp, and the resulting microwave signals are phase shifted by varactors VR1, VR2 ... VRp applying the phase shifts corresponding to the antenna elements EA1, EA2 ... EAp.
  • These phase shifts are chosen so that the signals thus phase-shifted then regain the mutual phase relationships that they had when they were emitted by an external transmitter, which is far from the present antenna system and which is targeted by the latter.
  • These signals are received by the common microwave receiver RH. The latter restores the information carried by the signals received by the antenna elements from the targeted external transmitter.
  • the simplification provided by the invention is substantial since it makes it possible to divide by p or more the number of microwave emitters EH, receivers RH and long wave guides. Thanks to this simplification, the system is feasible under satisfactory economic conditions in a large number of cases.
  • This number would be 200 if the possibilities offered by the invention were not used, which would pose sometimes insurmountable problems. Thanks to this, 5 EH transmitters are needed instead of 100. Similarly 5 RH receivers must be implemented instead of 100.
  • phase shift which is carried out by a method electronics in a varactor.
  • the microwave phase shifted thus modulates a laser LEi of frequency Vi.
  • the amplitude of the wave radiated in EAi can be determined by the power of the laser, the phase being determined by the varactor VEi.
  • these two operations can be carried out by an optical method.
  • This method is shown diagrammatically in FIG. 6 which relates to the case of transmission and must be compared with FIG. 1, the more or less similar elements bearing the same references with the letter A or B instead of the number 1.
  • a LEA laser emits light at a suitable frequency (for example the frequency Vi previously considered).
  • This light is divided and transmitted on the one hand to an electrically controlled optical phase shifter VEA which applies the appropriate phase shift to it, on the other hand to an amplitude modulator LEB which modulates it by a microwave signal itself modulated by the informative signal to issue.
  • the two resulting light beams are combined in a long GEA optical guide at the output of which the light signal is detected by a DEA detector.
  • the latter restores the microwave signal applied to the LEB modulator, with the phase shift provided by the VEA phase shifter. This microwave signal can therefore be used like that provided by the detector DE1.
  • a similar method can be applied at reception.
  • the optical modulator introduces the phase shift which has been chosen for the elementary source EAi, a phase shift of the microwave wave is obtained at the desired value.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Optical Communication System (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'antenne comporte au moins un groupe d'élements rayonnants (EA1, EA2...EAp). Une onde hyperfréquence émise par un émetteur central (EH) aboutit par exemple à l'élément (EA1) en passant par un déphaseur com­mandable (VE1), par un laser (LE1) qui l'applique en modulation sur un signal lumineux porteur dont la fréquence est propre à cet élément, par un déviateur optique (FIE) qui injecte ce signal lumineux dans un guide optique (GE) commun à tous les éléments du groupe, par un déviateur optique (FPE) qui dirige ce signal lumineux sur un détecteur qui est propre à cet élément (EA1) et qui restitue l'onde hyperfréquence, et par un amplificateur hyperfréquence (AE1) qui l'applique à cet élément.Application aux télécommunications et aux radars.

Description

  • La présente invention concerne un système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences.
  • On sait qu'un système d'antenne est dit adaptatif quand, à partir d'une antenne fixe utilisée en émission, on peut modifier la direction du faisceau qui est rayonné par cette antenne. Si cette dernière est utilisée en réception et peut recevoir des faisceaux de provenances diverses, un seul de ces faisceaux étant sélectionné par un organe central du système, c'est la direction du faisceau ainsi sélectionné qu'un système adaptatif permet de modifier. L'antenne peut aussi bien entendu être mobile. C'est alors la direction du faisceau par rapport à l'antenne qu'un système adaptatif permet de modifier. Cette adaptation en direction peut être complétée par une adaptation portant sur la forme du diagramme de rayonnement.
  • L'intérêt de telles adaptations résulte notamment du fait que les ondes électromagnétiques, en particulier les hyperfréquences, sont très utilisées pour les télécommunications et qu'elle le sont aussi pour la détection électromagnétique de la position et de la forme des objets par des systèmes qu'on appelle les radars. Dans ces deux importantes classes d'application il apparaît utile de disposer d'antennes dont le rayon­nement peut être adapté en fonction de l'évolution de la tâche à accomplir au cours du temps.
  • Par exemple un satellite de télécommunication doit permettre une transmission d'information entre des points d'une zone déterminée de la terre. L'antenne doit éclairer ou viser continuement cette zone malgré les mouvements de translation et de rotation du satellite. Pour obtenir une efficacité optimale du système de télécommunication il est néces­saire de faire évoluer le faisceau de l'antenne de telle sorte qu'il éclaire en permanence la surface à l'intérieur de laquelle on veut établir les communications.
  • Un radar sera plus efficace si on peut orienter d'une manière souple et rapide le faisceau de l'antenne vers les diverses cibles visées, c'est-à-dire vers celles que l'on veut plus particulièrement observer.
  • Il est donc souhaitable, au moins dans ces deux types d'applica­tions, de disposer d'un système d'antenne adaptatif. Il est de plus souvent souhaitable que ce système soit autoadaptatif, c'est-à-dire que son adaptation s'effectue automatiquement sous l'action de signaux émis ou renvoyés par la cible visée.
  • On connaît divers systèmes d'antenne adaptatifs pour lesquels il est possible d'adapter le diagramme de rayonnement d'un réseau à une mission donnée, en agissant sur l'amplitude et la phase de ses sources rayonnantes (HUDSON, J. E, "Adaptive array principles" IEE Electromagnetic Waves Series n° 11, 1981 Peter Peregrinus Ldt). Une application particulièrement importante pour les techniques spatiales est la réjection de brouilleurs (COHEN, M, "Etude théorique et expérimentaie d'une antenne réseau adaptative". Thèse de Docteur Ingénieur Ecole Nat. Sup. Aéronautique Espace n° 82, 1983). (COHEN, M, COMBES, P.F. et MAGNAN, J.C, "Adaptive arrays antenna performances". Comptes Rendus de la 4e Int. Conf. on Antennas and Propagation avr. 1985. Warwick p. 241-245 IEE. Conf. Publ.).
  • Dans ce cas la liaison est caractérisée par le rapport (Q) signal (S) sur bruit (B) plus interférence (I), la source d'interférence étant supposée se trouver dans le champ de vue de l'antenne, soit :
    Figure imgb0001
  • Il existe des méthodes d'adaptation qui permettent de trouver, pour chaque configuration de brouillage, une loi d'alimentation de n source de l'antenne qui minimise la dégradation du signal utile et rend le rapport Q optimal (APPLEBAUM (S), "Adaptive arrays" IEEE Trans. Ant and Prop (USA) AP.24 n° 5, Sept 1976).
  • Ces systèmes présentent notamment l'inconvénient d'être relati­vement complexes, coûteux, et lourds.
  • La présente invention a notamment pour but de réaliser un système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfré­quences plus simple et/ou plus léger et/ou moins coûteux que les systèmes connus.
  • Elle a pour objet un système d'antenne adaptatif pour rayonnement radioélectrique, ce système comportant
    - une antenne constituée d'une pluralité d'éléments d'antenne répartis sur une surface dans une zone dite périphérique du système, chacun de ces éléments pouvant émettre et/ou recevoir une fraction de l'énergie de rayonnements qui se propagent, dans l'espace libre extérieur, à au moins une fréquence radioélectrique prédéterminée commune, selon des directions de visée réparties dans l'espace, chacun de ces éléments couplant ce rayonnement à un signal radioélectrique périphérique de même fréquence se propageant dans le système et correspondant à cet élément,
    - un guide radioélectrique périphérique correspondant également à cet élément pour transmettre ce signal radioélectrique,
    - un organe de transformation périphérique correspondant à cet élément d'antenne et disposé sur le guide périphérique correspondant pour coupler ce signal radioélectrique périphérique à un signal lumineux cor­respondant à cet élément d'antenne, ce couplage étant réalisé par modu­lation ou démodulation de ce signal lumineux,
    - un guide optique interzonal joignant cette zone périphérique à une zone dite interne du système pour transmettre ce signal lumineux,
    - un organe de transformation interne correspondant à cet élément d'antenne pour coupler ce signal lumineux par modulation ou démodulation à un signal radioélectrique interne correspondant également à cet élément d'antenne,
    - un guide radioélectrique interne correspondant également à cet élément pour transmettre ce signal radioélectrique interne, ces guide radioélec­trique et organe de transformation internes, guide optique, organe de transformation et guide radioélectrique périphériques constituant des parties d'une ligne composite correspondant à cet élément,
    - et un organe central pour émettre et/ou recevoir les signaux radioélectriques de l'ensemble desdits guides radioélectriques internes, de manière à coupler cet organe central à chacun des éléments d'antenne par l'intermédiaire de la ligne composite correspondante,
    - ce système comportant en outre, sur chacune de ces lignes composites, au moins un organe de commande de phase correspondant au même élément d'antenne et commandant la phase du dit signal radioélectrique périphérique par rapport au dit signal radioélectrique interne pour permettre de choisir parmi diverses directions de visée et d'adapter sur commande le système à la direction de visée choisie, cette adaptation résultant du fait que c'est seulement dans le cas d'un rayonnement extérieur se propageant selon cette direction que les diverses fractions de ces rayonnements qui passent par des divers éléments d'antenne sont couplées en phase audit organe central,
    - ce système étant notamment caractérisé par le fait que ledit guide optique interzonal est commun à au moins un groupe desdits éléments d'antenne, les signaux lumineux correspondant aux divers éléments d'antenne de ce groupe possédant des fréquences différentes, le système comportant en outre deux déviateurs de lumière, l'un périphérique et l'autre interne, qui devient la lumière d'un angle dépendant de sa fréquence et qui sont communs à tous les éléments d'antenne de ce groupe pour coupler les extrémités périphérique et interne de ce guide optique commun aux divers organes de transformation périphériques et internes, respectivement, qui correspondent aux divers éléments de ce groupe.
  • De préférence lesdits éléments d'antenne sont des éléments mixtes pouvant fonctionner aussi bien en émission qu'en réception d'un dit rayonnement extérieur, le système comportant, en correspondance avec chacun de ces éléments d'antenne, un guide radioélectrique périphérique mixte connecté à cet élément,
    - un guide radioélectrique périphérique d'émission,
    - un guide radioélectrique périphérique de réception,
    - et un circulateur pour coupler ce guide d'émission à ce guide mixte en ce qui concerne les signaux radioélectriques d'émission, et ce guide mixte à ce guide de réception en ce qui concerne les signaux radioélec­triques de réception, deux dites voies composites correspondant à cet élément étant une voie d'émission et une voie de réception et comportant en commun ce guide radiofréquence périphérique mixte et ce circulateur, les autres dits organes de ces deux voies étant distincts.
  • En variante ledit organe de commande de phase est un déphaseur optique placé sur un tronçon optique de déphasage de chaque dite voie composite, ce tronçon recevant un signal lumineux à une fréquence propre à cette voie, ledit organe de transformation interne modulant ou démodulant un signal lumineux équivalent sur un tronçon optique de transformation connecté en parallèle sur ce tronçon de déphasage.
  • A l'aide des figures schématiques ci-jointes on va décrire plus particulièrement ci-après, à titre d'exemple non limitatif, comment la présente invention peut être mise en oeuvre dans le cadre de l'exposé qui en a été donné ci-dessus. Lorsqu'un même élément est représenté sur plusieurs figures il y est désigné par le même signe de référence.
    • La figure 1 représente un schéma par blocs d'une voie composite d'émission d'un premier système selon l'invention.
    • La figure 2 représente un schéma par blocs d'une voie composite de réception du même système.
    • La figure 3 représente un schéma par blocs d'une partie périphéri­que partiellement commune à ces deux voies.
    • La figure 4 représente un schéma par blocs d'un groupe de voies composites d'émission du même système.
    • La figure 5 représente un schéma par blocs d'un groupe de voies composites de réception du même système.
    • La figure 6 représente un schéma par blocs d'une partie optique d'une voie composite d'un deuxième système selon l'invention avec un organe optique de commande de phase, en variante.
  • La présente invention utilise, par exemple dans le cas de l'émis­sion d'un rayonnement hyperfréquence, une nouvelle méthode de distribu­tion de l'amplitude et de la phase du champ électromagnétique sur la surface de l'antenne, ceci pour permettre de réaliser l'autoadaptation du faisceau rayonné. Elle tire parti des propriétés des guides d'ondes optiques et de lasers semi-conducteur dont la fréquence peut être choisie en adaptant la composition du matériau.
  • Dans le cas d'un satellite de télécommunications le système autoadaptatif de contrôle du faisceau doit être léger malgré la dimension de l'antenne qui peut être grande. Sa fiabilité doit être grande et son prix axxeptable. Dans toutes les applications ces caracté­ristiques sont essentielles.
  • Selon l'invention une méthode optique de distribution de l'amplitude et de la phase de l'onde hyperfréquence conduit à des systèmes légers, efficaces et d'un coût qui se révèlera souvent conve­nable.
  • Le principe utilisé est le suivant :
    - on produit un signal ou "onde" hyperfréquence dans un organe central situé dans la zone "interne" précédemment mentionnée, et on distribue cette onde sur la surface de l'antenne par l'intermédiaire de guides d'ondes optiques.
  • La phase et éventuellement l'amplitude du champ en chaque point de l'antenne sont élaborées dans cette zone interne soit en agissant direc­tement sur l'onde hyperfréquence soit en passant par l'intermédiaire d'une onde optique.
  • Une nouveauté essentielle de l'invention est de tirer parti des possibilités offertes par l'optique pour répartir d'une manière simple, légère et peu coûteuse le champ de l'onde hyperfréquence sur la surface de l'antenne. L'amplitude et la phase de l'onde sont élaborées dans la zone interne par des méthodes qui peuvent être hyperfréquences ou optiques. Le contrôle de l'amplitude et de la phase de l'onde est assuré par des méthodes électroniques qui permettent d'obtenir une rapide autoadaptativité du faisceau rayonné.
  • On va d'abord calculer le nombre de sources élémentaires à exciter indépendamment sur la surface rayonnante en fonction de la longueur d'onde L, du diamètre a de la surface et de l'angle A à l'intérieur duquel on doit pouvoir choisir l'orientation du faisceau. Chacune de ces sources est constituée par un desdits éléments d'antenne. Ensuite on décrira la structure d'une voie composite correspondant à un élément puis on décrira le système complet.
  • Le nombre n de sources élémentaires à exciter sur la surface rayonnante est déterminé comme suit :
  • Si tous les éléments de l'antenne sont excités en phase le rayon­nement est maximal dans la direction normale au plan de l'antenne. La largeur 2Bo de l'angle à l'intérieur duquel l'énergie est rayonnée est donnée par les lois de la diffraction : On a
        2B₀ = L/a      (4)
  • Divisons la surface de l'antenne en éléments carrés de côté b. Choisissons la phase du centre de ces éléments de telle sorte que le rayonnement de l'antenne soit orienté dans une direction faisant l'angle B₁ avec la normale. Pour que le rayonnement dans cette direction soit possible avec une qualité convenable du diagramme de rayonnement il faut que la condition de Rayleigh soit respectée. La surface d'onde réalisée à partir des sources élémentaires de côté b ne doit pas s'écarter de plus de L/4 d'un plan perpendiculaire à la direction définie par l'angle B₁. On doit donc respecter la condition :
        
    Figure imgb0002
    x B₁ inférieur ou égal à L/4
    Le nombre minimum de sources élémentaires correspondra donc à :
    Figure imgb0003
    Donc : n = (a/b)² = (a/L)² / (b/L)² = B
    Figure imgb0004
    /B
    Figure imgb0005
          (5)
  • On constate donc que les propriétés de rayonnement d'une antenne peuvent être caractérisées par deux paramètres :
        2B₀ : largeur du faisceau rayonné
        2B₁ : largeur de l'angle à l'intérieur duquel on peut déplacer la direction du rayonnement.
  • Le rapport (B₁/B₀)² est donné par la relation (5). Il est égal au nombre n de sources élémentaires que l'on peut alimenter indépendamment.
  • Considérons par exemple une antenne rayonnant à L = 5cm dont le diamètre est a = 1m. La largeur 2B₀ du faisceau émis est :
        2B₀ = 0,05 radian soit 3 degrés environ.
  • La relation (5) permet de déterminer le rapport B₁/B₀ par l'égalité (B₁/B₀)² = n.
    si
        n = 10      2B₁ = 0,15 rad. = 10°
        n = 100      2B₁ = 0,45 rad. = 30°
        n = 10³      2B₁ = 1,5 rad = 90°.
  • Dans le cas de cette antenne typique on peut déplacer le faisceau à l'intérieur d'une plage de 10° si n = 10 et de 30° si n = 100. Ces ordres de grandeur correspondent à des angles suffisamment larges pour permettre d'importantes applications. On considérera particulièrement les cas où n = 10 et n = 100.
  • La commande de l'amplitude et de la phase d'une source élémentaire répond aux considérations suivantes :
  • Les schémas des figures 1 et 2 représentent les moyens d'excitation d'une source élémentaire et de réception à partir d'un récepteur élémentaire avec une amplitude et une phase commandables électriquement, cette source et ce récepteur étant tous deux constitués par un même élément d'antenne EA1. L'ensemble de ces moyens constituent les voies composites d'émission et de réception précédemment mentionnées et correspondant à cet élément.
  • En ce qui concerne l'émission (voir fig.1), un émetteur hyperfré­quence EH constitue l'organe central précédemment mentionné. En réception c'est un récepteur RH qui constitue cet organe (voir fig.2).
  • L'onde émise se propage de cet émetteur hyperfréquence jusqu'à l'élément EA1 de l'antenne où elle est rayonnée. L'onde reçue en EA1 se propage vers le récepteur RH. Dans ladite zone périphérique, c'est-à-­dire à proximité de l'antenne, les ondes émises et reçues sont orientées sur des chemins différents par une jonction non réciproque CI, appelée circulateur et contenant par exemples des ferrites. Ces parcours des ondes émises et reçues sont schématisées sur la fig 3.
  • La commande de l'amplitude et de la phase d'un élément d'antenne EA1 demande :
  • Dans la voie d'émission :
    - un émetteur de signal hyperfréquence EH modulé par le signal infor­matif à transmettre,
    - un varactor d'émission VE1 commandant la phase de ce signal hyperfré­quence et constituant le dit organe de commande de phase,
    - un laser d'émission LE1 émettant une lumière modulée par ce signal hyperfréquence et constituant un dit organe de transformation interne,
    - un guide d'onde optique interzonal d'émission GE,
    - un détecteur d'onde optique DE1 pour restituer le signal hyperfré­quence, ce détecteur consituant un dit organe de transformation périphé­rique
    - et un amplificateur d'émission AE1 pour alimenter l'élément d'antenne EA1, le gain de chacun des amplificateurs analogues AE1, AE2...AEp étant choisi et éventuellement commandable pour réaliser une adaptation du diagramme de rayonnement.
  • Il faut de plus un guide hyperfréquence interne HIE1 allant de l'émetteur EH au laser d'émission LE1, et un guide hyperfréquence péri­phérique HPE1 allant du détecteur DE1 à l'amplificateur AE1. Cet ampli­ficateur est relié à l'élément d'antenne EA1 par un ensemble de guidage HP1 comportant les organes décrits à l'aide de la figure 3. Il doit être compris que les organes mentionnés ci-dessus avec le chiffre 1 à la fin de leur appellation de référence constituent des exemples correspondant à l'élément d'antenne EA1. A chaque élément d'antenne EAi correspondent des organes équivalents dont les appellations de référence se terminent par le nombre i.
  • La voie de réception comporte des organes analogues dans les appellations de référence desquels la lettre E est remplacée par la lettre R. Ce sont notamment, pour l'élément d'antenne EA1 :
    - un amplificateur de réception AR1 recevant le signal hyperfréquence capté par cet élément d'antenne, ceci par l'intermédiaire de l'ensemble de guidage HP1,
    - un guide hyperfréquence périphérique de réception HPR1,
    - un laser LR1 constituant un dit organe de transformation périphérique,
    - un guide d'onde optique interzonal de réception GR,
    - un détecteur de réception DR1 constituant un dit organe de transfor­mation interne,
    - un guide hyperfréquence interne de réception HIR1 avec un varactor VR1 constituant ledit organe de commande de phase,
    et un réception hyperfréquence RH constituant ledit organe central. Ce récepteur additionne les signaux reçus des diverses voies avec des pon­dérations convenables éventuellement commandables pour adapter la forme du diagramme de réception du système d'antenne.
  • On va maintenant examiner la commande de l'amplitude et de la phase de n sources élémentaires, par exemple dans le cas l'émission.
  • On peut envisager de commander n sources élémentaires en mettant en parallèle n voies d'emission et de réception. Pour réaliser un tel système il faudrait un nombre n de chacun des composants des chaînes : n émetteurs, n varactors, n modulateurs, etc... En particulier il faut 2 n guides d'ondes optiques.
  • L'accroissement du nombre des composants lorsque n augmente est un inconvénient qui ne doit pas être négligé. Il est vrai que tous ces composants, sauf les guides d'ondes, peuvent être élaborés par les méthodes collectives qui les rendent fiables et peu coûteux. Cependant il est d'un grand intérêt de chercher à diminuer le nombre des composants pour faire décroître le coût du système. Il est particulièrement utile de diminuer le nombre de guides d'ondes interzonaux qui sont relativement longs et occupent un espace substantiel si leur nombre est élevé. Le système selon l'invention diminue le nombre de certains composants dont celui de ces guides d'ondes. Les schémas des trajets suivis par l'onde à l'émission et à la réception sont représentés sur les figures 4 et 5.
  • Les n éléments d'antenne EA1, EA2...EAn sont groupés en groupes de p éléments chacun, tels que les éléments EA1, EA2...EAp.
  • Pour l'émission un émetteur hyperfréquence EH est commun à tous les éléments d'antenne EA1, EA2...EAp d'un même groupe. Il émet un signal hyperfréquence qui est modulé par le signal informatif à émettre et qui est reçu par p varactors d'émission VE1, VE2...VEp. Ces derniers lui appliquent des déphasages correspondants à ces éléments d'antenne, respectivement. Chaque signal ainsi déphasé module un laser semi-­conducteur d'émission LE1, LE2...LEp dont la puissance peut correspondre à l'amplitude du champ que doit rayonner l'élément d'antenne correspon­dant EA1, EA2...EAp. Les fréquences d'émission de tous ces lasers sont différentes et correspondent chacune à un élément d'antenne.
  • Ils émettent dans des guides d'ondes optiques GIE1, GIE2,...GIEp, respectivement, qui convergent sur un filtre de fréquence FIE. Ce filtre constitue ledit déviateur interne d'émission. Il transmet la lumière provenant de ces divers guides à un guide commun GE qui relie la zone central dans laquelle se trouve notamment l'émetteur EH, à une zone périphérique d'antenne où se trouvent lesdits amplificateurs circulateurs et antennes. Ce guide est ledit guide interzonal.
  • En sortie de ce guide les lumières des diverses longueurs d'ondes sont dirigées par un déviateur périphérique d'émission FPE, également constitué par un filtre, vers divers guides optiques correspondants GPE1, GPE2,...GPEp qui les dirigent vers autant de détecteurs DE1, DE2,...DEp qui sont suivis par autant d'amplificateurs hyperfréquence AE1, AE2,...AEp. Ces derniers alimentent les éléments d'antenne EA1, EA2,...EAp.
  • A la réception les signaux reçus par ces éléments d'antenne sont amplifiés en AR1, AR2,...ARp et modulent un nombre p de lasers corres­pondants LR1, LR2,...LRp qui émettent aux mêmes fréquences que précédem­ment indiqué dans des guides d'ondes optiques GPR1, GPR2,...GPRp. Ces derniers convergent sur un filtre constituant un deviateur périphérique de réception FPR qui injecte les lumières correspondantes dans un guide optique commun interzonal GR. Un filtre constituant un déviateur interne de réception FIR dirige les lumières des diverses fréquences sur autant de guides GIR1, GIR2,...GIRp.
  • Les signaux lumineux sont détectés dans des détecteurs DR1, DR2...DRp, et les signaux hyperfréquences résultant sont déphasés par des varactors VR1, VR2...VRp appliquant les déphasages correspondant aux éléments d'antenne EA1, EA2...EAp. Ces déphasages sont choisis de manière que les signaux ainsi déphasés retrouvent alors les relations de phases mutuelles qu'ils avaient lorsqu'ils ont été émis par un émetteur extérieur, qui est éloigné du présent système d'antenne et qui est visé par celui-ci. Ces signaux sont reçus par le récepteur hyperfréquence commun RH. Ce dernier restitue l'information que portaient les signaux reçus par les éléments d'antenne en provenance de l'émetteur extérieur visé.
  • Quant à la réalisation des lasers LE1, LE2...LEp, LR1, LR2...LRp on peut remarquer ce qui suit :
  • On sait qu'en adaptant convenablement la composition des matériaux qui constituent les lasers semi-conducteurs on dispose de sources dont la fréquence peut être choisie dans la plage de longueurs d'ondes 0,5 - 2 micromètres. Dans l'état actuel de nos connaissances on peut obtenir d'environ 20 sources de fréquences V₁, V₂...Vp. On peut donc choisir p = 20.
  • Deux fréquences successives sont séparées par un écart dV. On aura dV/V = 0,01 environ.
  • La sélectivité nécessaire des filtres FIE, FPE, FPR, FIR est donc modeste. Ils peuvent être réalisés par des techniques simples et classi­ques mettant en oeuvre des réseaux.
  • La simplification apportée par l'invention est substantielle puisqu'elle permet de diviser par p ou plus le nombre des émetteurs hyperfréquences EH, des récepteurs RH et des guides d'ondes longs. Grâce à cette simplification le système est réalisable dans des conditions économiques satisfaisantes dans un grand nombre de cas.
  • En supposant p = 20 on va évaluer le nombre de composants du système dans les cas où n = 10 et n =100. On peut par exemple admettre que l'antenne a un diamètre a = 1m, la longueur d'onde étant L = 5cm. Les valeurs de B₀ et B₁ sont données par les relations 4 et 4′.
  • Ce cas où n = 10 correspond à une excursion 2B₁ = 0,15 rad. = 10° au voisinage de la normale.
  • On a besoin d'un émetteur EH, d'un récepteur RH et de deux guides d'ondes optiques interzonaux longs l'un pour l'émission, l'autre pour la réception.
  • Il faut le long du trajet d'émission 10 varactors, 10 lasers modulés, 10 détecteurs, 10 amplificateurs.
  • Le long du trajet de l'onde reçue on doit avoir 10 amplificateurs, 10 lasers modulés, 10 détecteurs, 10 varactors, Le cas où n = 100 corres­pond à une excursion 2B₁ = 0,45 rad. = 30° au voisinage de la normale.
  • Pour relier l'émetteur EH à l'antenne on a besoin de q guides d'ondes longs avec q = n/p = 5.
  • Il en faut autant pour relier le récepteur à l'antenne.
  • On doit donc mettre en oeuvre 10 guides d'ondes optiques longs pour réaliser le système. Ce nombre modeste n'entraîne pas de sévères contraintes de coût, d'encombrement et de poids.
  • Ce nombre serait de 200 si on n'utilisait pas les possibilités offertes par l'invention, ce qui poserait des problèmes parfois insurmontables. Grâce à celle-ci, 5 émetteurs EH sont nécessaires au lieu de 100. De même 5 récepteurs RH doivent être mis en oeuvre au lieu de 100.
  • Par contre il faut le long du trajet d'émission 100 varactors, 100 lasers modulés, 100 détecteurs, 100 amplificateurs.
  • Le long du trajet de l'onde reçue on doit avoir 100 amplifica­teurs, 100 lasers modulés, 100 détecteurs, 100 varactors.
  • Ainsi la commande électrique de l'amplitude et de la phase d'un élément d'antenne EAi par la modulation et la détection d'une onde laser d'une fréquence Vi pouvant être choisie parmi p fréquences permet de rendre le système autoadaptatif. Le nombre de guides d'ondes optiques, d'émetteurs et de récepteurs est divisé par p alors que le nombre des autres composants reste le même.
  • On a décrit ci-dessus un déphasage qui est effectué par une méthode électronique dans un varactor. L'onde hyperfréquence ainsi déphasée module un laser LEi de fréquence Vi. L'amplitude de l'onde rayonnée en EAi peut être déterminée par la puissance du laser, la phase étant déterminée par le varactor VEi.
  • On peut en variante réaliser ces deux opérations par une méthode optique. Cette méthode est représentée schématiquement sur la figure 6 qui concerne le cas de l'émission et doit être rapprochée de la figure 1, les éléments plus ou moins analogues portant les mêmes références avec la lettre A ou B à la place du chiffre 1. Un laser LEA émet une lumière à la fréquence convenable (par exemple la fréquence Vi précédemment envisagée). Cette lumière est divisée et transmise d'une part à un dépha­seur optique commandé électriquement VEA qui lui applique le déphasage convenable, d'autre part à un modulateur d'amplitude LEB qui le module par un signal hyperfréquence lui même modulé par le signal informatif à émettre.
  • Les deux faisceaux lumineux résultants sont réunis dans un guide optique long GEA en sortie duquel le signal lumineux est détecté par un détecteur DEA. Ce dernier restitue le signal hyperfréquence appliqué au modulateur LEB, avec le déphasage apporté par le déphaseur VEA. Ce signal hyperfréquence peut donc être utilisé comme celui que fournissait le détecteur DE1.
  • Une méthode analogue peut être appliquée à la réception.
  • Si le modulateur optique introduit le déphasage qui a été choisi pour la source élémentaire EAi, on obtient un déphasage de l'onde hyper­fréquence à la valeur souhaitée.
  • Cette possibilité doit être appréciée lorsqu'on a à résoudre un problème particulier.

Claims (4)

1/ Système d'antenne adaptatif pour rayonnement radioélectrique, ce système comportant
- une antenne constituée d'une pluralité d'éléments d'antenne (EA1, EA2,...EAp) répartis sur une surface dans une zone dite périphérique du système, chacun de ces éléments pouvant émettre et/ou recevoir une frac­tion de l'énergie de rayonnements qui se propagent, dans l'espace libre extérieur, à au moins une fréquence radioélectrique prédéterminée commune, selon des directions de visée réparties dans l'espace, chacun de ces éléments couplant ce rayonnement à un signal radioélectrique périphérique de même fréquence se propageant dans le système et corres­pondant à cet élément,
- un guide radioélectrique périphérique (HP1, HP2,...HPp) correspondant également à cet élément pour transmettre ce signal radioélectrique,
- un organe de transformation périphérique (DE1, DE2,...DEp) correspon­dant à cet élément d'antenne et disposé sur le guide périphérique corres­pondant pour coupler ce signal radioélectrique périphérique à un signal lumineux correspondant à cet élément d'antenne, ce couplage étant réalisé par modulation ou démodulation de ce signal lumineux,
- un guide optique interzonal (GE) joignant cette zone périphérique à une zone dite interne du système pour transmettre ce signal lumineux,
- un organe de transformation interne (LE1, LE2...LEp) correspondant à cet élément d'antenne pour coupler ce signal lumineux par modulation ou démodulation à un signal radioélectrique interne correspondant également à cet élément d'antenne,
- un guide radioélectrique interne (HI1, HI2,... HIp) correspondant également à cet élément pour transmettre ce signal radioélectrique interne, ces guide radioélectrique et organe de transformation internes, guide optique, organe de transformation et guide radioélectrique périphériques constituant des parties d'une ligne composite correspondant à cet élément,
- et un organe central (EH) pour émettre et/ou recevoir les signaux radioélectriques de l'ensemble desdits guides radioélectriques internes, de manière à coupler cet organe central à chacun des éléments d'antenne par l'intermédiaire de la ligne composite correspondante,
- ce système comportant en outre, sur chacune de ces lignes composites, au moins un organe de commande de phase (VE1, VE2,...VEp) correspondant au même élément d'antenne et commandant la phase du dit signal radioélec­trique périphérique par rapport au dit signal radioélectrique interne pour permettre de choisir parmi diverses directions de visée et d'adapter sur commande le système à la direction de visée choisie, cette adaptation résultant du fait que c'est seulement dans le cas d'un rayon­nement extérieur se propageant selon cette direction que les diverses fractions de ces rayonnements qui passent par des divers éléments d'antenne sont couplées en phase audit organe central,
- ce système étant notamment caractérisé par le fait que ledit guide optique interzonal (GE) est commun à au moins un groupe desdits éléments d'antenne (EA1, EA2...EAp), les signaux lumineux correspondant aux divers éléments d'antenne de ce groupe possédant des fréquences différentes, le système comportant en outre deux déviateurs de lumière, l'un périphérique (FPE) et l'autre interne (FIE), qui devient la lumière d'un angle dépendant de sa fréquence et qui sont communs à tous les éléments d'antenne de ce groupe pour coupler les extrémités périphérique et interne de ce guide optique common (GE) aux divers organes de transformation périphériques et internes (DE1, DE2...DEp, LE1, LE2, LEp), respectivement, qui correspondent aux divers éléments de ce groupe.
2/ Système selon la revendication 1, dans lequel lesdits éléments d'antenne (EA1) sont des éléments mixtes pouvant fonctionner aussi bien en émission qu'en réception d'un dit rayonnement extérieur, le système comportant, en correspondane avec chacun de ces éléments d'antenne, un guide radioélectrique périphérique mixte (HPM) connecté à cet élément,
- un guide radioélectrique périphérique d'émission (HPE, HPE1),
- un guide radioélectrique périphérique de réception (HPR, HPR1),
- et un circulateur (CI) pour coupler ce guide d'émission à ce guide mixte en ce qui concerne les signaux radioélectriques d'émission, et ce guide mixte à ce guide de réception en ce qui concerne les signaux radioélectriques de réception, deux dites voies composites correspondant à cet élément étant une voie d'émission et une voie de réception et comportant en commun ce guide radiofréquence périphérique mixte et ce circulateur, les autres dits organes de ces deux voies étant distincts (HPE1, DE1).
3/ Système selon la revendication 1, dans lequel lesdits rayonnements, signaux et guides radioélectriques sont des rayonnements, signaux et guides d'hyperfréquences.
4/ Système selon la revendication 1, caractérisé par le fait que ledit organe de commande de phase est un déphaseur optique (VEA) placé sur un tronçon optique de déphasage de chaque dite voie composite, ce tronçon recevant un signal lumineux à une fréquence propre à cette voie, ledit organe de transformation interne (LEB) modulant ou démodulant un signal lumineux équivalent sur un tronçon optique de transformation connecté en parallèle sur ce tronçon de déphasage.
EP88106723A 1987-04-27 1988-04-27 Système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences Expired - Lifetime EP0288988B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106723T ATE86412T1 (de) 1987-04-27 1988-04-27 Adaptives antennensystem fuer hochfrequenz, insbesondere fuer den uhf-bereich.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705907A FR2614471B1 (fr) 1987-04-27 1987-04-27 Systeme d'antenne adaptatif pour ondes radioelectriques, notamment d'hyperfrequences
FR8705907 1987-04-27

Publications (2)

Publication Number Publication Date
EP0288988A1 true EP0288988A1 (fr) 1988-11-02
EP0288988B1 EP0288988B1 (fr) 1993-03-03

Family

ID=9350505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106723A Expired - Lifetime EP0288988B1 (fr) 1987-04-27 1988-04-27 Système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences

Country Status (7)

Country Link
US (1) US4864310A (fr)
EP (1) EP0288988B1 (fr)
AT (1) ATE86412T1 (fr)
CA (1) CA1283972C (fr)
DE (1) DE3878720T2 (fr)
ES (1) ES2039495T3 (fr)
FR (1) FR2614471B1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371780A (en) * 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
US5384826A (en) * 1990-10-01 1995-01-24 At&T Bell Laboratories Distributed packetized switching cellular radio telephone communication system with handoff
US5164736A (en) * 1991-05-03 1992-11-17 The United States Of America As Represented By The Secretary Of The Navy Optical antenna beam steering using digital phase shifter control
US5142595A (en) * 1991-10-21 1992-08-25 Hughes Aircraft Company Microwave system employing optically phased conformal antennas having photonic interconnects and method of forming photonic interconnects
US5283686A (en) * 1992-07-27 1994-02-01 General Instrument Corporation, Jerrold Communications Optical systems with grating reflector
US5374935A (en) * 1993-02-23 1994-12-20 University Of Southern California Coherent optically controlled phased array antenna system
US6321001B1 (en) * 1999-06-18 2001-11-20 Trw Inc. Wavelength division multiplexed optical communication system
US6529166B2 (en) 2000-09-22 2003-03-04 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
US7024120B2 (en) * 2002-03-29 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Phase tracking multichannel link
JP2003332817A (ja) * 2002-05-14 2003-11-21 Alps Electric Co Ltd アンテナシステム
US8228228B2 (en) * 2009-04-09 2012-07-24 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for receiving electromagnetic waves using photonics
EP2972470B1 (fr) * 2013-03-15 2021-12-29 BAE SYSTEMS plc Antenne multibande directionnelle
US10009112B2 (en) * 2014-12-26 2018-06-26 Finisar Corporation Electromagnetic interference reduction
US11201673B1 (en) * 2018-03-07 2021-12-14 BridgeSat, Inc. Optical laser communication apparatus with optical phased arrays and coupling arrangement and associated methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006650A2 (fr) * 1978-06-30 1980-01-09 Hollandse Signaalapparaten B.V. Système radar
EP0197263A2 (fr) * 1985-04-04 1986-10-15 International Business Machines Corporation Méthode et appareil pour l'alignement de données WDM transmises à travers un milieu dispersif

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878520A (en) * 1973-01-24 1975-04-15 Stanford Research Inst Optically operated microwave phased-array antenna system
US4198117A (en) * 1976-12-28 1980-04-15 Nippon Electric Co., Ltd. Optical wavelength-division multiplexing and demultiplexing device
US4736463A (en) * 1986-08-22 1988-04-05 Itt Corporation Electro-optically controlled wideband multi-beam phased array antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006650A2 (fr) * 1978-06-30 1980-01-09 Hollandse Signaalapparaten B.V. Système radar
EP0197263A2 (fr) * 1985-04-04 1986-10-15 International Business Machines Corporation Méthode et appareil pour l'alignement de données WDM transmises à travers un milieu dispersif

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G.E.C. JOURNAL OF RESEARCH, vol. 2, no. 2, 1984, pages 66-75, Londres, GB; J.R. WALLINGTON et al.. "Optical techniques for signal distribution in phased arrays" *
JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. LT-3, no. 5, octobre 1985, pages 992-998, New York, US; R.A. SOREF: "Voltage-controlled optical/RF phase shifter" *
PROCEEDINGS OF THE 1979 INTENATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 17-19 juillet 1979, Tokyo, pages 735-738; K. NOSU et al.: "A design of multiplexers for optical wavelength-division multiplexing transmission via a single fiber" *

Also Published As

Publication number Publication date
FR2614471A1 (fr) 1988-10-28
DE3878720T2 (de) 1993-06-09
DE3878720D1 (de) 1993-04-08
FR2614471B1 (fr) 1989-10-20
CA1283972C (fr) 1991-05-07
ES2039495T3 (es) 1993-10-01
ATE86412T1 (de) 1993-03-15
EP0288988B1 (fr) 1993-03-03
US4864310A (en) 1989-09-05

Similar Documents

Publication Publication Date Title
EP0288988B1 (fr) Système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences
EP3665744B1 (fr) Dispositif de réception optique d'un signal provenant d'un réseau antennaire à commande de phase et système antennaire associé
FR2651609A1 (fr) Commande de pointage pour systeme d'antenne a balayage electronique et formation de faisceau par le calcul.
EP0600799A1 (fr) Antenne active à synthèse de polarisation variable
Burla et al. Integrated Photonic ${\rm K} _ {\rm u} $-Band Beamformer Chip With Continuous Amplitude and Delay Control
FR2697375A1 (fr) Antenne réseau installée sur un véhicule spatial et véhicule spatial comportant une telle antenne.
FR2760919A1 (fr) Systeme de communication par satellite mobile
EP0462864A1 (fr) Dispositif d'alimentation des éléments rayonnants d'une antenne réseau, et son application à une antenne d'un système d'aide à l'atterrissage du type MLS
FR3062523A1 (fr) Antenne elementaire a dispositif rayonnant planaire
CA2290676A1 (fr) Antenne pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne
CA2037849C (fr) Procede de formation du diagramme d'une antenne active a haut rendement pour radar a balayage electronique et antenne mettant en oeuvre ce procede
EP2363729B1 (fr) Formateur de voies reconfigurable pour antenne réseau
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP2260540B1 (fr) Dispositif optique pour appliquer un retard vrai a un signal radioelectrique et application a la formation de faisceaux en emission et en reception avec une antenne active
CA2356725A1 (fr) Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille
FR2829297A1 (fr) Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
FR2671194A1 (fr) Systeme de protection d'un equipement electronique.
EP1351333A2 (fr) Antenne adaptative et radar comportant une telle antenne
EP1533866B1 (fr) Architecture d'antenne adaptative multifaisceaux à formation de faisceaux par le calcul
Serafino et al. A photonic beamforming network based on phase shifters for microwave wide-band applications
WO2012085768A1 (fr) Circuit formateur de faisceau et système d'antenne comprenant un tel circuit
EP1233282B1 (fr) Système à émission et réception réparties, notamment radar à émission synthétique et à formation de faisceau par le calcul
FR2695759A1 (fr) Dispositif d'émission d'un champ électromagnétique et test d'antenne utilisant un tel dispositif.
EP0928042A1 (fr) Dispositif large bande de détection, notamment de radars
FR2734410A1 (fr) Antenne hyperfrequence a synthese de diagramme de rayonnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

17Q First examination report despatched

Effective date: 19910719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930303

Ref country code: AT

Effective date: 19930303

REF Corresponds to:

Ref document number: 86412

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930302

REF Corresponds to:

Ref document number: 3878720

Country of ref document: DE

Date of ref document: 19930408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930430

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039495

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940210

Year of fee payment: 7

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88106723.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950428

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950430

BERE Be: lapsed

Owner name: ALCATEL ALSTHOM CIE GENERALE D'ELECTRICITE

Effective date: 19950430

EUG Se: european patent has lapsed

Ref document number: 88106723.5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000320

Year of fee payment: 13

Ref country code: DE

Payment date: 20000320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000327

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010427

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050427