EP0288356B1 - Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine - Google Patents

Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine Download PDF

Info

Publication number
EP0288356B1
EP0288356B1 EP88400883A EP88400883A EP0288356B1 EP 0288356 B1 EP0288356 B1 EP 0288356B1 EP 88400883 A EP88400883 A EP 88400883A EP 88400883 A EP88400883 A EP 88400883A EP 0288356 B1 EP0288356 B1 EP 0288356B1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
gas turbine
clearance
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400883A
Other languages
German (de)
English (en)
Other versions
EP0288356A1 (fr
Inventor
Robert Kervistin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0288356A1 publication Critical patent/EP0288356A1/fr
Application granted granted Critical
Publication of EP0288356B1 publication Critical patent/EP0288356B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components

Definitions

  • the invention relates to a method of real-time adjustment of the radial clearance between a rotor and a turbomachine stator, during operation of the turbomachine.
  • FR-A-2 496 753, FR-A-2 464 371, FR-A-2 431 609, FR-A-2 360 750, FR-A-2 360 749 in which the control of organs for adjusting the air flow rate such as distributors or valves is controlled by an operating parameter of the turbomachine from the measurement by sensor of a quantity such as a temperature, a speed of rotation or directly a measurement of the clearance at a given moment.
  • hydromechanical regulation controls the opening of the air flow control valves based on opening laws preset and programmed in advance.
  • GB-A-2 078 859 describes means for adjusting the radial clearance between the stator and the compressor rotor by controlling a valve regulating a ventilation air flow.
  • Said control signal is produced from the comparison between an actual temperature of the compressor housing at the given time and a calculated reference temperature of said housing, from a signal representing the temperature of entry of the gases into the compressor and a signal representing the speed of rotation of the compressor, at this instant.
  • the invention avoids these drawbacks by taking take into account the inertias of thermal or mechanical expansions or contractions which are different for the mechanical elements present and by involving in said control regulation of the radial clearances a real-time calculation of these inertias, in particular thermal and, in particular , the invention provides for operating the commands for opening or closing the air flow control valves by triggering them in advance, according to these calculations.
  • the invention also provides for advance reservations corresponding to specific conditions resulting from certain operating phases of the turbomachine. This is the case in particular in a deceleration phase where, for example, various interventions by the pilot are possible, acting on the controls in particular to obtain a sudden re-acceleration.
  • usage limits are imposed, in particular the maximum temperatures acceptable for the stator and the maximum temperatures as well as the maximum gradient of temperatures acceptable for the rotor.
  • said output signal can also be modified on the basis of a determination of the effect on the specific consumption of the turbomachine of the induced variations in the play between rotor and stator, air flow rates taken, vein misalignments between element rotor and stator element, aerodynamic losses caused by the samples.
  • FIG. 1 there is shown in Figure 1 to illustrate an embodiment of the invention a turbofan engine of which only the central part has been shown and comprises a set 1 of high pressure compression, a combustion section 2 and a set 3 turbine comprising a high pressure turbine 4 and a low pressure turbine 5.
  • These elements enter a primary propulsion assembly which is surrounded by a secondary assembly associated with a blower located upstream and not shown in the drawing and comprising a channel 6 for circulation of a secondary flow limited by an external envelope 7 and by an envelope interior 8 which also constitutes the external envelope of the primary assembly.
  • the compression assembly 1 is surrounded on the downstream side, defined with respect to the normal direction of gas flow in the turbofan, that is to say on the high pressure side by an external casing 9, thus providing between said casing 9 and the compressor housing 10 an enclosure 11.
  • Passages such as 12 are provided in the compressor housing 10, downstream of a determined compression stage, for example approximately two-thirds of the axial length from the compression assembly 1 from from the entrance. From the enclosure 11 and also associated with passages 13 formed in the envelope 9, are placed pipes such as 14, inside the external envelope 8 of the assembly propulsion primary. Line 14 is connected to a second line 15 provided with a flow control valve 16. The pipe 14 conveys air taken through the enclosure 11 in the compression assembly 1 and the pipe 15 routes air taken by means of an air intake mouth 17 into the circulation channel 6 of the secondary flow, through its inner envelope 8.
  • the air conveyed by the pipes 14 and 15 through the valve 16 enters an air manifold 18 which supplies, for example, air distribution ramps 19 placed around the casing.
  • turbine 20 and which send on the surface of said casing 20 belonging to the turbine stator air jets through holes or multi-perforations for impact cooling of said turbine stator.
  • the elements which have just been described thus constitute a ventilation circuit of the turbine stator and in the example shown in FIGS. 1 and 2, it is the low pressure turbine 5 of the turbofan.
  • a second air sampling is carried out at the level of the compression assembly 1 partially represented in FIG. 3.
  • a pipe 21 in which is inserted a valve 22 for adjusting the flow rate conveys thus the air sampled through a passage 23 formed in the compressor casing 10 towards an enclosure 24 formed inside the turbine casing.
  • a pipe 28 conveys the air inside said enclosure 24 of housing turbine. From said enclosure 24, the air is distributed to the rotor of the low pressure turbine 5. In the embodiment partially shown in FIG. 3, from the enclosure 24, the air passes through passages 29 of the stator of the low pressure turbine 5 and from there circulates from one stage to the other of the rotor, ensuring its ventilation.
  • the various flow control valves, such as 16 and 22, inserted in the pipes which convey the air from the ventilation circuit both to the stator and to the rotor of the low pressure turbine 5 can be of any known type, such as the valves already used in similar applications in particular for turbomachine ventilation circuits and each valve is associated with a control device, also of a known type, regulating a passage opening by means of a displacement.
  • each device for controlling a flow control valve in the ventilation circuit is connected to an electronic computer symbolized at 30. More particularly, said valve control device is actuated by a signal output respectively S1 for valve 16, S2 for valve 22 which are emitted by said computer 30.
  • the remarkable results of the invention consist in obtaining, in all operating conditions of the turbomachine, both stabilized and transient, an optimized setting of the air flow through the valves, such as 16, 22 of the ventilation circuit.
  • This adjustment makes it possible in particular to adjust in real time, at all times and under all these operating conditions, the radial clearance between the rotor and the stator of the low pressure turbine 5, in the embodiment which has just been described, at a value optimized.
  • the output signal, S1 or S2 of the electronic computer 30 actuating the control device of the air flow control valves 16 or 22 is produced in the manner described below.
  • the computer 30 obtains a value j1 of the radial clearance, of the setpoint to be obtained between the rotor and the stator at a determined point, from the data entered representing the model of the turbomachine.
  • this point can be located at the end of the movable rotor blade, the clearance being taken between the end of the blade and the cooperating surface of an abradable lining placed inside the corresponding stator ring.
  • This point can also be located at the level of the interval of a labyrinth seal, between ends of wipers and abradable surface or else at the lower end of fixed stator vanes.
  • the computer 30 also calculates, from the measured values of the thermodynamic parameters of the turbomachine (temperatures and rotation speeds), the temperatures of the elements of rotor and stator as well as the state of expansion of these elements, including both thermal and mechanical expansion. These calculations also take into account the thermal state of the turbomachine and the evolution of the parameters corresponding to particular operating conditions such as stabilized or transient phases, accelerations or decelerations, cold or hot starts. From these calculations, the computer 30 finally determines the radial clearance j2 obtained in operation.
  • the computer 30 then establishes the comparison between the clearance j2 in operation at time T and the reference clearance j1.
  • the output signal produced is emitted, actuating the control device for the flow control valves so as to cancel this difference and a new operation in real time is triggered at time T + ⁇ T .
  • a correction element can also intervene in the preparation of the output signal.
  • a simulation check is made by the computer 30 that the radial clearances to be imposed allow the rapid succession of a re-acceleration phase, in particular when the turbomachine is in a progressive deceleration phase and which can be triggered, by example, by the intervention of the pilot. This simulation allows anticipation taking response times of the different mechanical elements of stator and rotor in presence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • L'invention concerne un procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine, au cours du fonctionnement de la turbomachine.
  • La recherche de l'amélioration des performances des turbomachines a conduit les motoristes à rechercher une optimisation des jeux radiaux entre rotor et stator de turbomachine. En effet, le maintien, dans toutes les conditions de fonctionnement, d'un jeu minimal mais suffisant entre rotor et stator a des répercussions directes sur le rendement de la turbomachine et pour l'obtention d'une poussée maximale ainsi que sur les conditions d'apparition de phénomènes de pompage.
  • Pour obtenir l'ajustement du jeu, diverses solutions ont été essayées. Entre autres, plusieurs d'entre elles ont en commun la mise en place et l'utilisation de systèmes de ventilation qui, selon les phases de fonctionnement de la turbomachine, envoient des courants d'air, soit de refroidissement, soit de réchauffage sur diverses parties fixes ou tournantes constituant le stator et le rotor associés, telles que, les aubes, les disques, les carters, les anneaux de stator de turbine par exemple. Suivant le résultat recherché, des prélèvements d'air sont effectués à divers étages du compresseur ou dans l'enceinte de chambre de combustion, par exemple. Les circuits d'acheminement de l'air sont généralement équipés de vannes de réglage dont la commande permet d'obtenir une modulation des débits et éventuellement des réglages de température au moyen de mélanges réalisés à partir de sources différentes, par exemple.
  • De nombreux exemples témoignent de ces recherches. On peut ainsi citer FR-A-2 496 753, FR-A-2 464 371, FR-A-2 431 609, FR-A-2 360 750, FR-A-2 360 749 dans lesquels la commande d'organes de réglage de débit d'air tels que distributeurs ou vannes est asservie à un paramètre de fonctionnement de la turbomachine à partir de la mesure par capteur d'une grandeur telle qu'une température, une vitesse de rotation ou directement une mesure du jeu à un instant donné. Dans certains cas, une régulation hydromécanique commande l'ouverture des vannes de réglage du débit d'air à partir de lois d'ouverture préétablies et programmées à l'avance.
  • GB-A-2 078 859 décrit des moyens d'ajustement du jeu radial entre stator et rotor de compresseur par commande d'une vanne réglant un débit d'air de ventilation. Ledit signal de commande est élaboré à partir de la comparaison entre une température réelle du carter de compresseur à l'instant donné et une température calculée de référence dudit carter, à partir d'un signal représentant la température d'entrée des gaz dans le compresseur et un signal représentant la vitesse de rotation du compresseur, à cet instant.
  • Ces solutions antérieures toutefois, dans certaines applications particulières sur turbomachines visées par l'invention qui demandent une adaptation plus fine en temps réel, ne sont pas globalement, ni totalement satisfaisantes. En effet, les prélèvements d'air peuvent avoir une influence néfaste sur le rendement global de la turbomachine et ainsi l'invention vise à obtenir une optimisation des jeux radiaux dans des conditions stabilisées de fonctionnement qui tienne compte de cette influence du débit d'air prélevé sur les performances. De même, dans certaines conditions transitoires de fonctionnement de la turbomachine, une régulation asservie seulement à un ou plusieurs paramètres de fonctionnement de la turbomachine n'est pas suffisante pour éviter soit l'apparition de jeux radiaux trop élevés susceptibles par exemple de provoquer des phénomènes de trous de poussée dans des phases d'accélération, soit des contacts accidentels entre partie fixe de stator et partie tournante de rotor engendrant des frottements et des dégradations, par exemple, au niveau d'éléments abradables. L'invention évite ces inconvénients en prenant en compte les inerties des dilatations ou contractions d'origine thermique ou mécanique qui sont différentes pour les éléments mécaniques en présence et en faisant intervenir dans ladite régulation de pilotage des jeux radiaux un calcul en temps réel de ces inerties, notamment thermiques et, en particulier, l'invention prévoit d'opérer les commandes d'ouverture ou fermeture des vannes de réglage de débit d'air en les déclenchant par anticipation, en fonction de ces calculs. En outre, l'invention prévoit encore des réserves par anticipation correspondant à des conditions particulières résultant de certaines phases de fonctionnement de la turbomachine. C'est le cas notamment dans une phase de décélération où, par exemple, différentes interventions du pilote sont possibles, agissant sur les commandes notamment pour obtenir une réaccélération brusque.
  • Le procédé d'ajustement en temps réel du jeu radial entre rotor et stator est caractérisé en ce qu'une vanne de réglage de débit insérée dans le circuit de ventilation est commandée par un dispositif actionné par le signal de sortie d'un calculateur électronique qui est le résultat d'une comparaison entre :
    • d'une part, un jeu j1 de consigne, correspondant à un instant T aux conditions d'utilisation et de fonctionnement de la turbomachine audit instant T et dont la valeur a été introduite en mémoire dudit calculateur à partir d'un modèle quantifié de la turbomachine comportant, en fonction des paramètres thermodynamiques de la turbomachine et des caractéristiques géométriques des pièces, les caractéristiques aérothermiques et mécaniques des éléments de stator et de rotor entre lesquels l'ajustement du jeu est recherché,
    • et, d'autre part, un jeu j2 calculé en fonctionnement audit instant T par ledit calculateur à partir des données fournies et après calcul des températures et des dilatations cumulées d'origine thermique et mécanique desdits éléments de stator et de rotor considérés.
  • Avantageusement, avant l'émission du signal de sortie actionnant la vanne, des limites d'utilisation sont imposées, notamment les températures maximales acceptables pour le stator et les températures maximales ainsi que le gradient maximal des températures acceptables pour le rotor.
  • Avantageusement, ledit signal de sortie peut également être modifié à partir d'une détermination de l'effet sur la consommation spécifique de la turbomachine des variations induites des jeux entre rotor et stator, des débits d'air prélevés, des désalignements de veine entre élément de rotor et élément de stator, des pertes aérodynamiques occasionnées par les prélèvements.
  • D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture qui va suivre d'un mode de réalisation de l'invention en référence aux dessins ou tableaux annexés sur lesquels :
    • la figure 1 représente une vue schématique en demi-coupe axiale d'une turbomachine munie d'un dispositif d'ajustement en temps réel du jeu radial en rotor et stator qui est mis en oeuvre par le procédé conforme à l'invention ;
    • la figure 2 représente un détail agrandi de la figure 1 montrant le réglage d'un débit d'air de refroidissement du carter de turbine ;
    • la figure 3 représente dans une vue analogue aux figures 1 et 2 un circuit de ventilation du rotor de turbine associé au dispositif conforme à l'invention ;
    • la figure 4 indique les étapes d'élaboration d'un signal de commande de vanne par un calculateur électronique en vue de l'ajustement du jeu.
  • On a représenté à la figure 1 pour illustrer un mode de réalisation de l'invention un moteur du genre turbosoufflante dont seule la partie centrale a été représentée et comporte un ensemble 1 de compression à haute pression, une section 2 de combustion et un ensemble 3 de turbine comprenant une turbine 4 à haute pression et une turbine 5 à basse pression. Ces éléments entrent dans un ensemble primaire de propulsion qui est entouré par un ensemble secondaire associé à une soufflante située en amont et non représentée au dessin et comportant un canal 6 de circulation d'un flux secondaire limité par une enveloppe extérieure 7 et par une enveloppe intérieure 8 qui constitue également l'enveloppe externe de l'ensemble primaire. L'ensemble 1 de compression est entouré du côté aval, défini par rapport au sens normal de circulation des gaz dans la turbosoufflante, c'est à dire du côté des hautes pressions par une enveloppe externe 9, ménageant ainsi entre ladite enveloppe 9 et le carter de compresseur 10 une enceinte 11. Des passages tels que 12 sont ménagés dans le carter de compresseur 10, en aval d'un étage déterminé de compression, par exemple environ aux deux tiers de longueur axiale de l'ensemble de compression 1 à partir de l'entrée. A partir de l'enceinte 11 et associés également à des passages 13 ménagés dans l'enveloppe 9, sont placées des canalisations telles que 14, à l'intérieur de l'enveloppe externe 8 de l'ensemble primaire de propulsion. La canalisation 14 est raccordée à une seconde canalisation 15 munie d'une vanne 16 de régulation de débit. La canalisation 14 achemine de l'air prélevé à travers l'enceinte 11 dans l'ensemble de compression 1 et la canalisation 15 achemine de l'air prélevé au moyen d'une bouche de prélèvement d'air 17 dans le canal 6 de circulation du flux secondaire, à travers son enveloppe intérieure 8.
  • Comme représenté, plus en détails sur la figure 2, l'air acheminé par les canalisations 14 et 15 à travers la vanne 16 pénètre dans un collecteur d'air 18 qui alimente par exemple des rampes 19 de distribution d'air placées autour du carter de turbine 20 et qui envoient sur la surface dudit carter 20 appartenant au stator de turbine des jets d'air à travers des perçages ou multiperforations en vue du refroidissement par impact dudit stator de turbine. Les éléments qui viennent d'être décrits constituent ainsi un circuit de ventilation du stator de turbine et dans l'exemple représenté aux figures 1 et 2, il s'agit de la turbine 5 basse pression de la turbosoufflante.
  • De manière similaire, comme représenté à la figure 3, un second prélèvement d'air est effectué au niveau de l'ensemble de compression 1 partiellement représenté à la figure 3. Une canalisation 21 dans laquelle est insérée une vanne 22 de réglage du débit achemine ainsi l'air prélevé à travers un passage 23 ménagé dans le carter de compresseur 10 vers une enceinte 24 ménagée à l'intérieur du carter de turbine. De même, à partir de l'enceinte 25 de l'ensemble de combustion 2 partiellement représenté à la figure 3, située entre la chambre de combustion 26 et son enveloppe externe 27, une canalisation 28 achemine l'air à l'intérieur de ladite enceinte 24 de carter de turbine. A partir de ladite enceinte 24, l'air est distribué au rotor de la turbine basse pression 5. Dans l'exemple de réalisation partiellement représenté à la figure 3, à partir de l'enceinte 24, l'air traverse des passages 29 du stator de la turbine basse pression 5 et de là circule d'un étage à l'autre du rotor, assurant sa ventilation.
  • Les différentes vannes de réglage de débit, telles que 16 et 22, insérées dans les canalisations qui acheminent l'air du circuit de ventilation aussi bien vers le stator que vers le rotor de la turbine basse pression 5 peuvent être de tout type connu, comme les vannes déjà utilisées dans des applications similaires notamment pour des circuits de ventilation de turbomachine et chaque vanne est associé à un dispositif de commande, également d'un genre connu, réglant une ouverture de passage au moyen d'un déplacement. Selon l'invention et de manière remarquable, chaque dispositif de commande d'une vanne de réglage de débit dans le circuit de ventilation est relié à un calculateur électronique symbolisé en 30. Plus particulièrement, ledit dispositif de commande de vanne est actionné par un signal de sortie respectivement S₁ pour la vanne 16, S₂ pour la vanne 22 qui sont émis par ledit calculateur 30. Les résultats remarquables de l'invention consistent à obtenir dans toutes les conditions de fonctionnement de la turbomachine, aussi bien stabilisées que transitoires un réglage optimisé du débit d'air à travers les vannes, telles que 16, 22 du circuit de ventilation. Ce réglage permet notamment d'ajuster en temps réel, à chaque instant et dans toutes ces conditions de fonctionnement, le jeu radial entre le rotor et le stator de la turbine basse pression 5, dans le mode de réalisation qui vient d'être décrit, à une valeur optimisée. Pour obtenir ce résultat, le signal de sortie, S₁ ou S₂, du calculateur électronique 30 actionnant le dispositif de commande des vannes de réglage de débit d'air 16 ou 22 est élaboré de la manière ci-après décrite.
  • Des données quantifiées constituant un modèle de la turbomachine sont introduites dans le calculateur 30. Ces données correspondent aux caractéristiques thermiques et dynamiques de la machine et comportent :
    • les paramètres thermodynamiques et en particulier, les régimes de rotation, les températures des gaz, les formules analytiques des températures des prélèvements d'air ;
    • les caractéristiques géométriques des éléments mécaniques telles que les rayons des pièces, les jeux obtenus à froid par construction, les caractéristiques des matières utilisées telles que les coefficients de dilatation thermique d'une part et mécanique, d'autre part ainsi que les temps de réponse correspondants.
  • Les données comportent également les limites d'utilisation imposées telles que :
    • les températures maximales admissibles au niveau du stator,
    • les températures maximales ainsi que le gradient thermique maximal admissibles au niveau du rotor.
  • Différentes optimisations sont de plus introduites en tenant compte particulièrement de l'effet sur la consommation spécifique de divers facteurs et de leurs
  • corrélations :
    • jeux radiaux entre rotor et stator,
    • consommations d'air prélevés par les circuits de ventilation,
    • pertes aérodynamiques occasionnées par les prélèvements,
    • facteurs de désalignements de veine.
  • A un instant T du fonctionnement de la turbomachine, le calculateur 30 obtient ainsi une valeur j1 du jeu radial, de consigne à obtenir entre rotor et stator en un point déterminé, à partir des données introduites représentant le modèle de la turbomachine. On notera que ce point peut être situé en bout d'aube mobile de rotor, le jeu étant pris entre l'extrémité de l'aube et la surface coopérante d'une garniture abradable placée à l'intérieur de l'anneau de stator correspondant. Ce point peut encore être situé au niveau de l'intervalle d'un joint à labyrinthe, entre extrémités de léchettes et surface d'abradable ou encore à l'extrémité inférieure d'aubes fixes de stator. Un exemple de réalisation a été décrit pour l'application à une turbine basse pression mais, bien entendu, l'invention s'applique de la même manière à l'ajustement de tout jeu radial entre rotor et stator de turbomachine, au niveau d'un compresseur ou d'une turbine.
  • A l'instant T, le calculateur 30 calcule également, à partir des valeurs mesurées des paramètres thermodynamiques de la turbomachine (températures et régimes de rotation), les températures des éléments de de rotor et de stator ainsi que l'état de dilatation de ces éléments, intégrant à la fois les dilatations d'origine thermique et celles d'origine mécanique. Ces calculs tiennent également compte de l'état thermique de la turbomachine et de l'évolution des paramètres correspondant à des conditions particulières de fonctionnement telles que phases stabilisées ou transitoires, accélérations ou décélérations, démarrages à froid ou à chaud. A partir de ces calculs, le calculateur 30 détermine enfin le jeu radial j2 obtenu en fonctionnement.
  • Le calculateur 30 établit alors la comparaison entre le jeu j2 en fonctionnement à l'instant T et le jeu de consigne j1.
  • Selon la différence entre j2 et j1 obtenue, le signal de sortie élaboré est émis, actionnant le dispositif de commande des vannes de réglage de débit de manière à annuler cette différence et une nouvelle opération en temps réel est déclenchée à l'instant T + ΔT.
  • Après la comparaison entre le jeu calculé j2 et le jeu de consigne j1, un élément de correction peut également intervenir dans l'élaboration du signal de sortie. En particulier, une vérification de simulation est faite par le calculateur 30 que les jeux radiaux à imposer permettent la succession rapide d'une phase de réaccélération, en particulier lorsque la turbomachine se trouve dans une phase de décélération progressive et qui peut être déclenchée, par exemple, par l'intervention du pilote. Cette simulation permet une anticipation tenant des temps de réponse des différents éléments mécaniques de stator et de rotor en présence.
  • En outre, une liaison peut également être prévue entre le calculateur 30 et l'ensemble de régulation proprement dit de la turbomachine, symbolisé en 31 sur les figures. En effet, dans certaines phases de fonctionnement de la turbomachine, en particulier dans des conditions transitoires, par exemple en accélération, afin de respecter le jeu objectif et particulièrement l'optimisation par rapport à différentes limitations, un signal imposant également une limitation, un temps d'accélération par exemple, peut être envoyé par le calculateur 30 à l'ensemble de régulation 31. Le schéma de la figure 4 résume l'intervention du calculateur 30 pour l'ajustement du jeu radial entre rotor et stator et symbolise à l'instant T ;
    • en 100a, les données fournies au calculateur 30,
    • en 100b, la détermination de l'état thermique de la turbomachine,
    • en 101, le calcul des températures du rotor et du stator,
    • en 102, le calcul des dilatations thermiques et mécaniques,
    • en 103, le calcul du jeu radial en fonctionnement,
    • en 104, la comparaison entre le jeu radial calculé en 103 et le jeu objectif correspondant disponible en mémoire du calculateur 30,
    • en 105 un résultat d'égalité obtenu,
    • en 106, un résultat d'inégalité obtenu,
    • en 106a, une optimisation en termes de rendement, performances, consommation spécifique,
    • en 106b, l'action sur les vannes de réglage de débit,
    • en 107, une vérification par anticipation d'évolution comportant en particulier une hypothèse de réaccélération rapide,
    • en 107a, une action éventuelle sur les vannes de réglage de débit selon le résultat obtenu en 107,
    • en 108, le bouclage des opérations pour un nouvel ajustement en temps réel du jeu radial entre rotor et stator à l'instant T + ΔT,
    • en 109, une action éventuelle sur l'ensemble de régulation 31 de la turbomachine.

Claims (4)

1. Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator d'une turbomachine au moyen d'un dispositif qui comporte un circuit de ventilation comprenant au moins un prélèvement d'air, au moins une vanne de réglage de débit insérée dans ledit circuit et au moins un dispositif de distribution assurant le refroidissement et/ou le chauffage d'au moins une zone déterminée de rotor et/ou de stator caractérisé en ce que la (ou les) dite(s) vanne(s) (16, 22) est (sont) commandée(s) par un dispositif actionné par le signal de sortie (S₁, S₂) d'un calculateur électronique (30) qui est le résultat d'une comparaison entre :
- d'une part, un jeu j1 de consigne correspondant à un instant T aux conditions d'utilisation et de fonctionnement de la turbomachine audit instant T et dont la valeur a été introduite en mémoire dudit calculateur à partir d'un modèle quantifié de la turbomachine comportant, en fonction des paramètres thermodynamiques de la turbomachine et des caractéristiques géométriques des pièces, les caractéristiques aérothermiques et mécaniques des éléments de stator et de rotor entre lesquels l'ajustement du jeu est recherché,
- et, d'autre part, un jeu j2 calculé en fonctionnement audit instant T par ledit calculateur à partir des données fournies et après calcul des températures et des dilatations cumulées d'origine thermique et mécanique desdits éléments de stator et de rotor considérés.
2. Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine selon la revendication 1 dans lequel le calculateur électronique (30), relié à l'ensemble de régulation principal (31), émet un signal imposant des limitations dans certaines phases de fonctionnement de la turbomachine.
3. Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine, selon l'une des revendications 1 ou 2, dans lequel l'élaboration du signal de sortie (S₁, S₂) par le calculateur (30) tient compte des températures maximales acceptables par le stator et des températures maximales ainsi que du gradient thermique maximal acceptables par le rotor.
4. Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine selon l'une quelconque des revendications 1 à 3 dans lequel le calculateur (30) introduit une correction du jeu à partir d'une optimisation en fonction de l'effet sur la consommation spécifique de la turbomachine des facteurs déterminés comprenant notamment les jeux radiaux entre rotor et stator, les consommations d'air prélevés par les circuits de ventilation, les pertes aérodynamiques occasionnés par les prélèvements, les facteurs de désalignement de veine.
EP88400883A 1987-04-15 1988-04-13 Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine Expired - Lifetime EP0288356B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705314A FR2614073B1 (fr) 1987-04-15 1987-04-15 Dispositif d'ajustement en temps reel du jeu radial entre un rotor et un stator de turbomachine
FR8705314 1987-04-15

Publications (2)

Publication Number Publication Date
EP0288356A1 EP0288356A1 (fr) 1988-10-26
EP0288356B1 true EP0288356B1 (fr) 1991-02-27

Family

ID=9350121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400883A Expired - Lifetime EP0288356B1 (fr) 1987-04-15 1988-04-13 Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine

Country Status (4)

Country Link
US (1) US4849895A (fr)
EP (1) EP0288356B1 (fr)
DE (1) DE3861813D1 (fr)
FR (1) FR2614073B1 (fr)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012420A (en) * 1988-03-31 1991-04-30 General Electric Company Active clearance control for gas turbine engine
US4928484A (en) * 1988-12-20 1990-05-29 Allied-Signal Inc. Nonlinear multivariable control system
US5005352A (en) * 1989-06-23 1991-04-09 United Technologies Corporation Clearance control method for gas turbine engine
US5076050A (en) * 1989-06-23 1991-12-31 United Technologies Corporation Thermal clearance control method for gas turbine engine
US5090193A (en) * 1989-06-23 1992-02-25 United Technologies Corporation Active clearance control with cruise mode
US5003773A (en) * 1989-06-23 1991-04-02 United Technologies Corporation Bypass conduit for gas turbine engine
US4999991A (en) * 1989-10-12 1991-03-19 United Technologies Corporation Synthesized feedback for gas turbine clearance control
FR2653171B1 (fr) * 1989-10-18 1991-12-27 Snecma Carter de compresseur de turbomachine muni d'un dispositif de pilotage de son diametre interne.
US5081830A (en) * 1990-05-25 1992-01-21 United Technologies Corporation Method of restoring exhaust gas temperature margin in a gas turbine engine
US5165844A (en) * 1991-11-08 1992-11-24 United Technologies Corporation On-line stall margin adjustment in a gas turbine engine
US5165845A (en) * 1991-11-08 1992-11-24 United Technologies Corporation Controlling stall margin in a gas turbine engine during acceleration
US5261228A (en) * 1992-06-25 1993-11-16 General Electric Company Apparatus for bleeding air
FR2695161B1 (fr) * 1992-08-26 1994-11-04 Snecma Système de refroidissement d'un compresseur de turbomachine et de contrôle des jeux.
FR2698406B1 (fr) * 1992-11-25 1994-12-23 Snecma Procédé de pressurisation d'enceintes lubrifiées d'une turbomachine.
DE4327376A1 (de) * 1993-08-14 1995-02-16 Abb Management Ag Verdichter sowie Verfahren zu dessen Betrieb
US5790972A (en) * 1995-08-24 1998-08-04 Kohlenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
GB2310255B (en) * 1996-02-13 1999-06-16 Rolls Royce Plc A turbomachine
US6272422B2 (en) * 1998-12-23 2001-08-07 United Technologies Corporation Method and apparatus for use in control of clearances in a gas turbine engine
US6155038A (en) * 1998-12-23 2000-12-05 United Technologies Corporation Method and apparatus for use in control and compensation of clearances in a gas turbine
US6227801B1 (en) 1999-04-27 2001-05-08 Pratt & Whitney Canada Corp. Turbine engine having improved high pressure turbine cooling
DE19961528C1 (de) * 1999-12-20 2001-06-13 Siemens Ag Verfahren zur Überwachung des radialen Spalts zwischen dem Rotor und dem Stator eines elektrischen Generators und Vorrichtung zur Durchführung des Verfahrens
US6393825B1 (en) * 2000-01-25 2002-05-28 General Electric Company System for pressure modulation of turbine sidewall cavities
DE10019437A1 (de) * 2000-04-19 2001-12-20 Rolls Royce Deutschland Verfahren und Vorrichtung zum Kühlen der Gehäuse von Turbinen von Strahltriebwerken
US6925814B2 (en) * 2003-04-30 2005-08-09 Pratt & Whitney Canada Corp. Hybrid turbine tip clearance control system
US6910851B2 (en) * 2003-05-30 2005-06-28 Honeywell International, Inc. Turbofan jet engine having a turbine case cooling valve
FR2867806B1 (fr) * 2004-03-18 2006-06-02 Snecma Moteurs Dispositif de pilotage de jeu de turbine a gaz a equilibrage des debits d'air
FR2871513B1 (fr) * 2004-06-15 2006-09-22 Snecma Moteurs Sa Systeme et procede de controle d'un flux d'air dans une turbine a gaz
GB2417762B (en) * 2004-09-04 2006-10-04 Rolls Royce Plc Turbine case cooling
US8065022B2 (en) * 2005-09-06 2011-11-22 General Electric Company Methods and systems for neural network modeling of turbine components
US7293953B2 (en) * 2005-11-15 2007-11-13 General Electric Company Integrated turbine sealing air and active clearance control system and method
US7607308B2 (en) * 2005-12-08 2009-10-27 General Electric Company Shrouded turbofan bleed duct
GB0609312D0 (en) * 2006-05-11 2006-06-21 Rolls Royce Plc Clearance Control Apparatus
US8126628B2 (en) * 2007-08-03 2012-02-28 General Electric Company Aircraft gas turbine engine blade tip clearance control
US9212623B2 (en) * 2007-12-26 2015-12-15 United Technologies Corporation Heat exchanger arrangement for turbine engine
CN102112703B (zh) * 2009-01-20 2014-07-23 三菱重工业株式会社 燃气轮机设备
DE102009010647A1 (de) * 2009-02-26 2010-09-02 Rolls-Royce Deutschland Ltd & Co Kg Laufspalteinstellungssystem einer Fluggasturbine
DE102009011635A1 (de) * 2009-03-04 2010-09-09 Rolls-Royce Deutschland Ltd & Co Kg Luftleitelement eines Laufspalteinstellungssystems einer Fluggasturbine
GB0910070D0 (en) * 2009-06-12 2009-07-22 Rolls Royce Plc System and method for adjusting rotor-stator clearance
DE102010020800A1 (de) * 2010-05-18 2011-11-24 Rolls-Royce Deutschland Ltd & Co Kg Verfahren und Vorrichtung zur Kühlluftversorgung für ein Triebwerk, insbesondere Flugtriebwerk, Gasturbine oder dergleichen
US20120070271A1 (en) 2010-09-21 2012-03-22 Urban Justin R Gas turbine engine with bleed duct for minimum reduction of bleed flow and minimum rejection of hail during hail ingestion events
FR2971291B1 (fr) * 2011-02-08 2013-02-22 Snecma Unite de commande et procede de pilotage de jeu en sommet d'aubes
FR2977276B1 (fr) * 2011-06-30 2016-12-09 Snecma Agencement pour le raccordement d'un conduit a un boitier de distribution d'air
US9157331B2 (en) 2011-12-08 2015-10-13 Siemens Aktiengesellschaft Radial active clearance control for a gas turbine engine
US9316111B2 (en) * 2011-12-15 2016-04-19 Pratt & Whitney Canada Corp. Active turbine tip clearance control system
US9476355B2 (en) * 2012-02-29 2016-10-25 Siemens Energy, Inc. Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section
US9194330B2 (en) * 2012-07-31 2015-11-24 United Technologies Corporation Retrofitable auxiliary inlet scoop
FR3000985B1 (fr) * 2013-01-15 2017-02-17 Snecma Dispositif de refroidissement pour un carter de turbine
US9714611B2 (en) * 2013-02-15 2017-07-25 Siemens Energy, Inc. Heat shield manifold system for a midframe case of a gas turbine engine
US9453429B2 (en) 2013-03-11 2016-09-27 General Electric Company Flow sleeve for thermal control of a double-wall turbine shell and related method
GB201315365D0 (en) * 2013-08-29 2013-10-09 Rolls Royce Plc Rotor tip clearance
FR3013385B1 (fr) * 2013-11-21 2015-11-13 Snecma Enceinte avant etanche lors du desassemblage modulaire d'un turboreacteur a reducteur
EP2918787B1 (fr) 2014-03-12 2017-10-18 Rolls-Royce Deutschland Ltd & Co KG Système de guidage d'écoulement et moteur à combustion rotatif
US20170074112A1 (en) * 2014-03-31 2017-03-16 United Technologies Corporation Active clearance control for gas turbine engine
DE102014217831A1 (de) 2014-09-05 2016-03-10 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Entnahme von Zapfluft und Flugzeugtriebwerk mit mindestens einer Vorrichtung zur Entnahme von Zapfluft
US9988943B2 (en) * 2015-04-27 2018-06-05 United Technologies Corporation Fitting for mid-turbine frame of gas turbine engine
US11434822B2 (en) 2015-06-19 2022-09-06 Raytheon Technologies Corporation Inverse modulation of secondary bleed
US9909441B2 (en) * 2015-11-11 2018-03-06 General Electric Company Method of operating a clearance control system
GB201601427D0 (en) * 2016-01-26 2016-03-09 Rolls Royce Plc Setting control for gas turbine engine component(s)
FR3052806B1 (fr) 2016-06-20 2018-07-13 Safran Aircraft Engines Procede et dispositif de test d'integrite d'un systeme de regulation de debit de fluide pour une turbomachine
US20180073440A1 (en) * 2016-09-13 2018-03-15 General Electric Company Controlling turbine shroud clearance for operation protection
US10583933B2 (en) * 2016-10-03 2020-03-10 General Electric Company Method and apparatus for undercowl flow diversion cooling
US10428676B2 (en) * 2017-06-13 2019-10-01 Rolls-Royce Corporation Tip clearance control with variable speed blower
US11329585B2 (en) 2019-01-25 2022-05-10 General Electric Company Electric machines with air gap control systems, and systems and methods of controlling an air gap in an electric machine
US11795877B2 (en) 2020-03-24 2023-10-24 Siemens Energy, Inc. Method for modulating a turbine cooling supply for gas turbine applications
US11982189B2 (en) 2021-06-04 2024-05-14 Rtx Corporation Warm start control of an active clearance control for a gas turbine engine
FR3137119A1 (fr) * 2022-06-22 2023-12-29 Safran Aircraft Engines Système de refroidissement amélioré pour un ensemble mobile de turbomachine
US20240068375A1 (en) * 2022-08-23 2024-02-29 General Electric Company Active clearance control valves and related methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019320A (en) * 1975-12-05 1977-04-26 United Technologies Corporation External gas turbine engine cooling for clearance control
GB1581855A (en) * 1976-08-02 1980-12-31 Gen Electric Turbomachine performance
GB1581566A (en) * 1976-08-02 1980-12-17 Gen Electric Minimum clearance turbomachine shroud apparatus
US4257222A (en) * 1977-12-21 1981-03-24 United Technologies Corporation Seal clearance control system for a gas turbine
US4213296A (en) * 1977-12-21 1980-07-22 United Technologies Corporation Seal clearance control system for a gas turbine
US4230439A (en) * 1978-07-17 1980-10-28 General Electric Company Air delivery system for regulating thermal growth
US4329114A (en) * 1979-07-25 1982-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active clearance control system for a turbomachine
US4304093A (en) * 1979-08-31 1981-12-08 General Electric Company Variable clearance control for a gas turbine engine
US4363599A (en) * 1979-10-31 1982-12-14 General Electric Company Clearance control
US4338061A (en) * 1980-06-26 1982-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Control means for a gas turbine engine
GB2090333B (en) * 1980-12-18 1984-04-26 Rolls Royce Gas turbine engine shroud/blade tip control
GB2104966B (en) * 1981-06-26 1984-08-01 United Technologies Corp Closed loop control for tip clearance of a gas turbine engine
US4513567A (en) * 1981-11-02 1985-04-30 United Technologies Corporation Gas turbine engine active clearance control
US4485620A (en) * 1982-03-03 1984-12-04 United Technologies Corporation Coolable stator assembly for a gas turbine engine
US4525998A (en) * 1982-08-02 1985-07-02 United Technologies Corporation Clearance control for gas turbine engine
FR2540560B1 (fr) * 1983-02-03 1987-06-12 Snecma Dispositif d'etancheite d'aubages mobiles de turbomachine
FR2540939A1 (fr) * 1983-02-10 1984-08-17 Snecma Anneau d'etancheite pour un rotor de turbine d'une turbomachine et installation de turbomachine munie de tels anneaux
DE3514352A1 (de) * 1985-04-20 1986-10-23 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gasturbinentriebwerk mit einrichtungen zur abzweigung von verdichterluft zur kuehlung von heissteilen
JPS62182444A (ja) * 1986-02-07 1987-08-10 Hitachi Ltd ガスタ−ビン冷却空気制御方法及び装置

Also Published As

Publication number Publication date
FR2614073B1 (fr) 1992-02-14
FR2614073A1 (fr) 1988-10-21
DE3861813D1 (de) 1991-04-04
EP0288356A1 (fr) 1988-10-26
US4849895A (en) 1989-07-18

Similar Documents

Publication Publication Date Title
EP0288356B1 (fr) Procédé d'ajustement en temps réel du jeu radial entre un rotor et un stator de turbomachine
EP0266235B1 (fr) Turbomachine munie d'un dispositif de commande automatique des débits de ventilation de turbine
FR2464371A1 (fr) Moteur a turbine a gaz comportant un dispositif de reglage de jeu en fonctionnement et procede de reglage
FR2485633A1 (fr)
EP0176447B1 (fr) Dispositif de contrôle automatique du jeu d'un joint à labyrinthe de turbomachine
FR2630779A1 (fr) Procede pour maintenir un jeu a l'endroit des bouts des ailettes dans un turbomoteur
CA2801193A1 (fr) Procede et systeme de pilotage de jeu en sommet d'aubes de rotor de turbine
FR2871513A1 (fr) Systeme et procede de controle d'un flux d'air dans une turbine a gaz
EP0563054A1 (fr) Controle de jeu pour un moteur a turbine a gaz.
FR2641033A1 (fr)
FR2570763A1 (fr) Dispositif de controle automatique du jeu d'un joint a labyrinthe de turbomachine
FR2515733A1 (fr) Procede et systeme pour le controle actif des espaces libres d'une turbine a gaz
EP3594474A1 (fr) Moteur à turbine à gaz à refroidissement de turbine variable actif
FR2629517A1 (fr) Dispositif de controle de jeu dans une turbine a gaz
WO2014068236A1 (fr) Unite de commande et procede de pilotage de jeu en sommet d'aubes.
CA2027283C (fr) Stator de turbomachine associe a des moyens de deformation
FR2648867A1 (fr) Procede de commande du jeu radial a l'endroit des bouts des ailettes d'un turbomoteur
FR2722836A1 (fr) Turbomachine munie de moyens d'ajustement du jeu radial entre rotor e stator
WO2021191523A1 (fr) Turbomachine avec dispositif de refroidissement et de pressurisation d'une turbine
FR2648864A1 (fr) Procede de commande thermique du jeu radial a l'endroit des bouts des ailettes d'un turbomoteur
FR2999226A1 (fr) Pilotage des jeux dans une turbomachine
EP4088009A1 (fr) Procede et unite de commande pour le pilotage du jeu d'une turbine haute pression pour la reduction de l'effet de depassement egt
FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
FR3108659A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3122693A1 (fr) Procede et unite de commande pour le pilotage du jeu d’une turbine haute pression pour la reduction de l’impact du givrage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19900124

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3861813

Country of ref document: DE

Date of ref document: 19910404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050323

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050325

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050401

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060413

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502