EP0279746B1 - Plasma panel having four electrodes per elementary image point, and method of controlling such a plasma panel - Google Patents

Plasma panel having four electrodes per elementary image point, and method of controlling such a plasma panel Download PDF

Info

Publication number
EP0279746B1
EP0279746B1 EP88400354A EP88400354A EP0279746B1 EP 0279746 B1 EP0279746 B1 EP 0279746B1 EP 88400354 A EP88400354 A EP 88400354A EP 88400354 A EP88400354 A EP 88400354A EP 0279746 B1 EP0279746 B1 EP 0279746B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
electrode
signals
elementary image
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400354A
Other languages
German (de)
French (fr)
Other versions
EP0279746A1 (en
Inventor
Michel Gay
Louis Delgrange
Michel Specty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0279746A1 publication Critical patent/EP0279746A1/en
Application granted granted Critical
Publication of EP0279746B1 publication Critical patent/EP0279746B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention relates to plasma panels of the alternative type. It also relates to methods of controlling these panels.
  • Plasma panels of the alternative type consist, as shown diagrammatically in FIG. 1, of two glass slabs 1 and 2 each carrying a network of electrodes parallel to each other xi, x 2 , X3 ..., yi, y 2 , ys ..., which are covered with a dielectric layer 3.
  • the two tiles are mounted and sealed so that the two arrays of electrodes are perpendicular to each other and that there is a very small distance between the two dielectric layers facing each other 3.
  • This space between the two dielectric layers is filled with a gas, generally based on neon.
  • Each elementary image point is defined by the intersection of two perpendicular electrodes.
  • the information is displayed by repeated ignition of a luminescent discharge within the gas by means of addressing and maintenance signals conveyed by the electrodes.
  • the addressing signals make it possible to create discharges or to eliminate the possibility of subsequent discharges for the elementary points of selected images.
  • the maintenance signals allow the creation of periodic discharges for the elementary points of images which are lit.
  • Each elementary image point is defined by two parallel and coplanar electrodes X and Y and by an electrode Z perpendicular to the other two.
  • the three electrodes X, Y and Z are carried by the same glass slab 1.
  • the dielectric layer 3 isolates the electrodes X and Y from the electrode Z and also covers the electrode Z. Consequently, the glass slab 2 does not carry any electrode and can therefore receive phosphors, emitting by photoluminescence, the desired color or colors.
  • the addressing signals are applied to the crossed electrodes Z and X or Z and Y and the maintenance signals are applied to the parallel electrodes X and Y. Maintenance is therefore carried out by creating lateral discharges between the two electrodes X and Y , parallel and coplanar.
  • Patent applications EP-A 135,382 and EP-A 157,248 describe methods for controlling the plasma panels shown in FIG. 2. These methods make it possible to reduce the number of control circuits, but in return the number of connections can be increased .
  • the number of control circuits varies between 64 (32 x 2) and 1025 (1024 + 1) and the number of connections varies between 1056 (1024 + 32) and 1025.
  • control circuits are complex because the same X or Y electrodes are used both for addressing and for maintenance, and while the address signals are weak, service signals are strong.
  • the present invention relates to a new plasma panel structure of the alternative type.
  • the present invention relates to an alternating type plasma panel, comprising a plurality of elementary image points, each point being defined by electrodes perpendicular to each other, connected to circuits supplying in operation address signals and signals.
  • maintenance at each elementary image point characterized in that each elementary image point is defined by three parallel and coplanar electrodes and by an electrode perpendicular to the other three, separated from the other three at least by a dielectric layer, two of the three parallel electrodes being connected to circuits supplying, in operation the maintenance signals, to each elementary image point, while the electrode perpendicular to the other three and that of the three electrodes parallel to each other which is not connected to a circuit supplying maintenance signals in operation, are connected to circuits supplying in operation the addressing signals to each elementary image point.
  • the invention also relates to methods of communication. command of such a plasma panel.
  • each elementary image point is defined by four electrodes, as shown diagrammatically in FIG. 3.
  • FIG. 3 it is shown that an elementary image point is defined on the one hand by three parallel electrodes G, D, X and on the other hand by an electrode Y perpendicular to the other three.
  • the three electrodes G, D, X are located in the same plane, on the same support, which can be one of the two glass slabs 1 or 2 that the panel contains - see for example in FIG. 1 relating to the Prior Art, the two glass slabs which bear the references 1 and 2.
  • the electrode Y is separated from the three other electrodes G, D, X at least by a dielectric layer.
  • the electrode Y is carried by the same glass slab 1 or 2 as the electrodes G, D, X; in this case a dielectric layer not shown in Figure 3, separates the electrodes G, D, X and Y and also covers the electrode or electrodes located towards the inside of the panel.
  • the electrode Y can also be carried by the other glass slab than that which carries the electrodes G, D, X. In this case a layer of dielectric covers the electrode Y and another layer of dielectric covers the electrodes G, D, X. In FIG. 1, these dielectric layers which cover the electrodes have been designated by the reference 3.
  • Two of the three parallel electrodes for example the electrodes G and D are used to convey the maintenance signals. It is therefore a coplanar type interview.
  • the two perpendicular electrodes X and Y are used to convey the addressing signals.
  • the addressing and maintenance functions are fulfilled by separate electrodes, which makes it possible to use electronic circuits well suited to the high power required by the signal signals. Maintenance and at the low power required by the addressing signals allowing the use of high impedance circuits. It is also clear that the plasma panels according to the invention make it possible to address each elementary image point separately, since the addressing of each point is carried out by two given perpendicular electrodes. Addressing can of course also be done line by line.
  • FIG 4 there is shown schematically, that is to say only by its electrodes, a plasma panel according to the invention.
  • the panel in FIG. 4 has four rows and four columns of elementary image points.
  • each elementary image point is defined by four electrodes Y and G, D, X.
  • the electrodes used have been designated by Y 1 to Y 4 , G 1 to G 4 , Di to D 4 and Xi to X 4 .
  • the electrodes Gi to G 4 on the one hand and Di to D 4 on the other hand are connected together and create two networks called G and D.
  • the creation of the two networks D and G makes it possible to limit to two the number of circuits E 1 and E 2 , providing in operation the maintenance signals at each elementary image point, and necessary for the operation of the panel. In addition, the number of panel connections is reduced.
  • the electrodes Yi to Y 4 and Xi to X 4 are connected to circuits called Ai to A 8 which supply in operation the addressing signals at each elementary image point.
  • FIG. 5a it has been indicated how the different phases 1, 2, 3, 4, 5 which the control of the panel comprises are distributed as a function of time t, plotted on the abscissa.
  • Phase 1 is an initialization phase during which a discharge is created between all the electrodes X i and Yj of the panel so as to conduct charges of a given sign towards each electrode Xi. These charges are located in the space corresponding to the intersection of the electrodes Xi and Yj. for this, we see in Figures 5a and b that during phase 1, we apply to the electrode Yj a positive voltage pulse of value + Vy and we apply to the electrode X j a negative voltage pulse of value - Vx, Vy and Vx being positive values. Between the electrodes Xi and Yj considered, a sufficient potential difference is created to create a discharge.
  • the charges created on the electrode Xi are carried out during phase 1 on the electrode D. This is achieved by maintaining the reference potential taken equal to OV for example, the electrodes Yj and G and by applying to the electrodes X i and D slots of voltage of amplitude successively equal to + V 1 and -V 2 and in phase opposition on the electrodes Xi and D.
  • a discharge or an odd number of discharges Each discharge has the effect of reversing the sign of the charges thus transferred to the electrode D. An odd number of discharges leads to an identical and very stable result.
  • Phase 3 is an addressing phase during which it is possible to create a discharge between the electrodes Xi and Yj, if one wishes to light a given elementary image point. We therefore carry out a selective addressing of each elementary image point which is also called random addressing.
  • the electrodes D and G are at 0 Volt during phase 3.
  • the electrode Yj receives a pulse of voltage equal to + Vy.
  • the electrode Xi it changes to -Vx if it is desired to set the elementary image point under consideration to the on state. If one wishes to extinguish an elementary image point or keep it in the extinguished state, it suffices that the two voltages indicated above are not present simultaneously on the two electrodes Yj and Xi.
  • phase 3 in the event of the ignition of the elementary image point, there is inversion of the charges stored on the electrode Xi.
  • phase 4 there is a succession of discharges between the electrodes Xi and D. This is obtained by applying to these electrodes voltage slots, in phase opposition, of amplitude successively equal to + Vi and -V 2 .
  • Phase 5 is a maintenance phase during which the electrodes Yj and Xi are at the reference potential, equal to 0 Volt for example and the electrodes D and G receive voltage slots in phase opposition, of equal amplitude successively at + V 1 and -V 2 . There is therefore creation of a succession of discharges between the electrodes D and G.
  • Random addressing is used to switch on or off an elementary image point without this modifying the state of the other elementary image points because during phases 1 and 3, signals must be applied to the electrodes Xi and Yj.
  • Other non-random addressing is possible with the same structure, for example line-by-line addressing.
  • FIG. 6 represents another embodiment of a panel according to the invention.
  • This panel differs from that of FIG. 4 by the fact that the electrodes X 2 and X 4 are deleted and that the electrodes Xi and Xs connected to the circuits As and A 7 are common to two columns of elementary points of neighboring images.
  • This embodiment therefore makes it possible to reduce the number of connections and the number of selection circuits, while retaining the possibility of performing random addressing.
  • the panels according to the invention require only n / 2 + 2 connections on one side of the panel and n connections on the other side.
  • FIGS. 7a, b, c, d show an example of the addressing signals Yj, Xi, D and G of the panel in FIG. 6.
  • phases 10 to 50 make it possible to address the elementary image points located to the left of the electrodes Xi and X 3 .
  • Phases 100 to 500 make it possible to address the elementary points of images situated to the right of the electrodes Xi and Xs, and for which the role of the electrodes G and D is reversed with respect to the elementary points of images situated to the left of the electrodes Xi and X 3 .
  • control signals shown in Figures 7a to d during phases 10, 20, 30, 40, 50 are identical to the control signals shown in Figures 5a to d.
  • the control signals shown in FIGS. 7a to g during phases 100 to 500 differ from those of phases 10 to 50, only with regard to the signals applied to the electrodes D and G which have been inverted.
  • This modification corresponds to the position of the electrodes in FIG. 6, where the electrodes Xi and Xs are framed on the left by the electrodes D 1 and Ds and on the right by the electrodes G 2 and G 4 .
  • the charge transfer described with regard to phase 2 only occurs between the electrodes X 1 , X s and their neighboring electrodes D i and D s .
  • this transfer does not occur between the electrodes X 1 , X 3 and the electrodes D 2 and D 4 , because the electrodes G 2 and G 4 are interposed between the electrodes X 1 , D 2 and Xs, D 4 . Consequently, during phase 30, only the elementary image points situated to the left of the electrodes X i and X 3 can be addressed since the maintenance pulses which took place during phase 20 could only have occurred. between the electrodes D 1 , Xi and Ds, Xs.
  • phase 200 there can be maintenance pulses only between the electrodes G 2 and Xi and G 4 and Xs. Consequently, during phase 300 only the elementary image points situated to the right of the electrodes Xi and Xs can be addressed.
  • the invention also relates to plasma panels in which, as in FIG. 6, an electrode such as X i , X s ..., used for addressing, is common to two rows of elementary points of neighboring images, but for which, contrary to what is shown in FIG. 6, the electrodes Di to D 4 and Gi to G 4 are not connected according to two networks D and G.
  • an electrode such as X i , X s ..., used for addressing, is common to two rows of elementary points of neighboring images, but for which, contrary to what is shown in FIG. 6, the electrodes Di to D 4 and Gi to G 4 are not connected according to two networks D and G.
  • FIG. 8 shows a particular embodiment of a panel according to the invention in which the electrodes G, D, X parallel to each other are no longer in the form of a strip but are crenellated. This shape of the electrodes makes it possible to better locate the discharges corresponding to each elementary image point. It is clear that the discharges remain localized between the portions of electrodes which are closest.
  • FIG. 8 also shows an electrode Z, parallel and coplanar with the electrodes Y, which also serves to locate the discharges at each elementary image point.
  • Z electrodes referred to in patent application EP-A 125,382 already cited, are called separation electrodes. They can either be electrically floating or connected to a voltage source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

1. A plasma screen of the alternating type, comprising a plurality of elementary image dots, of which each dot is defined by electrodes which are perpendicular to each other, connected with circuits supplying addressing signals and maintain signals at each elementary image dot during operation, characterized in that each elementary image dot is defined by three parallel and coplanar electrodes (G, D and X) and by an electrode (Y) perpendicular to the three others, separated from the three others at least by a dielectric layer, two of the three parallel electrodes (G and D) being connected with circuits which during operation supply maintain signals at each elementary image dot, whereas the electrode (Y) which is perpendicular to the three others, and the electrode (X) of the three mutually parallel electrodes which is not connected to a circuit, which during operation supplies maintain signals, are connected with circuits which during operation supply addressing signals to each elementary image dot.

Description

La présente invention concerne les panneaux à plasma de type alternatif. Elle concerne également des procédés de commande de ces panneaux.The present invention relates to plasma panels of the alternative type. It also relates to methods of controlling these panels.

Les panneaux à plasma de type alternatif, tels qu'il sont actuellement commercialisés, sont constitués, comme cela est représenté schématiquement sur la figure 1, de deux dalles de verre 1 et 2 portant chacune un réseau d'électrodes parallèles entre elles xi, x2, X3..., yi, y2, ys..., qui sont recouvertes d'une couche diélectrique 3. Les deux dalles sont montées et scellées de façon que les deux réseaux d'électrodes soient perpendiculaires entre eux et qu'il existe une très faible distance entre les deux couches diélectriques en vis-à-vis 3. Cet espace entre les deux couches diélectriques est rempli d'un gaz, généralement à base de néon. Chaque point élémentaire d'image est défini par l'intersection de deux électrodes perpendiculaires. L'affichage des informations se fait par allumage répété d'une décharge luminescente au sein du gaz grâce à des signaux d'adressage et d'entretien véhiculés par les électrodes. Les signaux d'adressage permettent de créer des décharges ou de supprimer la possibilité de décharges ultérieures pour les points élémentaires d'images sélectionnés. Les signaux d'entretien permettent la création de décharges périodiques pour les points élémentaires d'images qui sont allumés.Plasma panels of the alternative type, as they are currently marketed, consist, as shown diagrammatically in FIG. 1, of two glass slabs 1 and 2 each carrying a network of electrodes parallel to each other xi, x 2 , X3 ..., yi, y 2 , ys ..., which are covered with a dielectric layer 3. The two tiles are mounted and sealed so that the two arrays of electrodes are perpendicular to each other and that there is a very small distance between the two dielectric layers facing each other 3. This space between the two dielectric layers is filled with a gas, generally based on neon. Each elementary image point is defined by the intersection of two perpendicular electrodes. The information is displayed by repeated ignition of a luminescent discharge within the gas by means of addressing and maintenance signals conveyed by the electrodes. The addressing signals make it possible to create discharges or to eliminate the possibility of subsequent discharges for the elementary points of selected images. The maintenance signals allow the creation of periodic discharges for the elementary points of images which are lit.

Cette structure de panneau à plasma à deux électrodes par point élémentaire d'image a pour avantages d'être de réalisation technologique simple, d'être robuste et d'utiliser des circuits de commande électrique bien connus. Cette structure présente cependant les deux inconvénients suivants :

  • - le nombre d'électrodes à connecter est important. Ainsi, dans le cas d'écrans à haute définition où l'on veut, par exemple commander un panneau comportant 1000 colonnes ayant chacune 1000 points élémentaires d'images, il faut connecter au minimum 2000 électrodes. En conséquence, les connexions à réaliser et les circuits de commande de ces écrans représentent en général un coût plus important que le panneau lui-même ;
  • - il s'est avéré en pratique difficile d'obtenir avec les panneaux à plasma à deux électrodes par point élémentaire d'image une autre couleur que le traditionnel rouge-orangé du néon.
This plasma panel structure with two electrodes per elementary image point has the advantages of being of simple technological realization, of being robust and of using well-known electrical control circuits. However, this structure has the following two drawbacks:
  • - the number of electrodes to be connected is large. Thus, in the case of high definition screens where it is desired, for example to control a panel comprising 1000 columns each having 1000 elementary image points, it is necessary to connect at least 2000 electrodes. Consequently, the connections to be made and the control circuits of these screens generally represent a higher cost than the panel itself;
  • - It has proved difficult in practice to obtain with plasma panels with two electrodes per elementary image point a color other than the traditional red-orange neon.

En effet, l'obtention de lumière d'une autre couleur avec un bon rendement lumineux et à fortiori, la restitution de plusieurs couleurs simultanément, nécessite de déposer sur les couches de diélectrique 3 une ou plusieurs couches de luminophores convertissant en lumière visible le rayonnement ultraviolet généré par les décharges. Dans les structures classiques à deux électrodes par point élémentaire d'image, le dépôt de ces luminophores, leur positionnement par rapport aux électrodes et leur dégradation par les ions présents dans les décharges posent des problèmes.Indeed, obtaining light of another color with good light output and a fortiori, the restitution of several colors simultaneously, requires depositing on the dielectric layers 3 one or more layers of phosphors converting the visible radiation ultraviolet generated by landfills. In conventional structures with two electrodes per elementary image point, the deposition of these phosphors, their positioning with respect to the electrodes and their degradation by the ions present in the discharges pose problems.

D'autres structures de panneaux à plasma que la structure classique illustrée par la figure 1 ont été proposées. Aucune n'a donné entière satisfaction.Other plasma panel structures than the conventional structure illustrated in Figure 1 have been proposed. None were entirely satisfactory.

A titre d'exemple, on citera une structure de panneau à trois électrodes par point élémentaire d'image qui est décrite dans la demande de brevet EP-A 135 382. Cette structure est illustrée par la figure 2.By way of example, there will be mentioned a panel structure with three electrodes per elementary image point which is described in patent application EP-A 135 382. This structure is illustrated in FIG. 2.

Chaque point élémentaire d'image est défini par deux électrodes 'parallèles et coplanaires X et Y et par une électrode Z perpendiculaire aux deux autres. Sur la figure 2, les trois électrodes X, Y et Z sont portées par la même dalle de verre 1. La couche diélectrique 3 isole les électrodes X et Y de l'électrode Z et recouvre aussi l'électrode Z. Par conséquent, la dalle de verre 2 ne porte aucune électrode et peut donc recevoir des luminophores, émettant par photoluminescence, la ou les couleurs souhaitées. Les signaux d'adressage sont appliqués aux électrodes croisées Z et X ou Z et Y et les signaux d'entretien sont appliqués aux électrodes parallèles X et Y. L'entretien est donc réalisé par création de décharges latérales entre les deux électrodes X et Y, parallèles et coplanaires.Each elementary image point is defined by two parallel and coplanar electrodes X and Y and by an electrode Z perpendicular to the other two. In FIG. 2, the three electrodes X, Y and Z are carried by the same glass slab 1. The dielectric layer 3 isolates the electrodes X and Y from the electrode Z and also covers the electrode Z. Consequently, the glass slab 2 does not carry any electrode and can therefore receive phosphors, emitting by photoluminescence, the desired color or colors. The addressing signals are applied to the crossed electrodes Z and X or Z and Y and the maintenance signals are applied to the parallel electrodes X and Y. Maintenance is therefore carried out by creating lateral discharges between the two electrodes X and Y , parallel and coplanar.

Les demandes de brevet EP-A 135.382 et EP-A 157.248 décrivent des procédés de commande des panneaux à plasmas représentés sur la figure 2. Ces procédés permettent de réduire le nombre de circuits de commande, mais en contrepartie le nombre de connexions peut être augmenté.Patent applications EP-A 135,382 and EP-A 157,248 describe methods for controlling the plasma panels shown in FIG. 2. These methods make it possible to reduce the number of control circuits, but in return the number of connections can be increased .

Ainsi dans le cas d'un panneau comportant 1024 points élémentaires par colonne, selon le procédé de commande utilisé, le nombre de circuits de commande varie entre 64 (32 x 2) et 1025 (1024 + 1) et le nombre de connexions varie entre 1056 (1024 + 32) et 1025.Thus in the case of a panel comprising 1024 elementary points per column, depending on the control method used, the number of control circuits varies between 64 (32 x 2) and 1025 (1024 + 1) and the number of connections varies between 1056 (1024 + 32) and 1025.

De plus, comme dans le cas des panneaux à deux électrodes par point élémentaire d'image, les circuits de commande sont complexes car les mêmes électrodes X ou Y servent à la fois à l'adressage et à l'entretien, et alors que les signaux d'adressage sont de faible puissance, les signaux d'entretien sont de forte puissance.In addition, as in the case of panels with two electrodes per elementary image point, the control circuits are complex because the same X or Y electrodes are used both for addressing and for maintenance, and while the address signals are weak, service signals are strong.

La présente invention concerne une nouvelle structure de panneau à plasma de type alternatif.The present invention relates to a new plasma panel structure of the alternative type.

La présente invention concerne un panneau à plasma de type alternatif, comportant une pluralité de points élémentaires d'images, chaque point étant défini par des électrodes perpendiculaires entre elles, connectées à des circuits fournissant en fonctionnement des signaux d'addressage et des signaux d'entretien à chaque point élémentaire d'image, caractérisé en ce que chaque point élémentaire d'image est défini par trois élctrodes parallèles et coplanaires et par une électrode perpendiculaire aux trois autres, séparée des trois autres au moins par une couche diélectrique, deux des trois électrodes parallèles étant connectées à des circuits fournissant, en fonctionnement les signaux d'entretien, à chaque point élémentaire d'image, tandis que l'électrode perpendiculaire aux trois autres et celle des trois électrodes parallèles entre elles qui n'est pas connectée à un circuit fournissant en fonctionnement les signaux d'entretien, sont connectées à des circuits fournissant en fonctionnement les signaux d'addressage à chaque point élémentaire d'image.The present invention relates to an alternating type plasma panel, comprising a plurality of elementary image points, each point being defined by electrodes perpendicular to each other, connected to circuits supplying in operation address signals and signals. maintenance at each elementary image point, characterized in that each elementary image point is defined by three parallel and coplanar electrodes and by an electrode perpendicular to the other three, separated from the other three at least by a dielectric layer, two of the three parallel electrodes being connected to circuits supplying, in operation the maintenance signals, to each elementary image point, while the electrode perpendicular to the other three and that of the three electrodes parallel to each other which is not connected to a circuit supplying maintenance signals in operation, are connected to circuits supplying in operation the addressing signals to each elementary image point.

L'invention concerne aussi des procédés de commande d'un tel panneau à plasma.The invention also relates to methods of communication. command of such a plasma panel.

Parmi les principaux avantages du panneau selon l'invention, on peut citer :

  • - la simplification des circuits de commande.Dans le panneau selon l'invention, les fonctions d'adressage et d'entretien sont remplies par des électrodes distinctes. De plus, dans un premier mode de réalisation préféré de l'invention, les électrodes du panneau qui reçoivent les signaux d'entretien sont reliées en deux réseaux D et G. En conséquence, il suffit pour appliquer les signaux d'entretien de deux circuits de commande de forte puissance. De plus, dans un second mode de réalisation préféré de l'invention où par rapport au premier mode de réalisation préféré de l'invention, l'une des trois électrodes parallèles entre elles, celle qui véhicule les signaux d'addressage est commune à deux rangées voisines de points élémentaires d'images, on peut diminuer de moitié le nombre de circuits de commande pour l'addressage des points élémentaires qui sont reliés à ces électrodes. En conséquence, l'invention permet de diminuer le coût et la fiabilité des circuits de commande ;
  • - la diminution du nombre de connexions, en particulier dans les deux modes de réalisation préférés de l'invention évoqués dans le paragraphe précédant. Cette diminution ne nécessite aucun croisement d'électrodes et entraîne une diminution du coût;
  • - la possibilité d'addresser chaque point élémentaire d'image séparément. Ceci est particulièrement intéressant lorsque seule une partie de l'information affichée sur le panneau doit être modifiée. Avec les panneaux selon l'invention, il est tout à fait possible de réaliser un addressage du panneau ligne par ligne ou point par point ;
  • - une amélioration de la luminance, à consommation égale par rapport aux panneaux standards à deux électrodes par point élémentaire d'image.
Among the main advantages of the panel according to the invention, there may be mentioned:
  • - the simplification of the control circuits. In the panel according to the invention, the addressing and maintenance functions are fulfilled by separate electrodes. In addition, in a first preferred embodiment of the invention, the electrodes of the panel which receive the maintenance signals are connected in two networks D and G. Consequently, it is sufficient to apply the maintenance signals of two circuits high power control. In addition, in a second preferred embodiment of the invention where, with respect to the first preferred embodiment of the invention, one of the three electrodes parallel to each other, the one which carries the addressing signals is common to two neighboring rows of elementary image points, the number of control circuits for addressing the elementary points which are connected to these electrodes can be halved. Consequently, the invention makes it possible to reduce the cost and the reliability of the control circuits;
  • the reduction in the number of connections, in particular in the two preferred embodiments of the invention mentioned in the preceding paragraph. This reduction does not require any crossing of electrodes and results in a reduction in cost;
  • - the possibility of addressing each elementary image point separately. This is particularly interesting when only part of the information displayed on the panel needs to be modified. With the panels according to the invention, it is entirely possible to address the panel line by line or point by point;
  • - an improvement in luminance, with equal consumption compared to standard panels with two electrodes per elementary image point.

D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent :

  • - les figures 1 et 2, des schémas illustrant la structure de deux modes de réalisation de panneaux à plasma selon l'Art Antérieur ;
  • - la figure 3, un schéma représentant les quatre électrodes définissant chaque point élémentaire d'image dans les panneaux à plasmas selon l'invention ;
  • - les figures 4 et 6, deux modes de réalisation représentés de façon schématique de panneaux à plasma selon l'invention ;
  • - les figures 5a à d et 7a à d, des signaux de commande des panneaux des figures 4 et 6 ;
  • - la figure 8, une variante de la figure 3.
Other objects, characteristics and results of the invention will emerge from the following description, given by way of nonlimiting example and illustrated by the appended figures which represent:
  • - Figures 1 and 2, diagrams illustrating the structure of two embodiments of plasma panels according to the Prior Art;
  • - Figure 3, a diagram showing the four electrodes defining each elementary image point in the plasma panels according to the invention;
  • - Figures 4 and 6, two embodiments shown schematically of plasma panels according to the invention;
  • - Figures 5a to d and 7a to d, control signals of the panels of Figures 4 and 6;
  • - Figure 8, a variant of Figure 3.

Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.In the various figures, the same references designate the same elements, but, for reasons of clarity, the dimensions and proportions of the various elements are not observed.

Dans le panneau à plasma selon l'invention, chaque point élémentaire d'image est défini par quatre électrodes, comme cela est représenté schématiquement sur la figure 3.In the plasma panel according to the invention, each elementary image point is defined by four electrodes, as shown diagrammatically in FIG. 3.

Sur la figure 3, on montre qu'un point élémentaire d'image est défini d'une part par trois électrodes parallèles G, D, X et d'autre part par une électrode Y perpendiculaire aux trois autres.In FIG. 3, it is shown that an elementary image point is defined on the one hand by three parallel electrodes G, D, X and on the other hand by an electrode Y perpendicular to the other three.

Les trois électrodes G, D, X sont situées dans un même plan, sur un même support, qui peut être l'une des deux dalles de verre 1 ou 2 que comporte le panneau - voir par exemple sur la figure 1 relative à l'Art Antérieur, les deux dalles de verre qui portent les références 1 et 2.The three electrodes G, D, X are located in the same plane, on the same support, which can be one of the two glass slabs 1 or 2 that the panel contains - see for example in FIG. 1 relating to the Prior Art, the two glass slabs which bear the references 1 and 2.

L'électrode Y est séparée des trois autres éiec- trodes G, D, X au moins par une couche diélectrique.The electrode Y is separated from the three other electrodes G, D, X at least by a dielectric layer.

Sur la figure 3, l'électrode Y est portée par la même dalle de verre 1 ou 2 que les électrodes G, D, X ; dans ce cas une couche diélectrique non représentée sur la figure 3, sépare les électrodes G, D, X et Y et recouvre aussi la ou les électrodes situées vers l'intérieur du panneau. L'électrode Y peut aussi être portée par l'autre dalle de verre que celle qui porte les électrodes G, D, X. Dans ce cas une couche de diélectrique recouvre l'électrode Y et une autre couche de diélectrique recouvre les électrodes G, D, X. Sur la figure 1, on a désigné par la référence 3 ces couches de diélectrique qui recouvrent les électrodes.In FIG. 3, the electrode Y is carried by the same glass slab 1 or 2 as the electrodes G, D, X; in this case a dielectric layer not shown in Figure 3, separates the electrodes G, D, X and Y and also covers the electrode or electrodes located towards the inside of the panel. The electrode Y can also be carried by the other glass slab than that which carries the electrodes G, D, X. In this case a layer of dielectric covers the electrode Y and another layer of dielectric covers the electrodes G, D, X. In FIG. 1, these dielectric layers which cover the electrodes have been designated by the reference 3.

Deux des trois électrodes parallèles, par exemple les électrodes G et D servent à véhiculer les signaux d'entretien. Il s'agit donc d'un entretien de type coplanaire. Les deux électrodes perpendiculaires X et Y servent à véhiculer les signaux d'adressage.Two of the three parallel electrodes, for example the electrodes G and D are used to convey the maintenance signals. It is therefore a coplanar type interview. The two perpendicular electrodes X and Y are used to convey the addressing signals.

Il est donc clair que dans les panneaux à plasma selon l'invention les fonctions d'adressage et d'entretien sont remplies par des électrodes distinctes ce qui permet d'utiliser des circuits électroniques bien adaptés à la forte puissance requise par les signaux d'entretien et à la faible puissance requise par les signaux d'adressage permettant d'utiliser des circuit à haut impédance. Il est également clair que les panneaux à plasma selon l'invention permettent d'adresser chaque point élémentaire d'image séparément, puisque l'adressage de chaque point est réalisé par deux électrodes perpendiculaires données. L'adressage peut aussi se faire bien entendu ligne par ligne.It is therefore clear that in the plasma panels according to the invention the addressing and maintenance functions are fulfilled by separate electrodes, which makes it possible to use electronic circuits well suited to the high power required by the signal signals. maintenance and at the low power required by the addressing signals allowing the use of high impedance circuits. It is also clear that the plasma panels according to the invention make it possible to address each elementary image point separately, since the addressing of each point is carried out by two given perpendicular electrodes. Addressing can of course also be done line by line.

Sur la figure 4, on a représenté de façon schématique, c'est-à-dire seulement par ses électrodes, un panneau à plasma selon l'invention.In Figure 4, there is shown schematically, that is to say only by its electrodes, a plasma panel according to the invention.

Le panneau de la figure 4 comporte quatre lignes et quatre colonnes de point élémentaires d'images.The panel in FIG. 4 has four rows and four columns of elementary image points.

Comme sur la figure 3, chaque point élémentaire d'image est défini par quatre électrodes Y et G, D, X.As in FIG. 3, each elementary image point is defined by four electrodes Y and G, D, X.

Sur la figure 4, on a désigné par Y1 à Y4, G1 à G4, Di à D4 et Xi à X4 les électrodes utilisées.In FIG. 4, the electrodes used have been designated by Y 1 to Y 4 , G 1 to G 4 , Di to D 4 and Xi to X 4 .

Les électrodes Gi à G4 d'une part et Di à D4 d'autre part sont reliées entre elles et créent deux réseaux appelés G et D.The electrodes Gi to G 4 on the one hand and Di to D 4 on the other hand are connected together and create two networks called G and D.

La création des deux réseaux D et G permet de limiter à deux le nombre de circuits E1 et E2, fournissant en fonctionnement les signaux d'entretien à chaque point élémentaire d'image, et nécessaires au fonctionnement du panneau. De plus, le nombre de connexions du panneau est diminué.The creation of the two networks D and G makes it possible to limit to two the number of circuits E 1 and E 2 , providing in operation the maintenance signals at each elementary image point, and necessary for the operation of the panel. In addition, the number of panel connections is reduced.

Les électrodes Yi à Y4 et Xi à X4 sont reliées à des circuits appelés Ai à A8 qui fournissent en fonctionnement les signaux d'addressage à chaque point élémentaire d'image.The electrodes Yi to Y 4 and Xi to X 4 are connected to circuits called Ai to A 8 which supply in operation the addressing signals at each elementary image point.

Sur les figures 5a, b, c et d, on a représenté les signaux véhiculés par les électrodes Yj, Xi, avec i = 1 à 4 et j = 1 à 4, D et G de façon à réaliser l'adressage et l'entretien des points élémentaires d'images d'un panneau selon l'invention. Ce qui est représenté sur les figures 5a à d ne constitue qu'un procédé de commande parmi d'autres d'un panneau selon l'invention.FIGS. 5a, b, c and d show the signals conveyed by the electrodes Yj, Xi, with i = 1 to 4 and j = 1 to 4, D and G so as to carry out the addressing and the maintenance of the elementary points of images of a panel according to the invention. What is shown in FIGS. 5a to d constitutes only one of the control methods among others for a panel according to the invention.

Au dessus de la figure 5a, on a indiqué comment se répartissent en fonction du temps t, porté en abscisse, les différentes phases 1, 2, 3, 4, 5 que comporte la commande du panneau.Above FIG. 5a, it has been indicated how the different phases 1, 2, 3, 4, 5 which the control of the panel comprises are distributed as a function of time t, plotted on the abscissa.

La phase 1 est une phase d'initialisation pendant laquelle on crée une décharge entre toutes les électrodes Xi et Yj du panneau de façon à conduire vers chaque électrode Xi des charges d'un signe donné. Ces charges se localisent dans l'espace correspondant à l'intersection des électrodes Xi et Yj. pour cela, on voit sur les figures 5a et b que pendant la phase 1, on applique à l'électrode Yj une impulsion de tension positive de valeur +Vy et on applique à l'électrode Xj une impulsion de tension négative de valeur -Vx, Vy et Vx étant des valeurs positives. Entre les électrodes Xi et Yj considérées, est créée une différence de potentiel suffisante pour créer une décharge.Phase 1 is an initialization phase during which a discharge is created between all the electrodes X i and Yj of the panel so as to conduct charges of a given sign towards each electrode Xi. These charges are located in the space corresponding to the intersection of the electrodes Xi and Yj. for this, we see in Figures 5a and b that during phase 1, we apply to the electrode Yj a positive voltage pulse of value + Vy and we apply to the electrode X j a negative voltage pulse of value - Vx, Vy and Vx being positive values. Between the electrodes Xi and Yj considered, a sufficient potential difference is created to create a discharge.

Au cours de la phase 2 s'effectue le transfert des charges créés sur l'électrode Xi au cours de la phase 1 sur l'électrode D. Cela est réalisé en maintenant au potentiel de référence pris égal à OV par exemple, les électrodes Yj et G et en appliquant sur les électrodes Xi et D des créneaux de tension d'amplitude successivement égale à +V1 et -V2 et en opposition de phase sur les électrodes Xi et D. Ainsi on crée entre l'électrode Xi et l'électrode D, une décharge ou un nombre impair de décharges. Chaque décharge a pour effet d'inverser le signe des charges ainsi transférées sur l'électrode D. Un nombre impair de décharges conduit à un résultat identique et bien stable.During phase 2, the charges created on the electrode Xi are carried out during phase 1 on the electrode D. This is achieved by maintaining the reference potential taken equal to OV for example, the electrodes Yj and G and by applying to the electrodes X i and D slots of voltage of amplitude successively equal to + V 1 and -V 2 and in phase opposition on the electrodes Xi and D. Thus one creates between the electrode X i and electrode D, a discharge or an odd number of discharges. Each discharge has the effect of reversing the sign of the charges thus transferred to the electrode D. An odd number of discharges leads to an identical and very stable result.

La phase 3 est une phase d'addressage au cours de laquelle, il est possible de créer une décharge entre les électrodes Xi et Yj, si l'on désire allumer un point élémentaire d'image donné. On réalise donc un adressage sélectif de chaque point élémentaire d'image que l'on appelle aussi adressage aléatoire. Dans le mode de réalisation des signaux de commande représenté sur les figure 5a à d, les électrodes D et G sont à 0 Volt pendant la phase 3. L'électrode Yj reçoit une impulsion de tension égale à +Vy. En ce qui concerne l'électrode Xi, elle passe à -Vx si l'on désire mettre à l'état allumé le point élémentaire d'image considéré. Si l'on désire éteindre un point élémentaire d'image ou le conserver à l'état éteint, il suffit que les deux tensions indiquées précédemment ne soient pas présentes simultanément sur les deux électrodes Yj et Xi .Phase 3 is an addressing phase during which it is possible to create a discharge between the electrodes Xi and Yj, if one wishes to light a given elementary image point. We therefore carry out a selective addressing of each elementary image point which is also called random addressing. In the embodiment of the control signals shown in FIGS. 5a to d, the electrodes D and G are at 0 Volt during phase 3. The electrode Yj receives a pulse of voltage equal to + Vy. As regards the electrode Xi, it changes to -Vx if it is desired to set the elementary image point under consideration to the on state. If one wishes to extinguish an elementary image point or keep it in the extinguished state, it suffices that the two voltages indicated above are not present simultaneously on the two electrodes Yj and Xi.

Au cours de la phase 3, dans le cas où il se produit l'allumage du point élémentaire d'image, il y a inversion des charges stockées sur l'électrode Xi.During phase 3, in the event of the ignition of the elementary image point, there is inversion of the charges stored on the electrode Xi.

Au cours de la phase 4, il y a une succession de décharges entre les électrodes Xi et D. Cela est obtenu en appliquant à ces électrodes des créneaux de tension, en opposition de phase, d'amplitude égale successivement à +Vi et -V2.During phase 4, there is a succession of discharges between the electrodes Xi and D. This is obtained by applying to these electrodes voltage slots, in phase opposition, of amplitude successively equal to + Vi and -V 2 .

La phase 5 est une phase d'entretien au cours de laquelle les électrodes Yj et Xi sont au potentiel de référence, égal à 0 Volt par exemple et les électrodes D et G reçoivent des créneaux de tension en opposition de phase, d'amplitude égale successivement à +V1 et -V2. Il y a donc création d'une succession de décharges entre les électrodes D et G.Phase 5 is a maintenance phase during which the electrodes Yj and Xi are at the reference potential, equal to 0 Volt for example and the electrodes D and G receive voltage slots in phase opposition, of equal amplitude successively at + V 1 and -V 2 . There is therefore creation of a succession of discharges between the electrodes D and G.

On réalise bien un adressage aléatoire permettant d'allumer ou d'éteindre un point élémentaire d'image sans que cela modifie l'état des autres points élémentaires d'image car lors des phases 1 et 3, il faut appliquer des signaux sur les électrodes Xi et Yj. D'autres adressages non aléatoires sont possibles avec la même structure, par exemple l'adressage ligne par ligne.Random addressing is used to switch on or off an elementary image point without this modifying the state of the other elementary image points because during phases 1 and 3, signals must be applied to the electrodes Xi and Yj. Other non-random addressing is possible with the same structure, for example line-by-line addressing.

La figure 6 représente un autre mode de réalisation d'un panneau selon l'invention. Ce panneau diffère de celui de la figure 4 par le fait que les électrodes X2 et X4 sont supprimées et que les électrodes Xi et Xs reliées aux circuits As et A7 sont communes à deux colonnes de points élémentaires d'images voisines. Ce mode de réalisation permet donc de diminuer le nombre de connexions et le nombre de circuits de sélection, tout en conservant la possibilité de réaliser un adressage aléatoire .FIG. 6 represents another embodiment of a panel according to the invention. This panel differs from that of FIG. 4 by the fact that the electrodes X 2 and X 4 are deleted and that the electrodes Xi and Xs connected to the circuits As and A 7 are common to two columns of elementary points of neighboring images. This embodiment therefore makes it possible to reduce the number of connections and the number of selection circuits, while retaining the possibility of performing random addressing.

Dans le mode de réalisation de la figure 6, pour un panneau comportant 1024 rangées de points élémentaires d'images, il faudra utiliser seulement deux circuits d'entretien de forte puissance et seize circuits d'adressage de basse puissance, ayant chacun 32 bits. Alors que les panneaux connus jusqu'à présent nécessitaient au minimum 64 circuits d'entretien.In the embodiment of FIG. 6, for a panel comprising 1024 rows of elementary image points, it will be necessary to use only two high power maintenance circuits and sixteen low power addressing circuits, each having 32 bits. Whereas the panels known so far required at least 64 maintenance circuits.

Pour n rangées de points élémentaires d'images, les panneaux selon l'invention ne nécessitent que n/2 + 2 connexions sur l'une des faces du panneau et n connexions sur l'autre face.For n rows of elementary image points, the panels according to the invention require only n / 2 + 2 connections on one side of the panel and n connections on the other side.

Sur les figures 7a, b, c, d, on a représenté un exemple des signaux d'adressage Yj, Xi, D et G du panneau de la figure 6.FIGS. 7a, b, c, d show an example of the addressing signals Yj, Xi, D and G of the panel in FIG. 6.

Un tel panneau nécessite la succession de deux types de phases que l'on a appelées les phases 10, 20, 30, 40, 50 et les phases 100, 200, 300, 400, 500. Les phases 10 à 50 permettent d'adresser les points élémentaires d'images situés à gauche des électrodes Xi et X3. Les phases 100 à 500 permettent d'adresser les points élémentaires d'images situés à droite des électrodes Xi et Xs, et pour lesquels le rôle des électrodes G et D est inversé par rapport aux points élémentaires d'images situés à gauche des électrodes Xi et X3.Such a panel requires the succession of two types of phases which have been called phases 10, 20, 30, 40, 50 and phases 100, 200, 300, 400, 500. Phases 10 to 50 make it possible to address the elementary image points located to the left of the electrodes Xi and X 3 . Phases 100 to 500 make it possible to address the elementary points of images situated to the right of the electrodes Xi and Xs, and for which the role of the electrodes G and D is reversed with respect to the elementary points of images situated to the left of the electrodes Xi and X 3 .

Les signaux de commande représentés sur les figures 7a à d pendant les phases 10, 20, 30, 40, 50 sont identiques aux signaux de commande représentés sur les figures 5a à d. Les signaux de commande représentés sur les figures 7a à g pendant les phases 100 à 500 diffèrent de ceux des phases 10 à 50, seulement en ce qui concerne les signaux appliqués aux électrodes D et G qui ont été intervertis.The control signals shown in Figures 7a to d during phases 10, 20, 30, 40, 50 are identical to the control signals shown in Figures 5a to d. The control signals shown in FIGS. 7a to g during phases 100 to 500 differ from those of phases 10 to 50, only with regard to the signals applied to the electrodes D and G which have been inverted.

Cette modification correspond à la position des électrodes sur la figure 6, où les électrodes Xi et Xs sont encadrées à gauche par les électrode D1 et Ds et à droite par les électrodes G2 et G4.This modification corresponds to the position of the electrodes in FIG. 6, where the electrodes Xi and Xs are framed on the left by the electrodes D 1 and Ds and on the right by the electrodes G 2 and G 4 .

Pendant la phase d'adressage 20, le transfert de charges décrit en ce qui concerne la phase 2 ne se produit qu'entre les électrodes X1, Xs et leurs électrodes voisines Di et Ds. Par contre, ce transfert ne se produit pas entre les électrodes X1, X3 et les électrodes D2 et D4, car les électrodes G2 et G4 sont intercalées entre les électrodes X1, D2 et Xs, D4. En conséquence, pendant la phase 30, seuls les points élémentaires d'images situées à gauche des électrodes Xi et X3 peuvent être adressés car les impulsions d'entretien qui ont eu lieu pendant la phase 20 n'ont pu se produire qu'entre les électrodes D1, Xi et Ds, Xs.During the addressing phase 20, the charge transfer described with regard to phase 2 only occurs between the electrodes X 1 , X s and their neighboring electrodes D i and D s . On the other hand, this transfer does not occur between the electrodes X 1 , X 3 and the electrodes D 2 and D 4 , because the electrodes G 2 and G 4 are interposed between the electrodes X 1 , D 2 and Xs, D 4 . Consequently, during phase 30, only the elementary image points situated to the left of the electrodes X i and X 3 can be addressed since the maintenance pulses which took place during phase 20 could only have occurred. between the electrodes D 1 , Xi and Ds, Xs.

Pendant la phase 200 au contraire, il ne peut y avoir d'impulsions d'entretien qu'entre les électrodes G2 et Xi et G4 et Xs. En conséquence, pendant la phase 300 seuls les points élémentaires d'images situés à droite des électrodes Xi et Xs peuvent être adressés.During phase 200, on the contrary, there can be maintenance pulses only between the electrodes G 2 and Xi and G 4 and Xs. Consequently, during phase 300 only the elementary image points situated to the right of the electrodes Xi and Xs can be addressed.

Comme dans le cas de la figure 5, les signaux d'adressage de la figure 7 ne sont donnés qu'à titre d'exemple.As in the case of FIG. 5, the addressing signals of FIG. 7 are given only by way of example.

Il est bien entendu que l'invention concerne également les panneaux à plasma dans lequels, comme sur la figure 6, une électrode telle que Xi, Xs..., servant à l'adressage, est commune à deux rangées de points élémentaires d'images voisines, mais pour lesquels, contrairement à ce qui est représenté sur la figure 6, les électrodes Di à D4 et Gi à G4 ne sont pas reliées selon deux réseaux D et G.It is understood that the invention also relates to plasma panels in which, as in FIG. 6, an electrode such as X i , X s ..., used for addressing, is common to two rows of elementary points of neighboring images, but for which, contrary to what is shown in FIG. 6, the electrodes Di to D 4 and Gi to G 4 are not connected according to two networks D and G.

Sur la figure 8, on a représenté un mode de réalisation particulier d'un panneau selon l'invention dans lesquel les électrodes G, D, X parallèles entre elles ne sont plus en forme de bande mais sont crê- nelées. Cette forme des électrodes permet de mieux localiser les décharges correspondant à chaque point élémentaire d'image. Il est clair que les décharges restent localisées entre les portions d'électrodes qui sont le plus rapprochées.FIG. 8 shows a particular embodiment of a panel according to the invention in which the electrodes G, D, X parallel to each other are no longer in the form of a strip but are crenellated. This shape of the electrodes makes it possible to better locate the discharges corresponding to each elementary image point. It is clear that the discharges remain localized between the portions of electrodes which are closest.

Sur la figure 8, on a représenté aussi une électrode Z, parallèle et coplanaire aux électrodes Y, qui sert également à localiser les décharges à chaque point élémentaire d'image.FIG. 8 also shows an electrode Z, parallel and coplanar with the electrodes Y, which also serves to locate the discharges at each elementary image point.

Ces électrodes Z, don il est question dans la demande de brevet EP-A 125.382 déjà cité, sont dites électrodes de séparation. Elles peuvent être soit électriquement flottantes, soit connectées à une source de tension.These Z electrodes, referred to in patent application EP-A 125,382 already cited, are called separation electrodes. They can either be electrically floating or connected to a voltage source.

Claims (7)

1. A plasma screen of the alternating type, comprising a plurality of elementary image dots, of which each dot is defined by electrodes which are perpendicular to each other, connected with circuits supplying addressing signals and maintain signals at each elementary image dot during operation, characterized in that each elementary image dot is defined by three parallel and coplanar electrodes (G, D and X) and by an electrode (Y) perpendicular to the three others, separated from the three others at least by a dielectric layer, two of the three parallel electrodes (G and D) being connected with circuits which during operation supply maintain signals at each elementary image dot, whereas the electrode (Y) which is perpendicular to the three others, and the electrode (X) of the three mutually parallel electrodes which is not connected to a circuit, which during operation supplies maintain signals, are connected with circuits which during operation supply addressing signals to each elementary image dot.
2. The screen as claimed in claim 1, characterized in that the two mutually parallel electrodes connected with circuits, which during operation supply maintain signals at each elementary image dot, are connected with other similar electrodes of the screen in such a manner as to constitute two electrode networks (D and G) connected with two circuits (Ei and E2) which during operation supply maintain signals at each elementary image dot.
3. The screen as claimed in either of the claims 1 and 2, characterized in that the electrode (Xi, X2) of the three mutually parallel electrodes which is connected with a circuit (A5 and A-- 7 -) supplying addressing signals during operation to each elementary dot of the image, is common to two adjacent rows of elementary image dots and in that the plasma screen comprises the following scheme of repetition of groups of five mutually parallel electrodes:
- a first and a second electrode (Gi and D1) connected to circuits (E2 and E1) supplying maintain signals to each elementary image dot during operation;
- a third electrode (Xi) connected with a circuit (As) supplying addressing signals to each elementary image dot during operation; and
- a fourth and a fifth electrode (G2 and D2) connected with circuits (E2 and Ei) supplying maintain signals to each elementary image dot during operation, the fourth electrode receiving the same signals as the first electrode and the fifth electrode receiving the same signals as the second electrode.
4. The screen as claimed in any one of the preceding claims 1 through 3, characterized in that the three parallel and coplanar electrodes (G, D and X) have a crenelated form in such a manner as to permit improved localization of discharges between parallel electrodes.
5. The screen as claimed in any one of the preceding claims 1 through 4, characterized in that each elementary image dot comprises a separating electrode (Z), same being substantially parallel to the electrode (Y) which is perpendicular to the three others.
6. A method for operating a screen as claimed in any one of the preceding claims 1 through 5, characterized in that it comprises a five phase repetition scheme as follows:
- a first phase in the course of which a discharge is created between the two electrodes (X and Y) receiving the addressing signals;
- a second phase in the course of which a discharge is created between the electrode (X) of the three parallel and coplanar electrodes receiving the addressing signals and one of the two other parallel and coplanar electrodes (G or D);
- a third phase in the course of which, in the event the writing of an elementary image dot being desired, a discharge is created between the two electrodes receiving the addressing signals (X and Y);
- a fourth phase during the course of which a succession of discharges is created between, the electrodes which are actuated during the course of the second phase; and
- a fifth phase during the course of which a succession of discharges is created between the electrodes (D and G) receiving the maintain signals.
7. The method of operating a screen as claimed in claim 3, characterized in that it comprises the repetition of the five phases as defined in claim 6, with (during the course of the second and the fourth phases) discharges between the electrode (X) of the three parallel and coplanar electrodes receiving the addressing signals and one of the two other parallel and coplanar electrodes (G or D), then the repetition of the five phases defined in claim 6 with (during the course of the second and the fourth phase) discharges between the electrode (X) of the three parallel and coplanar electrodes receiving address signals and the electrode of the other parallel and coplanar electrodes which has not been used in the five preceding phases.
EP88400354A 1987-02-20 1988-02-17 Plasma panel having four electrodes per elementary image point, and method of controlling such a plasma panel Expired - Lifetime EP0279746B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8702205 1987-02-20
FR8702205A FR2611295B1 (en) 1987-02-20 1987-02-20 PLASMA PANEL WITH FOUR ELECTRODES BY ELEMENTARY IMAGE POINT AND METHOD FOR CONTROLLING SUCH A PLASMA PANEL

Publications (2)

Publication Number Publication Date
EP0279746A1 EP0279746A1 (en) 1988-08-24
EP0279746B1 true EP0279746B1 (en) 1990-06-20

Family

ID=9348124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400354A Expired - Lifetime EP0279746B1 (en) 1987-02-20 1988-02-17 Plasma panel having four electrodes per elementary image point, and method of controlling such a plasma panel

Country Status (5)

Country Link
US (1) US4914352A (en)
EP (1) EP0279746B1 (en)
JP (1) JPS63309994A (en)
DE (1) DE3860250D1 (en)
FR (1) FR2611295B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635901B1 (en) * 1988-08-26 1990-10-12 Thomson Csf METHOD OF LINE BY LINE CONTROL OF A PLASMA PANEL OF THE ALTERNATIVE TYPE WITH COPLANAR MAINTENANCE
FR2635902B1 (en) * 1988-08-26 1990-10-12 Thomson Csf VERY FAST CONTROL METHOD BY SEMI-SELECTIVE ADDRESSING AND SELECTIVE ADDRESSING OF AN ALTERNATIVE PLASMA PANEL WITH COPLANARITY MAINTENANCE
US6787995B1 (en) * 1992-01-28 2004-09-07 Fujitsu Limited Full color surface discharge type plasma display device
KR950003132B1 (en) * 1992-03-26 1995-04-01 삼성전관 주식회사 Structure for plasma display panel and driving method thereof
RU2089966C1 (en) * 1995-11-22 1997-09-10 Научно-производственная компания "Орион-Плазма" - Совместная акционерная компания закрытого типа Ag gaseous-discharge display panel with reversing surface discharge
JP3767644B2 (en) * 1997-01-21 2006-04-19 株式会社日立プラズマパテントライセンシング Plasma display apparatus and driving method thereof
RU2120154C1 (en) * 1997-03-28 1998-10-10 Совместное закрытое акционерное общество "Научно-производственная компания "ОРИОН-ПЛАЗМА" Ac surface-discharge gas panel and its control technique
JP3424587B2 (en) * 1998-06-18 2003-07-07 富士通株式会社 Driving method of plasma display panel
US6195073B1 (en) * 1998-08-28 2001-02-27 Acer Display Technology, Inc. Apparatus and method for generating plasma in a plasma display panel
WO2003012765A2 (en) * 2001-07-30 2003-02-13 'inkotex' Ltd Alternating current colour plasma panel and method for controlling said panel
JP4325237B2 (en) * 2003-03-24 2009-09-02 パナソニック株式会社 Plasma display panel
JP4580162B2 (en) * 2003-12-01 2010-11-10 パナソニック株式会社 Driving method of plasma display panel
JP4856855B2 (en) * 2004-06-09 2012-01-18 パナソニック株式会社 Plasma display device and driving method used for plasma display device
TWI352867B (en) * 2007-01-25 2011-11-21 Chunghwa Picture Tubes Ltd Pixel and liquid crystal display panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114316A (en) * 1973-02-27 1974-10-31
JPS54753B2 (en) * 1973-11-19 1979-01-16
US4342993A (en) * 1979-08-09 1982-08-03 Burroughs Corporation Memory display panel
US4638218A (en) * 1983-08-24 1987-01-20 Fujitsu Limited Gas discharge panel and method for driving the same

Also Published As

Publication number Publication date
DE3860250D1 (en) 1990-07-26
JPS63309994A (en) 1988-12-19
FR2611295A1 (en) 1988-08-26
FR2611295B1 (en) 1989-04-07
US4914352A (en) 1990-04-03
EP0279746A1 (en) 1988-08-24

Similar Documents

Publication Publication Date Title
EP0279746B1 (en) Plasma panel having four electrodes per elementary image point, and method of controlling such a plasma panel
FR2709375A1 (en) Image display device and associated control circuit.
EP0356313B1 (en) Method for the very fast control of an ac plasma panel with a coplanar support by semi-selective addressing and selective addressing
FR2535498A1 (en) PLASMA DISPLAY METHOD AND DEVICE
FR2578705A1 (en) METHOD OF FORMING ELECTRONICALLY CONTROLLED COLOR ELEMENTS AND COLOR DISPLAY BASED ON THIS METHOD
FR2738654A1 (en) Control of AC plasma display panel
EP0357485A1 (en) Method for the line-per-line control of an alternating-type plasma panel with a coplanar support
FR2763731A1 (en) Plasma display panel and its control
EP0597772B1 (en) Multiplexed matrix display screen and control method therefore
FR2787909A1 (en) Memory type alternating current plasma display system having parallel line discharge/sweep/lower electrodes and second unit parallel column electrodes with outer luminous element and intermediate discharge space.
FR2755784A1 (en) Control of plasma display panel for monitors and television
FR2772502A1 (en) METHOD FOR COMPENSATING THE REMANENCE DIFFERENCES OF LUMINOPHORES IN A DISPLAY SCREEN OF IMAGES
FR2738944A1 (en) Display for performing gray-scale display according to subfield method
FR2662292A1 (en) METHOD FOR ADJUSTING THE BRIGHTNESS OF DISPLAY SCREENS.
FR2826166A1 (en) Operation of plasma display panel with discharge between triplets of electrodes, uses central electrode in triplet as anode when applying voltage pulses, and uses enlarged central electrode
EP1236195B1 (en) Method for addressing a plasma display panel
EP0337833A1 (en) Procedure for point for point control of a plasma panel
EP0817232B1 (en) Process for regenerating microtips of a flat panel display
FR2776414A1 (en) METHOD AND DEVICE FOR ADDRESSING PLASMA PANELS
EP1354309A1 (en) Digital video display device
EP0747875B1 (en) Control method for a flat panel display
US3969650A (en) Gas discharge display device and a novel hollow cathode therefor
EP1018107B1 (en) Alternating plasma display panel incorporating ionization and method for controlling the panel
EP0844642A1 (en) Flat panel display with focusing gates
FR2790861A1 (en) Drive unit of field emission type display array, has array format individual electron emitters subjected to higher strike voltage followed by lower sustain voltage with prescribed inter-pulse quiescent gaps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19880930

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19891124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3860250

Country of ref document: DE

Date of ref document: 19900726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910219

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930217

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103