EP0283963A2 - Compresseur à plateau en biais avec mécanisme à déplacement variable - Google Patents

Compresseur à plateau en biais avec mécanisme à déplacement variable Download PDF

Info

Publication number
EP0283963A2
EP0283963A2 EP88104389A EP88104389A EP0283963A2 EP 0283963 A2 EP0283963 A2 EP 0283963A2 EP 88104389 A EP88104389 A EP 88104389A EP 88104389 A EP88104389 A EP 88104389A EP 0283963 A2 EP0283963 A2 EP 0283963A2
Authority
EP
European Patent Office
Prior art keywords
chamber
compressor
cylinder block
plate
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88104389A
Other languages
German (de)
English (en)
Other versions
EP0283963B1 (fr
EP0283963A3 (en
Inventor
Hideto Kobayashi
Kiyoshi Terauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Publication of EP0283963A2 publication Critical patent/EP0283963A2/fr
Publication of EP0283963A3 publication Critical patent/EP0283963A3/en
Application granted granted Critical
Publication of EP0283963B1 publication Critical patent/EP0283963B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a refrigerant compres­sor, and more particularly, to a wobble plate type piston com­pressor for an air conditioning system in which the compressor includes a mechanism for adjusting the capacity of the compressor.
  • thermal con­trol is accomplished by intermittent operation of the compres­sor in response to a signal from a thermostat located in the room being cooled.
  • the refrigerant capacity of the air conditioning system generally need not be very large in order to handle supplementary cooling due to further tem­perature changes in the room or for keeping the room at the desired temperature.
  • the most common technique for controlling the output of the compressor is by intermittent operation of the compressor.
  • intermittent operation of the compressor results in intermittent application of a relatively large load to the driving mechanism of the compres­sor in order to drive the compressor.
  • passageway 391 adds to the manufac­turing cost of the compressor. Furthermore, the formation of passageway 391 through cylinder block 101 tends to decrease the mechanical strength and structural integrity of cylinder block 101.
  • the mechanical strength and structural integrity of the cylinder block in a wobble plate type compressor is of considerable importance due to the high pressures which are present inside the cylinder block during operation of the com­pressor.
  • the diameter of the cylinder block 101 must be enlarged, further adding to manufacturing cost, weight and overall size of the compressor.
  • One embodiment of this invention is providing a refrigerant compressor wherein the central bore connects a part of the communicating path with a female thread portion for an adjusting screw which adjusts the axial location of the compressor drive shaft.
  • a refrigerant compressor which includes a housing having a cylinder block with a plurality of cylinders and a crank chamber adjacent the cylinder block.
  • a piston is slidably disposed within each cylinder and is reciprocated by a wobble plate driven by an input cam rotor.
  • the cam rotor is provided with an adjustable slant plate which includes a slop­ing surface at an adjustable slant angle in close proximity to the wobble plate.
  • a drive shaft is connected to the cam rotor and is rotatably supported by the compressor housing.
  • a front end plate which rotatably supports the drive shaft through a bearing, is disposed on an opening of the crank chamber.
  • a rear end plate which is disposed on the opposite end of the housing, includes a suction chamber and a discharge chamber for refrigerant.
  • the rear end plate is fixed on the housing together with a valve plate.
  • a central bore is formed at the center of the cylinder block, wherein the drive shaft is also rotatably supported.
  • An adjusting screw is screwed into the central bore to adjust the axial location of the drive shaft.
  • a portion of a communicating path between the crank chamber and the suction chamber is formed at the central bore. Open­ing and closing of the communicating path is controlled by a valve control mechanism.
  • the angle of the sloping surface of the slant plate can be changed in response to a change in pressure in the crank chamber.
  • the stroke of the piston may be controlled to adjust the capacity of the compressor.
  • An axially penetrating hole in the cylinder block is not anymore necessary.
  • the compressor 1 includes a closed cylindrical housing assembly 10 formed by a cylinder block 101, a crank chamber 13 within the cylinder block 101, a front end plate 11 and a rear end plate 25.
  • the front end plate 11 is mounted on the left end portion of the crank chamber 13, as shown in Figure 1, by a plurality of bolts (not shown).
  • the rear end plate 25 and a valve plate 24 are mounted on cylinder block 101 by a plurality of bolts (not shown).
  • An opening 111 is formed in front end plate 11 for receiving drive shaft 12.
  • Drive shaft 12 is rotatably supported by front end plate 11 through a bearing 20 which is disposed within opening 111.
  • the inner end portion of drive shaft 12 is also rotatably sup­ported by cylinder block 101 through a bearing 23 which is dis­posed within a central bore 102.
  • Central bore 102 is a cavity formed in the center portion of cylinder block 101.
  • a thrust needle bearing 22a is disposed between the inner end surface of front end plate 11 and the adjacent axial end surface of a cam rotor (input drive rotor) 14.
  • Cam rotor 14 is fixed on drive shaft 12 by a pin member 15 which penetrates cam rotor 14 and drive shaft 12.
  • Cam rotor 14 is provided with an arm 141 having slot 142.
  • a slant plate 16 has an opening 161 through which passes drive shaft 12.
  • An axial annular projection 162 extends from the circumference of open­ing 161 in the front end surface of slant plate 16.
  • Slant plate 16 includes an arm 163 having a pin 21 which is inserted in slot 142.
  • Cam rotor 14 and slant plate 16 are joined by the hinged joint of pin 21 and slot 142. The pin 21 is able to slide within slot 142 so that the angular position of slant plate 16 can be changed with respect to the longitudinal axis of drive shaft 12.
  • a wobble plate 17 is rotatably mounted on slant plate 16.
  • the rotation of wobble plate 17 is prevented by a fork-shaped slider 172 which is attached to the outer peripheral end of wobble plate 17 and is slidably mounted on a sliding rail 173 held between front end plate 11 and cylinder block 101.
  • wobble plate 17 wobbles in a non-rotating manner in spite of the rotation of cam rotor 14.
  • Cylinder block 101 has a plurality of annularly arranged cylinder chambers 32 in which respective pistons 33 slide. All pistons 33 are connected to wobble plate 17 by a corre­sponding plurality of connecting rods 34. A ball 34a at one end of rod 34 is received in a socket 331 of pistons 33 and ball 34b at the other end of rod 34 is received in a socket 171 of wobble plate 17. It should be understood that, although only one such ball socket connection is shown in the drawing, there are a plurality of sockets arranged peripherally around wobble plate 17 to receive the balls of various rods, and that each piston 33 is formed with a socket for receiving the other ball of rods 34.
  • Rear end plate 25 is shaped to define suction chamber 35 and a discharge chamber 36.
  • the axial position of drive shaft 12 can be adjusted by an adjusting screw 27 into a threaded portion 41 of central bore 102. That is to say, the axial clearance between cam rotor 14 and front end plate 11 through bearing 22a can be adjusted by adjusting screw 27.
  • Central bore 102 is partitioned into a front chamber 102a and a rear chamber 102b by adjusting screw 27.
  • Front cham­ber 102a communicates with crank chamber 13.
  • a plurality of axial grooves 42 are formed at inner peripheral threaded por­tion 41 of central bore 102 to communicate between front cham­ber 102a and rear chamber 102b of central bore 102.
  • a groove 43 is formed at the front end surface of cylinder block 101 facing gasket 37. Groove 43 extends radially from rear chamber 102b of central bore 102 to a pressure sensitive chamber 44 which is formed in the cylinder block 101. There­fore the crank chamber 13 communicates with pressure sensitive chamber 44 through grooves 42 and groove 43. A hole 45 is formed through gasket 37, valve plate 24 and gasket 38 to con­nect pressure sensitive chamber 44 and suction chamber 35. A bellows valve device 46 is fixed to one surface of pressure sensitive chamber 44 with a valve 461 arranged to close off hole 45 in response to the pressure within pressure sensitive cham­ber 44.
  • bellows valve device 46 The operation of bellows valve device 46 is as fol­lows:
  • the pressure within crank chamber 13 is communicated to pressure sensitive chamber 44 through grooves 42 and 43.
  • the pressure within pressure sensitive chamber 44 is the same as the pressure within crank chamber 13.
  • the bellows of the bellows valve device 46 expands causing valve 461 to close hole 45. Therefore when the compressor is not being driven, the pres­sure within crank chamber 13 is balanced pressure, valve 461 of the bellows valve device 46 closes the hole 45.
  • the bellows of bel­lows valve device 46 is compressed causing valve 461 to open hole 45.
  • drive shaft 12 is rotated by the engine of the vehicle through an electromag­netic clutch.
  • Cam rotor 14 is rotated together with drive shaft 12 to cause a non-rotating wobbling motion of wobble plate 17.
  • Rotating motion of wobble plate 17 is prevented by fork-shaped slider 172 which is attached to the outer periph­eral end of wobble plate 17 and is slidably mounted on sliding rail 173 held between front end plate 11 and cylinder block 101.
  • a wobble plate 17 moves, pistons 33 reciprocate out of phase in their respective cylinders 32.
  • the refrigerant gas which is introduced into suc­tion chamber 35 from a fluid inlet port 35a, is taken into each cylinder 32 and compressed.
  • the compressed refrigerant is discharged to discharge chamber 36 from each cylinder 32 through discharge port 24b, and therefrom into an external fluid circuit, for example, a cooling circuit, through a fluid outlet port 36b.
  • crank chamber 13 At the beginning of compressor operation, hole 45 is closed by valve 461 of the bellows valve device 46 because the pressure within crank chamber 13 is low. As the compressor operates, the pressure within crank chamber 13 gradually rises to create a small pressure difference between crank chamber 13 and suction chamber 35. This pressure difference occurs because blow-by gas, which leaks from the cylinder chambers to crank chamber 13 through a gap between pistons 33 and cyl­inders 32 during the compression stroke, is contained in crank chamber 13.
  • pistons 33 The movement of pistons 33 is hindered by the pressure difference between crank chamber 13 and suction cham­ber 35, i.e., as the pressure in the crank chamber approaches the mid-pressure of the compressed gas in the cylinder cham­bers during the suction stroke, movement of the pistons is hindered because the slant angle of slant plate 16 gradually decreases until it approaches zero, i.e., slant plate 16 would be perpendicular to the drive shaft 12. As the slant angle of slant plate 16 decreases, the stroke of pistons 33 in the cylinders 32 is reduced and the capacity of the compressor gradually decreases.
  • crank chamber 13 When the pressure of crank chamber 13 and pressure sen­sitive chamber 44 rises over the predetermined pressure, the bellows of bellows valve device 46 is sufficiently compressed and valve 461 of bellows valve device 46 opens hole 45. Simul­taneously, crank chamber 13 communicates with suction chamber 35 through a central bore 120 via grooves 42 and groove 43 formed at the front end surface of cylinder block 101, pres­sure sensitive chamber 44 and hole 45. Accordingly, the pres­sure of crank chamber 13 falls to the pressure of suction chamber 35. In this condition, wobble plate 17 usually is urged toward slant plate 16 during the compression stroke of the pistons 33 so that slant plate 16 moves toward rotor 14.
  • the bellows valve device 46 is dis­posed in pressure sensitive chamber 44 formed in the cylinder block 101. Bellows valve device 46 also may be disposed in suction chamber 35 as shown in Figure 3. In the embodiment shown in Figure 3, the opening and closing of hole 45 are accordingly controlled by the change of pressure in suction chamber 35.
  • annular shim 51 is disposed between adjusting screw 27 screwed into the threaded portion 41 of central bore 102 and the inner end of the drive shaft 12. Shim 51 prevents friction which would otherwise occur by the contact of rotating drive shaft 12 with adjusting screw 27.
  • An annular thrust bearing 61 may also be used in place of shim 51 as shown in Figure 5.
  • a refrigerant compressor 1 is shown in accordance with a further embodiment of the present invention.
  • an electromagnetic valve 40 is disposed in suction chamber 35 in place of bellows valve device 46 which is shown in Figure 3.
  • an adjusting screw 271 is shown in accordance with another embodiment of the present inven­tion.
  • a plurality of axial grooves 421 are formed at an outer peripheral surface of adjusting screw 271 to communicate the front chamber 102a and rear chamber 102b of central bore 102.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
EP88104389A 1987-03-24 1988-03-18 Compresseur à plateau en biais avec mécanisme à déplacement variable Expired - Lifetime EP0283963B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP42022/87U 1987-03-24
JP1987042022U JPH0649918Y2 (ja) 1987-03-24 1987-03-24 容量可変型圧縮機

Publications (3)

Publication Number Publication Date
EP0283963A2 true EP0283963A2 (fr) 1988-09-28
EP0283963A3 EP0283963A3 (en) 1989-08-02
EP0283963B1 EP0283963B1 (fr) 1991-07-31

Family

ID=12624541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88104389A Expired - Lifetime EP0283963B1 (fr) 1987-03-24 1988-03-18 Compresseur à plateau en biais avec mécanisme à déplacement variable

Country Status (5)

Country Link
EP (1) EP0283963B1 (fr)
JP (1) JPH0649918Y2 (fr)
KR (1) KR960012113B1 (fr)
AU (1) AU606139B2 (fr)
DE (1) DE3863949D1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960367A (en) * 1987-11-27 1990-10-02 Sanden Corporation Slant plate type compressor with variable displacement mechanism
US6074173A (en) * 1997-09-05 2000-06-13 Sanden Corporation Variable displacement compressor in which a liquid refrigerant can be prevented from flowing into a crank chamber
US6129519A (en) * 1997-08-08 2000-10-10 Sanden Corporation Variable displacement compressor in which a displacement control is improved at an initial stage of the start-up thereof
EP1275847A2 (fr) * 2001-07-13 2003-01-15 Kabushiki Kaisha Toyota Jidoshokki Système d'étanchéité pour compresseur
WO2013055243A1 (fr) 2011-10-10 2013-04-18 Ejma Janusz Marcin Machine dotée d'un dispositif de manipulation d'outil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116557256A (zh) * 2023-07-10 2023-08-08 耐力股份有限公司 车用无油空气压缩机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545581A1 (de) * 1984-12-28 1986-07-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi Taumelscheibenkompressor mit variablem hub
EP0190013A2 (fr) * 1985-01-25 1986-08-06 Sanden Corporation Compresseur à volume variable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135680A (ja) * 1983-12-23 1985-07-19 Sanden Corp 揺動式圧縮機
JPS61215468A (ja) * 1985-03-20 1986-09-25 Toyoda Autom Loom Works Ltd 可変容量圧縮機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545581A1 (de) * 1984-12-28 1986-07-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi Taumelscheibenkompressor mit variablem hub
EP0190013A2 (fr) * 1985-01-25 1986-08-06 Sanden Corporation Compresseur à volume variable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960367A (en) * 1987-11-27 1990-10-02 Sanden Corporation Slant plate type compressor with variable displacement mechanism
US6129519A (en) * 1997-08-08 2000-10-10 Sanden Corporation Variable displacement compressor in which a displacement control is improved at an initial stage of the start-up thereof
US6074173A (en) * 1997-09-05 2000-06-13 Sanden Corporation Variable displacement compressor in which a liquid refrigerant can be prevented from flowing into a crank chamber
EP1275847A2 (fr) * 2001-07-13 2003-01-15 Kabushiki Kaisha Toyota Jidoshokki Système d'étanchéité pour compresseur
EP1275847A3 (fr) * 2001-07-13 2003-05-21 Kabushiki Kaisha Toyota Jidoshokki Système d'étanchéité pour compresseur
US6699017B2 (en) 2001-07-13 2004-03-02 Kabushiki Kaisha Toyota Jidoshokki Restriction structure in variable displacement compressor
WO2013055243A1 (fr) 2011-10-10 2013-04-18 Ejma Janusz Marcin Machine dotée d'un dispositif de manipulation d'outil

Also Published As

Publication number Publication date
KR960012113B1 (ko) 1996-09-12
AU606139B2 (en) 1991-01-31
EP0283963B1 (fr) 1991-07-31
DE3863949D1 (de) 1991-09-05
JPS63150090U (fr) 1988-10-03
JPH0649918Y2 (ja) 1994-12-14
KR880011469A (ko) 1988-10-28
AU1339788A (en) 1988-09-22
EP0283963A3 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
US4586874A (en) Refrigerant compressor with a capacity adjusting mechanism
US4664604A (en) Slant plate type compressor with capacity adjusting mechanism and rotating swash plate
US4632640A (en) Wobble plate type compressor with a capacity adjusting mechanism
US4874295A (en) Slant plate type compressor with variable displacement mechanism
US5165863A (en) Slant plate type compressor with variable capacity control mechanism
CA1296912C (fr) Circuit frigorigene a mecanisme regulateur de debit
EP0340024B1 (fr) Compresseur du type à plateau en biais avec mécanisme à déplacement variable
US5137431A (en) Lubricating mechanism and method for a piston assembly of a slant plate type compressor
US4960367A (en) Slant plate type compressor with variable displacement mechanism
US4880360A (en) Variable displacement compressor with biased inclined member
GB2153922A (en) Compressor capacity control
EP0869281B1 (fr) Appareil de déplacement de fluide avec mécanisme à déplacement variable
EP0300831B1 (fr) Compresseur à plateau en biais avec mécanisme à déplacement variable
EP0309242A2 (fr) Système frigorifique muni d'un compresseur avec un mécanisme de déplacement variable commandé du dedans et du dehors
EP0257784A1 (fr) Compresseur à plateau disposé en biais avec mécanisme à déplacement variable
US4502844A (en) Refrigerant compressor with mechanism for adjusting capacity of the compressor
EP0283963B1 (fr) Compresseur à plateau en biais avec mécanisme à déplacement variable
EP0318976B1 (fr) Compresseur à plateau en biais avec mécanisme à déplacement variable
EP0339897B1 (fr) Compresseur du type à plateau en biais avec mécanisme à déplacement variable
EP0499342B1 (fr) Compresseur à plateau oscillant
US5174727A (en) Slant plate type compressor with variable displacement mechanism

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890706

17Q First examination report despatched

Effective date: 19900629

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3863949

Country of ref document: DE

Date of ref document: 19910905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88104389.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970313

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970319

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980318

EUG Se: european patent has lapsed

Ref document number: 88104389.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070315

Year of fee payment: 20