EP0287286B1 - Abrasive article containing helically crimped fibers - Google Patents
Abrasive article containing helically crimped fibers Download PDFInfo
- Publication number
- EP0287286B1 EP0287286B1 EP88303149A EP88303149A EP0287286B1 EP 0287286 B1 EP0287286 B1 EP 0287286B1 EP 88303149 A EP88303149 A EP 88303149A EP 88303149 A EP88303149 A EP 88303149A EP 0287286 B1 EP0287286 B1 EP 0287286B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- web
- helically crimped
- abrasive article
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title description 130
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- -1 polyethylene terephthalate Polymers 0.000 claims description 7
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 16
- 229920000728 polyester Polymers 0.000 description 14
- 239000000047 product Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 8
- 229920002302 Nylon 6,6 Polymers 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002788 crimping Methods 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NHGMTYQLILICLU-UHFFFAOYSA-N 2-N-methoxy-2-N,4-N,1,2,3,4-hexamethyl-1,3,5-triazine-2,4,6-triamine Chemical compound CNC1(N(C(N(C(=N1)N)C)(N(OC)C)C)C)C NHGMTYQLILICLU-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 229920003270 Cymel® Polymers 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N phthalic anhydride Chemical class C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 description 1
- 239000001521 potassium lactate Substances 0.000 description 1
- 229960001304 potassium lactate Drugs 0.000 description 1
- 235000011085 potassium lactate Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/02—Backings, e.g. foils, webs, mesh fabrics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
Definitions
- This invention relates to articles for cleaning, buffing, conditioning, or restoring surfaces.
- abrasive articles made from nonwoven fibers have been used for cleaning floors and other surfaces.
- U.S. Patent No. 2,958,593 discloses nonwoven fibrous abrasive articles of extremely open structure having an extremely high void volume. This article has been found to be useful in floor maintenance, in hand scouring operations such as performed in domestic kitchens, as well as in various industrial abrasive operations.
- U.S. Patent No. 3,537,121 discloses a soft, resilient compressible polishing pad having a lofty fibrous nonwoven structure bonded by a soft, tough resin containing a finely divided soft mineral filler.
- This pad is comparable to pads made of lamb's wool with respect to ability to impart luster to buffable waxes.
- This pad can be used to clean and restore the surface of hard polymer coatings without powdering. This pad also does not scratch or abrade the surface, nor does it impart swirl marks to the finish of the surface.
- U.S. Patent No. 4,227,350 discloses a low density abrasive product comprising a uniform cross section, porous, lofty web of autogeneously bonded continuous, undulated, interengaged filaments.
- the web is impregnated with a tough binder resin which adherently bonds the filaments of the web together and also bonds a multitude of abrasive granules, uniformly dispersed throughout the web, to the surface of the filaments.
- US-A-4,355,489 describes an abrasive article comprising an open, lofty non-woven web comprising synthetic organic staple fibers, the web containing binder and abrasive particles.
- the fibers have undulations which may be provided by crimping but there is no indication of the type of crimping nor that the crimping would affect the properties of the article.
- Helically crimped fibers have been disclosed (US-A-3,595,738) for stuffing and filling applications, for example in pillows and quilting, a totally different field from that of the present invention.
- an abrasive article comprising an open, lofty non-woven web comprising at least 30% by weight of helically crimped synthetic organic staple fibers, said web containing a binder and abrasive grains.
- the helically crimped fibers must have crimp frequency high enough so that the web formed therefrom is lofty and open, but they must not have so high a crimp frequency that they cannot be processed by conventional nonwoven web-making equipment. It is preferred that the helically crimped fibers be stabilized or set, preferably by heating the fibers, so that subsequent heating thereof will not adversely affect the character of the helically crimped fibers and nonwoven webs produced therefrom.
- the nonwoven web used in this invention can contain stuffer box crimped fibers and melt bondable fibers. When activated by heat, the melt bondable fibers help to stabilize the nonwoven webs of this invention.
- fillers, colorants, abrasive particles, or additional binders can be incorporated into the nonwoven web.
- nonwoven abrasive articles of this invention are more open and lofty than those of the prior art, they are capable of being filled with more debris during use. Although they are more open and lofty, they are more durable than nonwoven abrasive articles of the prior art.
- FIG. 1 is a plan view, greatly enlarged, of an article of this invention.
- FIG. 2 is a side view in elevation of an article of this invention.
- abrasive article is intended to include articles which can perform any one or more of the following functions: rubbing, wearing away, polishing, cleaning, buffing, or otherwise conditioning.
- the abrasive articles of this invention comprise nonwoven webs that are characterized by being comprised of helically crimped fibers. Fibers are crimped into a helical configuration by relief of bi-lateral differential forces in a fiber or composite fiber. These bi-lateral differential forces are produced by either coextrusion of polymers having at least some stress/strain differential properties, or induction of differential stress by passing the fiber over an edge.
- helically crimped synthetic fibers are well known, the use thereof in nonwoven abrasive products has never been disclosed.
- Helically crimped fibers useful in the practice of this invention must have a sufficiently high degree of crimp to form a lofty, open nonwoven web but not so high a level of crimp that these fibers cannot be processed by conventional nonwoven web-making equipment.
- the void volume is maintained within the range of from about 85 percent to at least about 95 percent. Structures wherein the void volume is somewhat less than 85 percent are useful for the purposes of this invention though not ordinarily recommended. On the other hand, where the void volume is decreased below about 75 percent, it has been found that the outstanding and advantageous properties diminish rapidly. For example, the ready flushability or cleanability of the floor cleaning structures, and therewith the abrasive cutting rate, etc. drops off.
- the web component of our combination structures from synthetic fibers such as nylon and polyesters (e.g., "Dacron").
- synthetic fibers such as nylon and polyesters (e.g., "Dacron").
- the uniformity and quality of such types of fibers can be closely controlled.
- these fibers retain substantial of their physical properties when wet with water or oils.
- fibers should be selected which maintain substantial of their essential characteristics when subjected to media to which they will be exposed in the desired particular use.
- certain deficiencies, e.g., low wet strength, in some fibers may be improved by appropriate treatment thereof.
- helically crimped fibers typically have 1 to 15 full cycle crimps per 25 mm fiber length, while stuffer box crimped fibers have 3 to 15 full cycle crimps per 25 mm fiber length.
- stuffer box crimped fibers when helically crimped fibers are used in conjunction with stuffer box crimped fibers, it is preferred that the helically crimped fibers have fewer crimps per specified length than the conventional stuffer box crimped fibers.
- helically crimped fibers having about three full cycle crimps per 25 mm can be advantageously used in conjunction with stuffer box crimped fibers having about five full cycle crimps per 25 mm.
- the crimp frequency is measured while the fibers are placed under very mild stress.
- the "Low Load”, as given in Table I below, is applied to the individual fiber before counting the number of full cycle crimps per 25 mm fiber length.
- Crimp index a measure of fiber crimp elasticity is preferably about 35 to 70 percent for helically crimped fibers, which is about the same as for stuffer box crimped fibers.
- Crimp index can be determined by measuring fiber length with appropriate "High Load” attached, then subtracting fiber length with appropriate "Low Load” attached, and then dividing the resulting value by fiber length and multiplying that value by 100.
- the crimp index can also be determined after exposing the test fibers to an elevated temperature, e.g. 135°C to 175°C for 5 to 15 minutes, and this value compared with the index before heat exposure. Crimp index measured after the fiber is exposed for 5 to 15 minutes to an elevated temperature, e.g. 135°C to 175°C, should not significantly change from that measured before heat exposure.
- the load can be applied either horizontally or vertically.
- the length of the fibers which may be employed is dependent upon the limitations of the processing equipment upon which the nonwoven open web is formed. However, depending on types of equipment, fibers of different lengths, or combinations thereof, very likely can be utilized in forming the lofty open webs of the desired ultimate characteristics herein specified. Fiber lengths suitable for helically crimped fibers preferably range from about 60 to about 150 mm, whereas suitable fiber lengths for stuffer box fibers range from about 25 to about 70 mm. Likewise, the thickness of the fibers usually is not crucial (apart from processing), due regard being had to the resilience and toughness ultimately desired in the resulting web.
- Fiber size must be suitable for lofty, open, low density abrasive products. Typically, fiber size ranges from 6 to 400 denier per filament.
- the helically crimped fibers are preferably stabilized or set, preferably by application of heat, so that, if they are subsequently heated to cure a subsequently applied adherent coating, the crimp frequency will not be significantly changed.
- the temperature for curing adherent coatings, helically crimped fibers are preferably heat set at temperatures at least slightly higher than these curing temperatures.
- Nonwoven webs suitable for preparing low density nonwoven abrasive products of this invention comprise at least 30% by weight of helically crimped synthetic organic fibers, more preferably at least 50% by weight of helically crimped synthetic organic fibers, and most preferably at least 70% by weight of helically crimped synthetic organic fibers.
- nonwoven low density abrasive pads of this invention have more resistance to wear and disintegration. Increasing the helically crimped fiber content of these nonwoven abrasive pads generally improves performance. It should be noted that nonwoven webs and abrasive products made from nonwoven webs containing at least 30% by weight helically crimped fibers have greater thickness, given equal fiber size and weight, when compared to webs and abrasive products made from conventional stuffer box crimped fibers.
- the abrasive pads of this invention which contain at least 30% by weight helically crimped fibers, exhibit both a higher level of openness and a higher level of durability than do abrasive pads containing less than 30% by weight helically crimped fibers.
- U.S. Patent No. 3,595,738, discloses methods for the manufacture of helically crimped bicomponent polyester fibers suitable for use in this invention.
- the fibers produced by the method of that patent have a reversing helical crimp. Fibers having a reversing helical crimp are preferred over fibers that are helically crimped in a coiled configuration like a coiled spring.
- both types of helically crimped fibers are suitable for this invention.
- Edge crimped fibers are usually formed in a unidirectional coiled configuration but may be of the reversing helically crimped type or may be combinations of epoxide resins, polyester resins such as the condensation product of maleic and phthalic anhydrides and propylene glycol, acrylic resins, styrene-butadiene resins, and polyurethanes.
- Amounts of binder employed ordinarily are adjusted toward the minimum consistent with bonding the fibers together at their points of crossing contact, and, in the instance wherein abrasive particles are also used, with the firm bonding of these particles as well. Binders and any solvent from which the binders are applied, also should be selected with the particular fiber to be used in mind so embrittling penetration of the fibers does not occur.
- abrasive materials useful for the nonwoven webs of this invention include, for example, silicon carbide, fused aluminum oxide, garnet, flint, emery, silica, calcium carbonate, and talc.
- the sizes or grades of the particles can vary, depending upon the application of the article. Typical grades of abrasive particles range from 36 to 1000.
- Conventional nonwoven web making equipment can be used to make webs of helically crimped fibers or blends of helically crimped and stuffer box crimped fibers with or without melt bondable fibers.
- Air laid nonwoven webs comprising helically crimped fibers can be made using equipment commercially available from Dr. O. Angleitner (DOA), Proctor & Schwarz, or Rando Machine Corporation.
- Mechanical laid webs can be made using equipment commercially available from Hergeth KG, Hunter, or others.
- lubricants are typically used to facilitate processing. However, excessive lubricant coatings on the crimped fibers may impede processing crimped fibers into nonwoven webs.
- a random air-laid nonwoven web having a weight of about 460 g/m2 and a thickness of about 50 mm was formed by means of a DOA machine, a commercially available web forming device.
- the web was formed from a preblended mixture of 70% by weight 60 denier helically crimped polyethylene terephthalate polyester (PET) staple fibers and 30% by weight 15 denier stuffer box crimped bicomponent polyester melt bondable fibers.
- PET polyethylene terephthalate polyester
- the helically crimped fibers were formed by edge crimping, were fully tensilized, were cut to 75 to 100 mm staple lengths, had a tenacity of 3.2 g/denier, had 2.7 full cycle crimps per 25 mm, had a crimp index of 42, and had crimp index after heat exposure for 5 minutes at 175°C of 38.
- the melt bondable fiber was a stuffer box crimped fiber having a bicomponent sheath/core (modified polyester/polyester) construction, had a tenacity of 3 g/denier, had a staple length of 40 mm, had 9 full cycle crimps per 25 mm, had a crimp index of 9, and had a crimp index of 16 after exposure to heat for 5 minutes at 130°C, and were activatable at 120 - 200°C.
- a stuffer box crimped fiber having a bicomponent sheath/core (modified polyester/polyester) construction, had a tenacity of 3 g/denier, had a staple length of 40 mm, had 9 full cycle crimps per 25 mm, had a crimp index of 9, and had a crimp index of 16 after exposure to heat for 5 minutes at 130°C, and were activatable at 120 - 200°C.
- a filled styrene-butadiene rubber latex saturant, having about 70% by weight non-volatile materials was prepared by combining the following ingredients in the amounts indicated: Ingredient Amount (Parts by weight) Water 3.1 Carboxylated styrene-butadiene rubber (SBR) latex, containing 65% styrene (AmscoRes 5900, commercially available from Union Oil Chemicals) 43.4 Hexamethylmethoxymelamine (HMMM) resin (Cymel 303, commercially available from American Cyanamid) 4.6 Calcium carbonate filler 41.5 Diammonium phosphate, 40% by weight in tap water 0.4 Hydroxypropyl methylcellulose, 3% by weight dispersion in tap water (Methocel F4M, commercially available from Dow Chemical Co.) 0.8 Silicone emulsion surfactant (Q2-3168, commercially available from Dow Corning) 0.1 Dioctyl sodium sulfosuccinate surfactant (Triton GR5
- the saturant was applied by passing the nonwoven web between a pair of vertically opposed 250 mm diameter rubber covered squeeze rolls.
- the rotating lower roll which was immersed in the saturant, carried saturant into the nonwoven web, so as to evenly disperse it therethrough.
- the wet nonwoven web was dried and the saturant cured in a hot air oven at 175°C for about five to seven minutes.
- the dry, coated nonwoven web had a thickness of about 38 mm and weighed about 1110 g/m2.
- the nonwoven web had breaking strengths in the length and cross directions of 9.5 and 11.4 kg/25 mm sample width, respectively.
- Abrasion resistance of the nonwoven web was determined by an accelerated wear life test on floor buffing pads having a diameter of 430 mm and die cut from the aforementioned web.
- a rotating table having a diameter of 2.4 m and having a surface made of filled vinyl floor tile, was rotated at a rate of 10 revolutions per minute (rpm).
- rpm revolutions per minute
- 4 strips each of which was 100 mm wide and contained 50 grade coated abrasive, was adhered to the vinyl floor tile in a random radial pattern so that the nonwoven floor buffing pad crossed over these strips as the table rotated.
- the floor buffing pad was driven by a commercial floor buffing machine operating at 175 rpm. The weight of the buffing machine forced the buffing pad against the rotating table.
- the buffing pad was held and driven by a conventional 430 mm diameter holder/driver, the "Insta-Lok" Brand Driving Assembly, commercially available from Minnesota Mining and Manufacturing Company.
- the buffing machine and holder/driver had a combined weight of about 59 kg.
- the table and buffing machine were caused to rotate and the buffing machine was lowered so as to bring its full weight onto the test pad.
- the test was continued until the test pad was caused to disintegrate by the action of the four abrasive strips. The time elapsed from the beginning of the test was recorded.
- the average life of the buffing floor pads of this example was 6.8 minutes; the range was from 2.0 to 11.0 minutes.
- a nonwoven web was made from a blend of 30% by weight 15 denier melt bondable fiber and 70% by weight 50 denier tensilized polyester staple fiber which had been stuffer box crimped, heat set, and cut to a length of 37 mm.
- the web was made according to the procedure described in Example 1.
- the stuffer box crimped fibers had a tenacity of 4 g/denier, had 5 full cycle crimps per 25 mm, and had a crimp index of 26 before and after 5 minute exposure to a temperature of 125°C.
- the nonwoven web weighed 465 g/m2 and was approximately 37 mm thick. After saturation with the coating composition and cured as described in Example 1, the dried product weighed approximately 1170 g/m2 and was about 28 mm thick.
- the average life of the control floor buffing pads was determined to be 1.1 minutes, with a standard deviation of 0.2 minute.
- Nonwoven webs were formed from 70% by weight 60 denier helically crimped polyethylene terephthalate polyester fibers and 30% by weight melt bondable fibers as described in Example 1. The webs were then coated with the saturant described in Example 1. Table II sets forth the composition of these samples as well as the strength properties and the resistance to wear of the coated webs as determined according to the procedure described in Example 1.
- a nonwoven web was prepared by blending of 30% by weight 15 denier melt bondable fiber (as described in Example 1), 35% by weight 60 denier, helically crimped polyester staple fibers (as described in Example 1), and 35% by weight 140 denier helically crimped tensilized polyester staple fiber which had been cut to 75 to 100 mm in length.
- the 140 denier fiber had 1.6 crimps per 25 mm, had a tenacity of 3.4 g/denier, and had a crimp index of 52 before and after exposure to heat (5 minutes at 175°C).
- the nonwoven web was heated for three minutes to activate the melt bondable fibers to produce a web having a weight of 500 g/m2 and a thickness of 31 mm.
- the total weight of the web was about 1180 g/m2. Thickness of the dry saturated product was 30 mm. Average accelerated wear life was 4.5 minutes, with a standard deviation of 1.1 minutes.
- a nonwoven web was made by blending 30% by weight 15 denier staple binder fiber (as described in Example 1), 35% by weight 50 denier stuffer box crimped polyester staple fiber (as described in Comparative Example A), and 35% by weight 100 denier stuffer box crimped tensilized polyester staple fiber, which had been cut in 75 to 100 mm lengths.
- the nonwoven web was heated for 6 minutes at 125°C to activate the melt bondable fibers.
- the nonwoven web initially weighed 490 g/m2. After saturation with the saturant described in Example 1 and curing to dry the saturant, the dry product weighed about 1210 g/m2 and was about 25 mm thick. Average accelerated wear life was 2.7 minutes, with a standard deviation of 0.4 minute.
- Nonwoven abrasive products were made having various combinations of staple fibers, including conventional stuffer box crimped fibers, bicomponent melt bondable fibers, and helically crimped (edge crimped) fibers.
- Nonwoven webs were formed from the fiber compositions set forth in Table III by means of a Hergeth mechanical nonwoven forming machine.
- the coating was applied to the nonwoven web by means of a two-roll coater and then cured by passing the coated web through a hot air oven 18 meters long at a temperature of 150°C and at a speed of 6 meters per minute.
- Discs were cut from each of the webs of Examples 8, 9, 10, and 11 and Comparative Examples C and D. These discs were 150 mm in diameter and had 32 mm center holes. The six discs were mounted on an arbor and compressed to 25 mm thickness by flanges 125 mm in diameter having a 32 mm center hole. The compressed and restrained discs were then rotated at 2000 rpm. A workpiece of type 6061 perforated aluminum sheet, 50 mm by 280 mm, was urged for three minutes against the rotating abrasive disc with a 22 N force and moved back and forth 150 mm against the rotating discs.
- the workpiece had 6.4 mm staggered pattern, had 6.4 mm diameter perforations, had holes spaced 8.7 mm on center, was 48% open, and was 1.63 mm thick.
- Weight loss of the six discs and weight loss (cut) of the perforated aluminum sheet were recorded in Table VIII. TABLE VIII Example Cut (g) Wear (percent) Efficiency (cut/% wear) 8 0.64 21.2 0.030 9 0.53 13.2 0.040 10 0.36 7.9 0.046 11 0.47 6.4 0.073 Comparative C 0.30 8.1 0.037 Comparative D 0.61 21.9 0.028
- the pads of Examples 10 and 11 which contained 50% or more helically crimped fibers, showed equal or better cut and much greater efficiency than the pad of Comparative Example C.
- the pads of Examples 8 and 9 showed enhanced cut or efficiency when compared with the pad of Comparative Example D.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nonwoven Fabrics (AREA)
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3806287A | 1987-04-14 | 1987-04-14 | |
US38062 | 1998-03-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0287286A2 EP0287286A2 (en) | 1988-10-19 |
EP0287286A3 EP0287286A3 (en) | 1990-11-22 |
EP0287286B1 true EP0287286B1 (en) | 1996-06-05 |
Family
ID=21897888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88303149A Expired - Lifetime EP0287286B1 (en) | 1987-04-14 | 1988-04-08 | Abrasive article containing helically crimped fibers |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0287286B1 (ko) |
JP (1) | JPS63278766A (ko) |
KR (1) | KR970003494B1 (ko) |
AU (1) | AU593984B2 (ko) |
BR (1) | BR8801726A (ko) |
CA (1) | CA1321073C (ko) |
DE (1) | DE3855339T2 (ko) |
ES (1) | ES2087060T3 (ko) |
MX (1) | MX167892B (ko) |
ZA (1) | ZA881967B (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9509157A (pt) * | 1994-09-26 | 1997-10-14 | Lippert H Gmbh | Ferramanta para o tratamento de superficie mecánico |
GB9423267D0 (en) * | 1994-11-18 | 1995-01-11 | Minnesota Mining & Mfg | Compounding elements and use thereof |
US6207246B1 (en) | 1995-08-30 | 2001-03-27 | 3M Innovative Properties Company | Nonwoven abrasive material roll |
EP1005957B1 (en) * | 1995-08-30 | 2003-07-02 | Minnesota Mining And Manufacturing Company | Nonwoven abrasive material roll |
US5712210A (en) * | 1995-08-30 | 1998-01-27 | Minnesota Mining And Manufacturing Company | Nonwoven abrasive material roll |
US5874160A (en) * | 1996-12-20 | 1999-02-23 | Kimberly-Clark Worldwide, Inc. | Macrofiber nonwoven bundle |
US6302930B1 (en) * | 1999-01-15 | 2001-10-16 | 3M Innovative Properties Company | Durable nonwoven abrasive product |
EP2866974B1 (en) * | 2012-06-27 | 2017-07-26 | 3M Innovative Properties Company | Abrasive article |
US11794307B2 (en) * | 2017-04-28 | 2023-10-24 | 3M Innovative Properties Company | Large denier nonwoven fiber webs |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1694594C3 (de) * | 1960-01-11 | 1975-05-28 | Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) | Reinigungs- und Polierkörper |
FR1307038A (fr) * | 1960-12-08 | 1962-10-19 | Carborundum Co | Tampon à gratter |
GB1179436A (en) * | 1967-05-22 | 1970-01-28 | Ici Ltd | Helically Crimped Filamentary Materials |
US3634901A (en) * | 1970-02-26 | 1972-01-18 | Fred L Landsberg | Combination sponge and scouring device and method of making the same |
ES477698A1 (es) * | 1978-02-17 | 1979-12-01 | Minnesota Mining & Mfg | Un metodo de fabricar un producto abrasivo de baja densidad,esponjoso, no tejido. |
FR2465815A1 (fr) * | 1979-09-20 | 1981-03-27 | Anvar | Nouveau materiau recureur et procede pour le preparer |
US4355489A (en) * | 1980-09-15 | 1982-10-26 | Minnesota Mining And Manufacturing Company | Abrasive article comprising abrasive agglomerates supported in a fibrous matrix |
JPS6279970A (ja) * | 1985-09-30 | 1987-04-13 | Achilles Corp | 研磨基布及びその製造方法 |
-
1988
- 1988-03-15 CA CA000561471A patent/CA1321073C/en not_active Expired - Fee Related
- 1988-03-18 AU AU13301/88A patent/AU593984B2/en not_active Ceased
- 1988-03-18 ZA ZA881967A patent/ZA881967B/xx unknown
- 1988-04-08 EP EP88303149A patent/EP0287286B1/en not_active Expired - Lifetime
- 1988-04-08 ES ES88303149T patent/ES2087060T3/es not_active Expired - Lifetime
- 1988-04-08 DE DE3855339T patent/DE3855339T2/de not_active Expired - Fee Related
- 1988-04-12 MX MX011091A patent/MX167892B/es unknown
- 1988-04-12 BR BR8801726A patent/BR8801726A/pt not_active IP Right Cessation
- 1988-04-13 KR KR1019880004159A patent/KR970003494B1/ko not_active IP Right Cessation
- 1988-04-13 JP JP63091219A patent/JPS63278766A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0287286A3 (en) | 1990-11-22 |
KR970003494B1 (ko) | 1997-03-18 |
JPS63278766A (ja) | 1988-11-16 |
MX167892B (es) | 1993-04-21 |
KR880012310A (ko) | 1988-11-26 |
ZA881967B (en) | 1989-11-29 |
EP0287286A2 (en) | 1988-10-19 |
DE3855339T2 (de) | 1997-01-16 |
AU593984B2 (en) | 1990-02-22 |
AU1330188A (en) | 1988-10-20 |
ES2087060T3 (es) | 1996-07-16 |
DE3855339D1 (de) | 1996-07-11 |
BR8801726A (pt) | 1988-11-16 |
CA1321073C (en) | 1993-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4893439A (en) | Abrasive article containing helically crimped fibers | |
EP0656080B1 (en) | Melt bonded nonwoven articles and methods of preparing same | |
DE69802187T2 (de) | Mullit enthaltende schleifgegenstände | |
EP0061457B1 (en) | Abrasive article comprising abrasive agglomerates supported in a fibrous matrix | |
US5591239A (en) | Nonwoven abrasive article and method of making same | |
US10625400B2 (en) | Nonwoven abrasive article containing formed abrasive particles | |
US2958593A (en) | Low density open non-woven fibrous abrasive article | |
EP0397374B1 (en) | Low density nonwoven fibrous surface treating article | |
US4486200A (en) | Method of making an abrasive article comprising abrasive agglomerates supported in a fibrous matrix | |
US5539042A (en) | Aqueous, coatable, thermally condensable composition | |
US20070298697A1 (en) | Floor Cleaning Pads and Preparation Thereof | |
EP0287286B1 (en) | Abrasive article containing helically crimped fibers | |
EP0900296A1 (en) | Surface conditioning articles and process for making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE ES FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19910102 |
|
17Q | First examination report despatched |
Effective date: 19920506 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: BA2A Ref document number: 2087060 Country of ref document: ES Kind code of ref document: T3 |
|
REF | Corresponds to: |
Ref document number: 3855339 Country of ref document: DE Date of ref document: 19960711 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2087060 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970319 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970325 Year of fee payment: 10 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19970421 Year of fee payment: 10 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 88303149.4 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000201 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020319 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020403 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020418 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050408 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |