EP0285778B1 - Procédé de fabrication d'une pale de turbine composite comprenant un pied, une pale et un couvercle, dans laquelle la pale est formée d'un superalliage à base de nickel durci par dispersion et pale de turbine obtenue selon ce procédé - Google Patents

Procédé de fabrication d'une pale de turbine composite comprenant un pied, une pale et un couvercle, dans laquelle la pale est formée d'un superalliage à base de nickel durci par dispersion et pale de turbine obtenue selon ce procédé Download PDF

Info

Publication number
EP0285778B1
EP0285778B1 EP88102415A EP88102415A EP0285778B1 EP 0285778 B1 EP0285778 B1 EP 0285778B1 EP 88102415 A EP88102415 A EP 88102415A EP 88102415 A EP88102415 A EP 88102415A EP 0285778 B1 EP0285778 B1 EP 0285778B1
Authority
EP
European Patent Office
Prior art keywords
weight
airfoil
temperature
root
rest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88102415A
Other languages
German (de)
English (en)
Other versions
EP0285778A1 (fr
Inventor
Clemens Dr. Verpoort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0285778A1 publication Critical patent/EP0285778A1/fr
Application granted granted Critical
Publication of EP0285778B1 publication Critical patent/EP0285778B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting

Definitions

  • the invention relates to a method for producing a composite gas turbine blade consisting of a foot piece, blade and cover plate or shroud, the blade consisting of a dispersion-hardened nickel-based superalloy, according to the preamble of claim 1, and to a composite gas turbine blade produced by this method according to the preamble of claim 12.
  • the invention relates to the further development of mechanically and / or thermally highly stressed gas turbine blades, the advantageous properties of dispersion-hardened alloys for certain types of stress being optimally combined with those of non-dispersion-hardened alloys.
  • Oxide dispersion-hardened nickel-based superalloys have recently been proposed as blade materials for highly stressed gas turbines, since they have higher operating temperatures than conventional casting and kneading superalloys.
  • components made from these alloys with elongated, coarse crystallites oriented in the blade axis are used.
  • the workpiece in the course of production, the workpiece (semi-finished product) generally has to go through a zone annealing process.
  • the Quersch R ittsabmes- are solutions of such blade materials in the coarse-grained state limited. This also limits the blade dimensions.
  • the blade and cover plate of certain dimensions can no longer be made monolithically from one piece. The same applies to the root part of the blade, which can be very voluminous in the relative dimensions. If oxide dispersion-hardened superalloys are to be used successfully and in general, there is therefore a requirement for a division into the airfoil on the one hand and the cover plate and foot piece on the other. There are other reasons for such a division, which depend on the strength and the material stress at the clamping points.
  • a purely mechanical fastening of the cover plate at the head end of the airfoil can solve the problem in principle, but is complex, requires additional fastening elements and can lead to additional voltages that are difficult to control during operation.
  • a welded joint is ruled out because the structure of the oxide dispersion-hardened material is largely destroyed by local melting.
  • a connection by soldering or diffusion joining requires very clean machined contact surfaces and is technologically difficult.
  • the invention has for its object a composite gas turbine blade consisting of a foot piece, airfoil and cover plate or shroud and a method for the manufacture thereof position, whereby on the one hand optimal use is made of the use of oxide dispersion hardened nickel-based superalloys, taking more account of their only limited available cross-sectional dimensions in the state of long, coarse stem crystals for the airfoil, and on the other hand through a suitable choice of material and constructive design of the foot piece and the cover plate or the cover band and their manufacture optimal assignment to the airfoil and thus a composite construction that is well suited to all thermal and mechanical operating conditions.
  • both the head end and the foot end of the airfoil on the lateral surface are provided with depressions and / or elevations in the method mentioned at the outset, that the airfoil is inserted into a mold having the negative shape of the cover plate and of the base piece in such a way that the head end and the foot end protrude into the cavity of the casting mold, that the airfoil is preheated to a temperature which is 50 to 300 ° C below the solidus temperature of the deep-melting phase of the airfoil material, and that the cavity of the casting mold with the melt is one for the
  • the cover plate and the base piece of non-dispersion hardened nickel-based superalloy are filled with a casting temperature that is at most 100 ° C above the liquidus temperature of the high-melting phase of this alloy in such a way that the head end and the foot end of the airfoil are completely cast and cast and that the temperature of the melt after the end of the casting process and during solidification and that of the airfoil are
  • the foot piece and the cover plate consist of a non-dispersion hardened nickel-base cast superalloy and that the foot piece and the cover plate have depressions and / or elevations at the foot end and at the head end of the outer surface of the airfoil are secured mechanically by casting and pouring in while maintaining a metallic interruption and without any metallurgical bond.
  • 1 shows a schematic longitudinal section (elevation) through a casting device for the head end of an airfoil to be poured in.
  • 1 is the airfoil made of an oxide dispersion hardened nickel-based superalloy, the longitudinal axis of which is in a vertical position.
  • the or the head 2 to be cast is at the top. It is set off from the active profile of the airfoil 1 in the transverse dimensions and has a circumferential recess 4 and an elevation 5 for better mechanical anchoring of the cover plate to be produced and fastened by casting (reference number 6 in FIG. 2).
  • 8 is the casting mold made of ceramic, which corresponds on its concave side to the shape of the cover plate to be produced (negative mold).
  • 9 is the laterally attached pouring funnel of the casting mold 8.
  • heat-insulating packs 10 or a heating plate 11 are provided on the outside of the casting mold 8 at critical points of higher heat flow.
  • a collar-shaped seal 12 made of ceramic adhesive that runs around the entire blade profile on the outside of the mold is provided at the corresponding recessed corner intended.
  • Fig. 1 the time of completion of the casting process is shown.
  • 14 represents the part of the melt 13 which forms the cover plate.
  • 2 shows a schematic longitudinal section through an assembled guide vane for a gas turbine.
  • 1 is the vane blade consisting of an oxide dispersion-hardened nickel-base superalloy and having coarse stem crystals oriented in the longitudinal direction by zone annealing.
  • 2 is the head end, 3 the foot end of the airfoil 1, both of which each have a circumferential recess 4 and an elevation 5 of the same type.
  • 6 is the cover plate or cover band
  • 7 is the casting of the blade. Both consist of a non-dispersion hardened nickel-based casting superalloy. 6 and 7 generally have - depending on the composition, casting temperature and cooling conditions - fine-grained to medium-grained crystal structure.
  • FIG 3 shows a schematic longitudinal section through the foot part of a guide vane for a gas turbine, the foot piece having cooling channels and an intermediate layer being located between the foot piece and the airfoil.
  • 15 are cooling channels in the base 7 of the blade.
  • 16 is an oxide, heat-insulating oxide layer that prevents the metallurgical bond between the airfoil 1 and the base piece 7. This can be a naturally occurring oxide layer of the airfoil 1 of a few ⁇ m thickness or a layer of an oxide specially applied to this jacket part of the airfoil 1 selected from the elements Cr, Al, Si, Ti, Rz with a thickness of 5 to 200 ⁇ m .
  • FIG. 4 shows a schematic longitudinal section through a composite rotor blade for a gas turbine. Basically, all reference numerals correspond to those of the previous figures. Only the shapes of the components are different.
  • the base part of the blade has double fir-tree teeth, which ensures a good countersinking in the rotor body of the turbine.
  • Fig. 5 shows a schematic longitudinal section through a composite blade with intermediate layer and cooling channels in the foot part.
  • the individual components and reference numerals basically correspond to those in FIG. 4.
  • the cover plate 6 which is made of a non-oxide-dispersion-hardened nickel-base casting superalloy, with depressions 4 and elevations 5 for the purpose of anchoring.
  • the foot end 3 of the airfoil 1 is designed in the form of a fir tree with depressions 4 and elevations 5 and in turn is inserted in a fir tree-shaped foot piece 7 made of a nickel-based cast superalloy.
  • the foot piece 7 is provided with cooling channels 15.
  • a to 200 'microns thick Swisscht is of an oxide. This serves for the elastic absorption of clamping forces and expansion differences in rapidly changing operating conditions (thermal shock, etc.) and for thermal insulation between the blade and the rotor body.
  • the head end 2 of the airfoil 1 was set down on its outer surface.
  • the offset part had a recess 4 in the form of a circumferential rounded groove 4 mm deep and 2.5 mm wide. As a result, an elevation 5 was formed at the extreme end.
  • the finished blade was subjected to a 5 min cycle between the temperature limits of approx. 200 ° C and approx. 1000 ° C in order to test its sensitivity to thermal shock. After 500 cycles, no cracks and no loosening of the cover plate 6 from the airfoil 1 were found. The natural oxide skin between these two parts already acted as a heat insulation layer, so that the cover plate can only reach a temperature of 800 ° C. This also has an advantageous effect during operation, especially in the case of shutdowns or load shedding on the generator side.
  • the preheating temperature of the airfoil 1 should be 1140 to 1180 ° C. and the casting temperature of the melt 13 should not exceed 1380 ° C.
  • This alloy has a liquidus temperature of approx. 1340 ° C.
  • the maximum casting temperature was 1400 ° C. Otherwise, the procedure was exactly the same as that given in Example 1.
  • the investigation showed that between the airfoil 1 on the one hand and the cover plate 6 or foot piece 7, none at all. metallurgical bond existed.
  • the test for resistance to temperature changes showed no cracks and no detachment of the cover plate 6 or the foot piece 7 from the airfoil 1.
  • the preheating temperature of the airfoil 1 is generally 1160 to 1200 ° C. and the pouring temperature of the melt 13 is at most 1400 ° C.
  • the foot end 3 of the airfoil 1 was offset on its outer surface and had a rectangular depression 4 10 mm deep and 14 mm wide and a corresponding elevation 5 10 mm thick and 13 mm wide.
  • the entire surface of the foot end 3 of the airfoil 1 was provided with an approximately 150 ⁇ m thick intermediate layer 16 made of A1 2 0 3 by the plasma spraying process.
  • Example 2 The procedure was the same as that given in Example 1.
  • the airfoil 1 was heated to a temperature of 1120 ° C. and placed in an appropriate ceramic mold.
  • the cast superalloy IN 738 used corresponded exactly to that of Example 1.
  • the casting temperature was a maximum of 1380 ° C.
  • this was equipped with cooling channels 15.
  • the mechanical bond between the blade was sheet 1 and foot piece 7 very good.
  • the thermal shock resistance was excellent. No cracks were found after 1000 cycles.
  • the intermediate layer 16 proved to be excellent as a thermal insulation layer. With an average temperature of the airfoil of 1000 ° C, the foot piece only reached approx. 700 ° C.
  • the preheating temperature of the airfoil 1120 to 1160 ° C. and the pouring temperature of the melt 13 should not exceed 1380 ° C.
  • a blade 1 for a gas turbine rotor blade was produced from an oxide dispersion-hardened nickel-based superalloy by mechanical processing.
  • the material was in the form of a prismatic semi-finished product with a rectangular cross-section 100 mm wide and 30 mm thick in the zone-annealed, recrystallized, coarse-grained state.
  • the longitudinal stem crystals had an average length of 25 mm, a width of 8 mm and a thickness of 3.5 mm.
  • the semi-finished product was subjected to a heat treatment prior to the mechanical processing in order to increase the ductility perpendicular to the longitudinal direction of the stem crystals, which resulted in an annealing at or just above the lowest possible solution annealing temperature for the ⁇ -phase in the y-matrix, followed by cooling with a cooling rate of existed at most 5 ° C / min.
  • the material corresponded exactly to the composition according to Example 3.
  • the head end 2 of the airfoil 1 was set down on its surface.
  • the offset part had depressions 4 in the form of circumferential grooves 2 mm deep and 2 mm wide which are rounded in the base.
  • the elevations 5 located between the grooves had similar dimensions.
  • the airfoil 1 was now preheated to a temperature of 1120 ° C. and placed in a likewise preheated mold similar to 8 in FIG. 1.
  • the natural oxide layer between airfoil 1 and cover plate 6 had an average thickness of 3 to 5 ⁇ m.
  • the preheating temperature of the airfoil 11 is generally 1120 to 1160 ° C. and the casting temperature of the melt 13 is at most 1400 ° C.
  • Example 4 In contrast to Example 4, however, the semi-finished product had not previously been subjected to a heat treatment to increase the ductility.
  • the dimensions of the airfoil corresponded to those of Example 4.
  • the foot end 3 of the airfoil 1 had - seen in the axial plane of the turbine rotor - a fir tree-like shape with 3 depressions 4 and 3 elevations 5, which ensured excellent anchoring in the foot piece 7 (see FIG. 4!).
  • the airfoil 1 was preheated to a temperature of 1130 ° C. and inserted with its head end 2 and its foot end 3 into a corresponding preheated mold and sealed with ceramic adhesive.
  • the cavities of both casting molds were simultaneously filled with a melt 13 made of the cast superalloy IN 738 with the composition according to Example 1.
  • the casting temperature was 1380 ° C. Otherwise, the procedure was the same as in the previous examples.
  • the casting mold for the foot piece 7 was constructed in such a way that the latter also had a fir tree shape in the final state - in the axial section of the rotor. 5 depressions alternated with 5 elevations, the closer to the foot end 3 of the airfoil 1 approximately opposite the corresponding depressions 4 and elevations 5. This made an excellent intermeshing of blade 1 / base 7 / rotor body is sufficient, although no metallurgical bond was present.
  • the preheating temperature of the airfoil 1 should be 1130 to 1170 ° C. and the casting temperature of the melt 13 should not exceed 1380 ° C.
  • An airfoil 1 for a gas turbine rotor blade was produced by mechanical processing from an oxide dispersion-hardened nickel-base superalloy not previously pretreated by a heat treatment to increase the ductility in accordance with Example 5.
  • the composition of the material and the dimensions and shape of the airfoil correspond exactly to the values given in Example 5.
  • the entire surface of the fir tree-shaped foot end 3 of the airfoil 1 was provided by the plasma spraying process with an average 80 ⁇ m thick intermediate layer 16 made of Zr0 2 doped with 1% Y 2 0 3 .
  • the airfoil 1 was then heated to a temperature of 1180 ° C. in order to dissolve as much of the - / - phase as possible in the ⁇ matrix of the material.
  • the foot end 3 of the airfoil 1 was then brought into a corresponding preheated mold provided with cores and sealed with ceramic adhesive.
  • the cast superalloy IN 939 with the composition of Example 2 with a liquidus temperature of approximately 1340 ° C. was used as the melt 13.
  • the casting temperature was 1380 ° C. Thanks to the cores intended for the cooling channels 15, an inadmissible accumulation of material in the area of the foot piece 7 was avoided. This allowed the solidification process to be optimally designed and a fine-grained structure to be achieved. The further cooling of the workpiece was carefully monitored.
  • the thermal shock test of 1000 cycles between 100 and 1000 ° C airfoil temperature with cyclical tensile stress applied at the same time showed the excellent thermal, mechanical and thermomechanical behavior of this non-metallic connection under dynamic conditions.
  • the intermediate layer 16 not only acted as a thermal insulation layer, but also took over an important mechanical function as a transmission element for elastic clamping in the reduction of voltage peaks.
  • an almost ideal composite body was created for the various types of stress: Blade 1 with coarse grain for high creep resistance at the highest temperatures; Base 7 with fine grain for high mechanical alternating loads at medium temperatures; no metallurgical bond between 1 and 7 with a critical transition zone that disturbs the structure.
  • the preheating temperature of the airfoil 1 is generally 1160 to 1180 ° C. and the casting temperature of the melt 13 is at most 1400 ° C.
  • an airfoil 1 was produced from an oxide dispersion-hardened nickel-based superalloy.
  • the alloy composition and dimensions corresponded to the values given in Example 5.
  • the airfoil 1 was heated to a temperature of 1180 ° C. and its head end 2 and foot end 3 were placed in a correspondingly preheated mold and sealed with ceramic adhesive.
  • the cavities in the casting molds were simultaneously filled with a melt 13 made of the cast superalloy IN 738 with the composition according to Example 1.
  • the casting temperature was 1370 ° C.
  • the cooling was controlled in such a way that after the melt 13 had solidified successfully, the temperature range from 1200 ° C. down to 600 ° C. was passed through in only 2 hours. An increase in the ductility of the airfoil material was thus achieved.
  • the finished workpiece was then subjected to further compaction in the area of the cover plate 6 and the foot piece 7.
  • the workpiece was first brought to a temperature of 1140 ° C without applying pressure. This temperature was in the range which was at least 100 ° C, but at most 150 ° C lower than the recrystallization temperature of the airfoil material as well as that of the cover plate 6 and the base piece 7. Thereupon the workpiece was exposed to an all-round pressure of 2000 bar and thus for 3 h hot isostatically pressed. The cooling took place at a rate of 5 ° C / min. As a result, the highest possible ductility in the transverse direction of the blade 1 was achieved. The investigation showed that a density of 100% of the theoretical value was achieved for the cover plate 6 and the foot piece 7.
  • oxide-dispersion-hardened nickel-base superalloys for the airfoil 1 and non-oxide-dispersion-hardened nickel-base superalloys can also be used for the cover plate (the cover band) 6 and the foot piece 7 of compositions other than those specified.
  • the preheating temperature for the airfoil 1 should fall in the range of 50 to 300 ° C below the solidus temperature of the low-melting phase of the airfoil material, the casting temperature of the melt 13 of the non-dispersion hardened nickel-based superalloy should be at most 100 ° C above the liquidus temperature of the high-melting phase of this alloy.
  • the temperature of the melt 13 after the end of the casting process and during solidification and that of the airfoil 1 is to be controlled in such a way that any melting of the airfoil 1 and any metallurgical bond between the airfoil 1 and cover plate 6 or airfoil 1 and foot piece 7 is avoided.
  • the entire workpiece must then be cooled down specifically to room temperature.
  • the airfoil material (semi-finished product) or the airfoil 1 itself is advantageously subjected to a heat treatment prior to casting, which involves annealing at or just above the longitudinal annealing temperature of the Y phase in the y-matrix of the airfoil material, followed by cooling at a maximum of 5 ° C / min.
  • the airfoil 1 can be preheated to a temperature which reaches at least a value of 50 ° C. below the lowest possible solution annealing temperature of the ⁇ phase. After casting, the speed of cooling of the airfoil 1 down to 600 ° C should not exceed 5 ° C / min.
  • the workpiece can then be cooled down to room temperature at any cooling rate.
  • the airfoil 1 can preferably be provided, at least at the head end 2 and at the foot end 3, with a 5 to 200 ⁇ m thick intermediate layer 16 made of an oxide of at least one of the elements Cr, Al, Si, Ti, Zr before the encapsulation.
  • the entire workpiece is advantageously brought to a temperature of 1050 to 1200 ° C. again after cooling to room temperature and at least 6 and / or 7 hot isostatically pressed by heating the workpiece to a temperature, which is at least 100 ° C, but at most 150 ° C lower than the recrystallization temperature of the material of both the airfoil 1 and the cover plate 6 and the foot piece 7 and that kept under a pressure of 1000 to 3000 bar at this temperature for 2 to 24 h and then cooled at a maximum of 5 ° C / min to at least 600 ° C.
  • the interruption can consist partly of the natural oxide layer, partly of cavities and have a maximum width of 5 ⁇ m.
  • an intermediate layer 16 consisting of an oxide of at least one of the elements Cr, Al, Si, Ti, Zr with a thickness of 5 to 200 ⁇ m. The latter is preferably carried out as a layer adhering firmly to the airfoil 1 and having a thickness of at least 100 ⁇ m, predominantly made of Al 2 O 3 or ZrO 2 stabilizing with Y 2 O 3 .
  • the airfoil 1 advantageously consists of an oxide dispersion-hardened, non-precipitation hardened nickel-based superalloy with increased ductility perpendicular to the longitudinal direction of the stem crystals. In this case, the additional precipitation hardening is deliberately avoided in the interest of flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (21)

1. Procédé de fabrication d'une aube de turbine composite comprenant un pied (7), une pale (1) et un couvercle (6) en plaque ou en bande, la pale (1) étant constituée d'un superalliage à base de nickel durci par dispersion d'oxydes, à l'état de grosses dendrites longitudinales, caractérise en ce qu'aussi bien l'extrémité de tête (2) que l'extrémité de pied (3) de la pale sont pourvues d'évidements (4) et/ou de protubérances (5) dans leur surface latérale, en ce que la pale (1) est placée dans un moule de coulée (8) présentant la forme négative de la plaque de couvercle (6) et du pied (7) de telle façon que l'extrémité de tête (2) et l'extrémité de pied (3) soient saillantes dans la cavité du moule de coulée (8), en ce que la pale (1) est préchauffée à une température qui est située entre 50 et 300°C en dessous de la température de solidus de la phase ayant le plus bas point de fusion dans le matériau constituant la pale, et en ce que la cavité du moule de coulée (8) est rempli avec le bain de fusion (13) d'un superalliage à base de nickel, non durci par dispersion, destiné à la plaque de couvercle (6) et au pied (7) avec une température de coulée qui est située au maximum à 100°C audessus de la température de liquidus de la phase ayant le plus haut point de fusion dans cet alliage, de telle sorte que l'extrémité de tête (2) et l'extrémité de pied (3) de la pale (1) soient entièrement enrobées et noyées, en ce qu'après l'achèvement de l'opération de coulée et pendant la solidification, la température du bain de fusion (13) ainsi que celle de la pale (1) sont conduites de façon à éviter tout début de fusion de la pale (1) et toute liaison métallurgique entre le matériau de la pale (1) et celui de la plaque de couvercle (6) et du pied (7), et en ce que la pièce entière est refroidie à la température ambiante.
2. Procédé suivant la revendication 1, caractérise en ce que la pale (1) est usinée hors d'une ébauche ayant subi un traitement thermique préalable pour augmenter la ductilité perpendiculairement à la direction longitudinale des dendrites ou en ce que la pale (1) est soumise après sa fabrication à un traitement thermique correspondant, qui consiste en un recuit à ou directement au-dessus de la température la plus basse de recuit de mise en solution pour la phase γ' dans la matrice y du matériau de la pale, suivi par un refroidissement lent avec une vitesse de refroidissement de 5°C/min au maximum.
3. Procédé suivant la revendication 1, caractérise en ce que la pale (1) est préchauffée, avant la coulée et l'enrobage, à une température qui atteint au moins une valeur de 50°C en dessous de la température la plus basse de recuit de mise en solution pour la phase y dans la matrice y du matériau de la pale, et en ce que la pale (1) est refroidie, après la coulée et l'enrobage, au moins à une température de 600°C avec une vitesse de refroidissement de 5°C/min au maximum, tandis que le bain solidifié formant la plaque de couvercle (6) et/ou le pied (7) est refroidi avec une vitesse de refroidissement arbitraire.
4. Procédé suivant la revendication 1, caractérise en ce que, avant d'être placée dans le moule de coulée (8), la pale (1) est pourvue, au moins à l'extrémité de tête (2) et à l'extrémité de pied (3), d'une couche intermédiaire (16) en un oxyde d'au moins un des éléments Cr, AI, Si, Ti, Zr d'une épaisseur de 5 µm à 200 µm.
5. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 15,0%
AI = 4,5%
Ti = 2,5%
Mo = 2,0%
W = 4,0%
Ta = 2,0%
Zr = 0,15%
B = 0,01%
C = 0,05%
Y203 = 1,1%
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1140 à 1180°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 16,0%
Co = 8,5%
Ho =1,75%
W = 2,6%
Ta = 1,75%
Nb = 0,9%
AI = 3,4%
Ti = 3,4%
Zr=0,1%
B=0,01%
C = 0,11%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1380°C.
6. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 15,0%
AI = 4,5%
Ti = 2,5%
Mo = 2,0%
W = 4,0%
Ta = 2,0%
Zr = 0,15%
B = 0,01%
C = 0,05%
Y2O3 = 1,1%
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1160 à 1200°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 22,4%
Co = 19,0%
Ta = 1,4%
Nb = 1,0%
AI =1,9%
Ti = 3,7%
Zr= 0,1%
C = 0,15%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1400°C.
7. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 20,0%
AI = 6,0%
No = 2,0%
W = 3,5%
Zr = 0,19%
B = 0,01%
C = 0,05%
Y203 = 1,1%
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1120 à 1160°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 16,0%
Co = 8,5%
No = 1,75%
W = 2,6%
Ta = 1,75%
Nb = 0,9%
AI = 3,4%
Ti = 3,4%
Zr = 0,1%
B = 0,01%
C=0,11%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1380°C.
8. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 20,0%
AI = 6,0%
Mo = 2,0%
W = 3,5%
Zr = 0,19%
B = 0,01%
C = 0,05%
Y203 = 1,1 %
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1120 à 1160°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 22,4%
Co = 19,0%
W = 2,0%
Ta = 1,4%
Nb = 1,0%
AI = 1,9%
Ti = 3,7%
Zr = 0,1%
C=0,15%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1400°C.
9. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 17,0%
AI = 6,0%
Mo = 2,0% W = 3,5%
Ta = 2,0%
Zr = 0,15%
B = 0,01%
C = 0,05%
Y2O3 = 1,1%
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1130 à 1170°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 16,0%
Co = 8,5%
Mo= 1,75%
W = 2,6%
Ta = 1,75%
Nb = 0,9%
AI = 3,4%
Ti = 3,4%
Zr=0,1%
B = 0,01%
C = 0,11%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1380°C.
10. Procédé suivant la revendication 1, caractérisé en ce que le superalliage à base de nickel durci par dispersion d'oxydes de la pale (1) présente la composition pondérale suivante:
Cr = 17,0%
AI = 6,0%
Mo = 2,0%
W = 3,5%
Ta = 2,0%
Zr=0,15%
B = 0,01%
C = 0,05%
Y203 = 1,1%
Ni = solde
et en ce que la pale (1) est préchauffée à une température de 1130 à 1170°C, en ce qu'en plus le superalliage à base de nickel du pied (7) et de la plaque de couvercle (6) présente la composition pondérale suivante:
Cr = 22,4%
Co = 19,0%
W = 2,0%
Ta = 1,4%
Nb = 1,0%
AI = 1,9%
Ti = 3,7%
Zr = 0,1%
C = 0,15%
Ni = solde
et en ce que la température de coulée du bain de fusion (13) ayant la composition précitée est au maximum de 1400°C.
11. Procédé suivant l'une ou l'autre des revendications 1 à 10, caractérisé en ce que, après son refroidissement à la température ambiante, la pièce entière est à nouveau réchauffée à une température de 1050 à 1200°C et en ce qu'au moins le pied (7) et la plaque de couvercle (6) sont soumis' à un compactage supplémentaire par compression isostatique à chaud, de telle sorte que la pièce est d'abord chauffée à une température qui est au moins 100°C et au plus 150°C plus basse que la température de recristallisation du matériau tant de la pale (1) que de la plaque decouvercle (6) et du pied (7), est ensuite soumise à une pression de 1000 à 3000 bar à cette température pendant 2 à 24 h et est enfin refroidie au moins à une température de 600°C avec une vitesse de 5°C/min au maximum.
12. Aube de turbine à gaz composite, se composant d'un pied (7), d'une pale (1) et d'une plaque (6) ou d'une bande (6) de couvercle, la pale (1) étant constituée d'un superalliage à base de nickel durci par dispersion d'oxydes, à l'état de grosses dendrites longitudinales, caractérisée en ce que le pied (7) et la plaque de couvercle (6) sont constitués d'un superalliage de nickel moulé non durci par dispersion et en ce que le pied (7) et la plaque de couvercle (6) sont fixés de manière purement mécanique par coulée et enrobage au moyen d'évidements (4) et/ou de protubérances (5) prévus dans l'extrémité de pied (3) et dans l'extrémité de tête (2) de la surface latérale de la pale (1) tout en préservant une rupture métallique et sans aucune liaison métallurgique.
13. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que la rupture métallique entre la pale (1) d'une part et la plaque de couvercle (6) et/ou le pied (7) d'autre part consiste en une fente d'une largeur maximale de 5 µm formée en partie d'une couche d'oxyde naturelle et en partie de vides.
14. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que, dans la rupture métallique entre la pale (1) d'une part et le pied (7) et/ou la plaque de couvercle (6) d'autre part, se trouve sur la surface de la première une couche intermédiaire (16) d'un oxyde d'au moins un des éléments Cr, AI, Si, Ti, Zr, d'une épaisseur de 5 µm à 200 µm.
15. Aube de turbine à gaz suivant la revendication 14, caractérisée en ce que la couche intermédiaire (16) est une couche d'au moins 100 µm d'épaisseur, thermoisolate en service et adhérant fermement à la surface de la pale (1) et en ce qu'elle se compose principalement de Al2O3, ou de Zr02 stabilisé au Y203.
16. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que la pale (1) est constituée d'un superalliage à base de nickel durci par dispersion d'oxydes, non durci par précipitation, avec une ductilité accrue perpendiculairement à la direction longitudinale des dendrites.
17. Aube de turbine à gaz suivant la revendica- - tiorr 12, caractérisée en ce que la pale (1) se compose-d'un alliage ayant la composition pondérale suivante:
Cr = 15,0%
AI = 4,5%
Ti = 2,5% Mo = 2,0%
W = 4,0%
Ta = 2,0%
Zr = 0,15%
B = 0,01%
C = 0,05%
Y203 = 1,1%
Ni = solde.
18. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que la pale (1) se compose d'un alliage ayant la composition pondérale suivante:
Cr = 20,0%
AI = 6,0%
Mo = 2,0%
W = 3,5%
Zr = 0,19%
B = 0,01%
C = 0,05%
Y203 = 1,1%
Ni = solde.
19. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que la pale (1) se compose d'un alliage ayant la composition pondérale suivante:
Cr = 17,0%
AI = 6,0%
Mo = 2,0%
W = 3,5%
Ta = 2,0%
Zr = 0,15%
B = 0,01%
C = 0,05%
Y2O3 =1,1%
Ni = solde.
20. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que le pied (7) et la plaque de couvercle (6) se composent d'un alliage ayant la composition pondérale suivante:
Cr = 16,0%
Co = 8,5%
Mo = 1,75%
W = 2,6%
Ta = 1,75%
Nb = 0,9%
AI = 3,4%
Ti = 3,4%
Zr = 0,1%
B = 0,01%
C=0,11%
Ni = solde.
21. Aube de turbine à gaz suivant la revendication 12, caractérisée en ce que le pied (7) et la plaque de couvercle (6) se composent d'un alliage ayant la composition suivante:
Cr = 22,4%
Co = 19,0%
W = 2,0%
Ta = 1,4%
Nb = 1,0%
AI = 1,9%
Ti = 3,7%
Zr = 0,1%
C = 0,15%
Ni = solde.
EP88102415A 1987-03-19 1988-02-19 Procédé de fabrication d'une pale de turbine composite comprenant un pied, une pale et un couvercle, dans laquelle la pale est formée d'un superalliage à base de nickel durci par dispersion et pale de turbine obtenue selon ce procédé Expired - Lifetime EP0285778B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1055/87 1987-03-19
CH1055/87A CH670406A5 (fr) 1987-03-19 1987-03-19

Publications (2)

Publication Number Publication Date
EP0285778A1 EP0285778A1 (fr) 1988-10-12
EP0285778B1 true EP0285778B1 (fr) 1990-08-22

Family

ID=4201394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102415A Expired - Lifetime EP0285778B1 (fr) 1987-03-19 1988-02-19 Procédé de fabrication d'une pale de turbine composite comprenant un pied, une pale et un couvercle, dans laquelle la pale est formée d'un superalliage à base de nickel durci par dispersion et pale de turbine obtenue selon ce procédé

Country Status (5)

Country Link
US (1) US4869645A (fr)
EP (1) EP0285778B1 (fr)
JP (1) JPS63252663A (fr)
CH (1) CH670406A5 (fr)
DE (1) DE3860472D1 (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934583A (en) * 1988-03-28 1990-06-19 General Electric Company Apparatus for bonding an article projection
US5209645A (en) * 1988-05-06 1993-05-11 Hitachi, Ltd. Ceramics-coated heat resisting alloy member
US5238046A (en) * 1990-09-20 1993-08-24 Magotteaux International Method of manufacturing a bimetal casting and wearing part produced by this method
GB9112043D0 (en) * 1991-06-05 1991-07-24 Sec Dep For The Defence A titanium compressor blade having a wear resistant portion
FR2712307B1 (fr) * 1993-11-10 1996-09-27 United Technologies Corp Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication.
US5778960A (en) * 1995-10-02 1998-07-14 General Electric Company Method for providing an extension on an end of an article
US5676191A (en) * 1996-06-27 1997-10-14 General Electric Company Solidification of an article extension from a melt using an integral mandrel and ceramic mold
US5673745A (en) * 1996-06-27 1997-10-07 General Electric Company Method for forming an article extension by melting of an alloy preform in a ceramic mold
US5743322A (en) * 1996-06-27 1998-04-28 General Electric Company Method for forming an article extension by casting using a ceramic mold
US5673744A (en) * 1996-06-27 1997-10-07 General Electric Company Method for forming an article extension by melting of a mandrel in a ceramic mold
US5820348A (en) 1996-09-17 1998-10-13 Fricke; J. Robert Damping system for vibrating members
US5822852A (en) * 1997-07-14 1998-10-20 General Electric Company Method for replacing blade tips of directionally solidified and single crystal turbine blades
DE19741637A1 (de) * 1997-09-22 1999-03-25 Asea Brown Boveri Verfahren zum Schweissen von aushärtbaren Nickel-Basis-Legierungen
CN1278200A (zh) 1997-10-27 2000-12-27 西门子西屋动力公司 铸造超级合金的接合方法
US6325871B1 (en) 1997-10-27 2001-12-04 Siemens Westinghouse Power Corporation Method of bonding cast superalloys
US6616410B2 (en) 2001-11-01 2003-09-09 General Electric Company Oxidation resistant and/or abrasion resistant squealer tip and method for casting same
FR2833197B1 (fr) * 2001-12-06 2004-02-27 Snecma Moteurs Procede de fabrication d'un anneau aubage
DE10305912B4 (de) * 2003-02-13 2014-01-30 Alstom Technology Ltd. Hybrid- Schaufel für thermische Turbomaschinen
EP1489264A1 (fr) * 2003-06-18 2004-12-22 Siemens Aktiengesellschaft Aube constituèe des modules
FR2868467B1 (fr) 2004-04-05 2006-06-02 Snecma Moteurs Sa Carter de turbine a crochets refractaires obtenu par procede mdp
EP1764479A1 (fr) 2005-09-15 2007-03-21 ALSTOM Technology Ltd Plaques de virole couplées pour une série d'aubes d'une turbomachine
US7334995B2 (en) 2005-11-22 2008-02-26 Siemens Power Generation, Inc. Turbine blade assembly and method of manufacture
EP1905954A1 (fr) * 2006-09-20 2008-04-02 Siemens Aktiengesellschaft Aube de turbine
US7972113B1 (en) * 2007-05-02 2011-07-05 Florida Turbine Technologies, Inc. Integral turbine blade and platform
US8215900B2 (en) * 2008-09-04 2012-07-10 Siemens Energy, Inc. Turbine vane with high temperature capable skins
US8047771B2 (en) * 2008-11-17 2011-11-01 Honeywell International Inc. Turbine nozzles and methods of manufacturing the same
EP2233692A1 (fr) * 2009-03-27 2010-09-29 Siemens Aktiengesellschaft Rotor de turbomachine axiale doté d'un refroidissement d'aube
US8914976B2 (en) 2010-04-01 2014-12-23 Siemens Energy, Inc. Turbine airfoil to shroud attachment method
US8714920B2 (en) 2010-04-01 2014-05-06 Siemens Energy, Inc. Turbine airfoil to shround attachment
US8721290B2 (en) * 2010-12-23 2014-05-13 General Electric Company Processes for producing components containing ceramic-based and metallic materials
US9228445B2 (en) 2010-12-23 2016-01-05 General Electric Company Turbine airfoil components containing ceramic-based materials and processes therefor
US8777582B2 (en) 2010-12-27 2014-07-15 General Electric Company Components containing ceramic-based materials and coatings therefor
US8777583B2 (en) 2010-12-27 2014-07-15 General Electric Company Turbine airfoil components containing ceramic-based materials and processes therefor
US8740571B2 (en) 2011-03-07 2014-06-03 General Electric Company Turbine bucket for use in gas turbine engines and methods for fabricating the same
EP2574723A1 (fr) * 2011-09-30 2013-04-03 Alstom Technology Ltd Procédé de transformation pour turbine à vapeur et dispositif associé
EP3513889B1 (fr) 2012-12-14 2021-04-14 Raytheon Technologies Corporation Alliage et aube de turbine hybride pour une performance ou une architecture de moteur améliorée
SG11201503471RA (en) 2012-12-14 2015-06-29 United Technologies Corp Multi-shot casting
US10436039B2 (en) * 2013-11-11 2019-10-08 United Technologies Corporation Gas turbine engine turbine blade tip cooling
US9970307B2 (en) 2014-03-19 2018-05-15 Honeywell International Inc. Turbine nozzles with slip joints impregnated by oxidation-resistant sealing material and methods for the production thereof
US9987700B2 (en) 2014-07-08 2018-06-05 Siemens Energy, Inc. Magnetically impelled arc butt welding method having magnet arrangement for welding components having complex curvatures
EP3177425B1 (fr) 2014-08-08 2018-09-26 Siemens Aktiengesellschaft Methode d'assemblage de pieces metalliques pour former un composant dans un moteur de turbine a gaz en utilisant chaleur et pression pour modifier la forme d'une piece pour remplir un espace dans l'autre piece
JP6773747B2 (ja) * 2018-10-18 2020-10-21 ファナック株式会社 射出成形機の機台
JP7144374B2 (ja) * 2019-07-29 2022-09-29 日立Geニュークリア・エナジー株式会社 トランジションピースの製造方法およびトランジションピース
US11156113B2 (en) * 2020-01-15 2021-10-26 Honeywell International Inc. Turbine nozzle compliant joints and additive methods of manufacturing the same
CN112247630A (zh) * 2020-09-30 2021-01-22 西安三航动力科技有限公司 一种用于薄壁叶片叶尖加工的低熔点合金浇注夹具及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1245810A (en) * 1914-03-05 1917-11-06 Westinghouse Electric & Mfg Co Tying means for turbine-blades.
US2834537A (en) * 1954-01-18 1958-05-13 Ryan Aeronautical Co Compressor stator structure
NL301760A (fr) * 1962-12-14
US3342455A (en) * 1964-11-24 1967-09-19 Trw Inc Article with controlled grain structure
CH480445A (de) * 1967-12-12 1969-10-31 Bbc Brown Boveri & Cie Verfahren zum Umgiessen von Maschinenteilen aus Stahl mit Gusseisen
CH602330A5 (fr) * 1976-08-26 1978-07-31 Bbc Brown Boveri & Cie
US4169726A (en) * 1977-12-21 1979-10-02 General Electric Company Casting alloy and directionally solidified article
US4370789A (en) * 1981-03-20 1983-02-01 Schilke Peter W Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process
SE446606B (sv) * 1981-08-27 1986-09-29 Stal Laval Turbin Ab Sett att framstella skovelringar och skivor med skovlar for roterande maskiner sasom kompressorer eller turbiner
US4528048A (en) * 1982-12-06 1985-07-09 United Technologies Corporation Mechanically worked single crystal article
US4538331A (en) * 1983-02-14 1985-09-03 Williams International Corporation Method of manufacturing an integral bladed turbine disk
US4594761A (en) * 1984-02-13 1986-06-17 General Electric Company Method of fabricating hollow composite airfoils
US4677035A (en) * 1984-12-06 1987-06-30 Avco Corp. High strength nickel base single crystal alloys

Also Published As

Publication number Publication date
JPS63252663A (ja) 1988-10-19
CH670406A5 (fr) 1989-06-15
DE3860472D1 (de) 1990-09-27
US4869645A (en) 1989-09-26
EP0285778A1 (fr) 1988-10-12

Similar Documents

Publication Publication Date Title
EP0285778B1 (fr) Procédé de fabrication d'une pale de turbine composite comprenant un pied, une pale et un couvercle, dans laquelle la pale est formée d'un superalliage à base de nickel durci par dispersion et pale de turbine obtenue selon ce procédé
EP1065026B1 (fr) Procédé pour fabriquer ou réparer les canaux de refroidissement d' un élement monocristallin d' un turbine à gas
DE69826323T2 (de) Turbinenbauteile mit dünnen folien die auf ein substrat aus superlegierung aufgebracht sind
EP0290898B1 (fr) Procédé de fabrication de pièces de dimensions quelconques en superalliage à base de nickel durci par dispersion d'oxydes à cristaux basaltiques grossiers orientés
EP1828544B1 (fr) Procede de production d'un composant comprenant un canal incorpore et composant
DE60122579T2 (de) Metallische hongiwabenförmige dichtung für turbomaschinen
EP3216547B1 (fr) Procede de fabrication d'une aube de turbomachine
DE4440229C2 (de) Verfahren zum Herstellen von gegen Rißbildung widerstandsfähigen hochfesten Superlegierungsgegenständen
DE1426378A1 (de) Mit dem Gas in Beruehrung kommende Schaufel eines Gasturbinentriebwerks und Giessverfahren zu ihrer Herstellung
DE2637443C2 (fr)
EP3468740B1 (fr) Procédé d'assemblage de matériaux utilisant une structure grillagée réalisée par fabrication additive
EP0145897A1 (fr) Procédé d'assemblage
DE2122353B2 (de) Gasturbinenschaufel
EP0574708B1 (fr) Elément pour température élevée, en particulier aube de turbine et procédé de fabrication de cet élément
DE102017215321A1 (de) Verfahren zur herstellung eines titanaluminid - bauteils mit zähem kern und entsprechend hergestelltes bauteil
DE3331806C2 (fr)
CH620945A5 (fr)
WO2013053581A1 (fr) Procédé d'application d'une couche de protection contre l'usure sur un composant de turbomachine
EP1481747A2 (fr) Procédé de fabrication d'une pièce chargée par chaleur et piéce
DE2534050A1 (de) Verfahren zum verbinden von zwei metallischen formteilen
DE3831692A1 (de) Verfahren zum verbinden von deckplatte und/oder fussstueck einerseits mit dem schaufelblatt andererseits einer turbinenschaufel mittels eines loet- oder fuegeprozesses
DE3446176A1 (de) Verfahren zur waermebehandlung von superlegierungen vor dem isostatischen warmpressen
DE1911049C3 (de) Gasturbinenschaufel und Verfahren zu ihrer Herstellung
DE102016214208B4 (de) Verfahren zur Herstellung einer Kanalstruktur und Komponente
DE2201098A1 (de) Aus vielen Komponenten aufgebauter Metallfluegel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI SE

17P Request for examination filed

Effective date: 19890211

17Q First examination report despatched

Effective date: 19891102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI SE

REF Corresponds to:

Ref document number: 3860472

Country of ref document: DE

Date of ref document: 19900927

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910128

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910524

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920229

Ref country code: CH

Effective date: 19920229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930113

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930421

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

EUG Se: european patent has lapsed

Ref document number: 88102415.2

Effective date: 19920904