EP0279677B1 - Künstliche Daunen - Google Patents

Künstliche Daunen Download PDF

Info

Publication number
EP0279677B1
EP0279677B1 EP19880301381 EP88301381A EP0279677B1 EP 0279677 B1 EP0279677 B1 EP 0279677B1 EP 19880301381 EP19880301381 EP 19880301381 EP 88301381 A EP88301381 A EP 88301381A EP 0279677 B1 EP0279677 B1 EP 0279677B1
Authority
EP
European Patent Office
Prior art keywords
macrofibres
fibre
macrofibre
bonding
microfibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880301381
Other languages
English (en)
French (fr)
Other versions
EP0279677A2 (de
EP0279677A3 (en
Inventor
James G. Donovan
Zivile M. Groh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albany International Corp
Original Assignee
Albany International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB878718330A external-priority patent/GB8718330D0/en
Priority claimed from GB878728582A external-priority patent/GB8728582D0/en
Application filed by Albany International Corp filed Critical Albany International Corp
Priority to AT88301381T priority Critical patent/ATE89696T1/de
Publication of EP0279677A2 publication Critical patent/EP0279677A2/de
Publication of EP0279677A3 publication Critical patent/EP0279677A3/en
Application granted granted Critical
Publication of EP0279677B1 publication Critical patent/EP0279677B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41GARTIFICIAL FLOWERS; WIGS; MASKS; FEATHERS
    • A41G11/00Artificial feathers
    • A41G11/02Implements or machines for making artificial feathers

Definitions

  • This invention relates to synthetic down and has particular reference to light-weight thermal insulation systems which can be achieved by the use of fine fibres in low density assemblies.
  • This material approaches, and in some cases exceeds the thermal insulating properties of natural down.
  • a synthetic fibre thermal insulator material in the form of a cohesive fibre structure which structure comprises an assemblage of:
  • the invention also includes a method of forming a thermal insulating material which method comprises forming a fibre assemblage
  • the resultant fibre assemblage has a radiation parameter defined as the intercept on the ordinate axis at zero density of a plot of K c P F against P F less than 0.173 (W/m-K)(kg/m3) [0.075(Btu- in/hr-ft2-°F)(lb/ft3)] and a density P F from 3.2 to 9.6 kg/m3 (0.2 to 0.6 lb/ft3) and an apparent thermal conductivity K c measured by the plate to plate method according to ASTM C518 with a heat flow down of less than 0.072 W/m-K (0.5 Btu-in/hr-ft2-°F).
  • Microfibres and macrofibres for use in the present invention may be manufactured from polyester, nylon, rayon, acetate, acrylic, modacrylic, polyolefins, spandex, polyaramids, polyimides, fluorocarbons, polybenzimidazols, polyvinylalcohols, polydiacetylenes, polyetherketones, polyimidazols and phenylene sulphide polymers such as those commercially available under the trade name RYTON.
  • microfibres are drawn following extrusion to impart tensile modulus of at least 63 g/dtex (70 g/den).
  • the bonding may be effected between at least some of the macrofibres to form a supporting structure for the microfibres, or may be between both macrofibres and some of the microfibres at their various contact points.
  • the macrofibres may be selected from the same material and may be either the same as the microfibres or different.
  • microfibres are formed from polyethylene terephthalate and the macrofibres are selected from polyethylene terephthalate or a polyaramid, such for example, as that commercially available under the Trade Mark "Kevlar”.
  • the macrofibres can be monofibres, i.e. fibres having a substantially uniform structure or may be multi-component fibres having a moiety to facilitate macrofibre to macrofibre bonding.
  • the macrofibre may be a fibre mixture in which at least 10% by weight comprises macrofibres of a lower melting point thermoplastic material to assist the macrofibre to macrofibre bonding.
  • the macrofibres may be a fibre mixture comprising multi-component macrofibres and a monocomponent macrofibre capable of bonding one with the other.
  • the macro component fibre may be a mix or blend of macrofibres having different properties for example, a macro fibre mix may comprise two or more different fibres such as a polyester fibre to give the desired bonding and a "Kevlar" fibre to give stiffness.
  • the proportion of stiffening fibre to bonding fibre may be varied to provide different properties subject to the requirement that the proportion of bondable fibres is sufficient for the macrofibre structure to provide an open support for the microfibres as hereinafter described.
  • Some materials such for example as polyphenylene sulphide fibres, aromatic polyamides of the type commercially available under the trade name "APYIEL", and polyimide fibres such as those manufactured by Lenzing AG of Austria, exhibit flame retardant properties or are non-flammable. Such materials can, therefore, confer improved flame or fire resistant properties on manufactured products containing the materials in accordance with the present invention. Methods of manufacturing such fibres are well known, see for example, United States Patent Specification No. 4,148,103.
  • Useful two component fibres include type TJ04S2, a side-by-side polyester/polyester material and type TJ04C2, a sheath/core polyester/polyester material, both available from Messrs. Teijin Ltd., of Japan.
  • the bonding in the structures in accordance with the invention is preferably, principally between the fibres of the macrofibre component at their contact points.
  • the purpose of the macrofibre to macrofibre bonding is to form a supporting structure for the microfibre component, said supporting structure contributing significantly to the mechanical properties of the insulating material.
  • Any means of bonding between the macrofibres may be employed such, for example, as by the addition of solid, gaseous or liquid bonding agents whether thermoplastic or thermosetting or by the provision of autologous bonds in which the fibres are caused to bond directly through the action of an intermediary chemical or physical agent.
  • the method of bonding is not critical, subject only to the requirement that the bonding should be carried out under conditions such that the macrofibre component, does not lose its structural integrity. It will be appreciated by one skilled in the art that any appreciable change in the macro- or microfibres during bonding will affect the thermal properties adversely; the bonding step needs, therefore, to be conducted to maintain the physical properties and dimensions of the fibre components and the assemblage as much as possible.
  • the thermal insulating properties of the bonded assemblage are preferably substantially the same as, or not significantly less than, thermal insulating properties of a similar unbonded assemblage.
  • bonding within the structure may be effected by heating the assemblage of fibres for a time and at a temperature sufficient to cause the fibres to bond.
  • Such heating period may be at a temperature of 125° C (257°F) to 225°C (437°F) for a period of the order of 1 minute to 10 minutes and preferably at a temperature of 140° C (284° F) to 200°C (392°F) for a period of about 3 to 7 minutes; these periods are, of course, dependent upon the material of the macrofibre component.
  • microfibres and optionally also the macrofibres constituting the assemblage of the invention may be crimped to assist in the production of a low density intimate blend or assemblage of the two components.
  • Crimping techniques are well known in the art, but the average crimp number for both microfibres and macrofibres is preferably within the range of 3 to 8 crimps/cm (8 to 20 crimps/inch). The presence of crimp further assists re-establishment of loft in the fibre assembly after compression or wetting.
  • the microfibres may have a tensile modulus of from 36 to 81 g/dtex (40 to 90 g/den). This relatively high tensile modulus contributes to a high bending modulus in the material of the invention and assists with the mechanical performance of the material in accordance with the invention.
  • lubricants may be included in one or both components of the assemblage.
  • Typical lubricants are aqueous solutions of organopolysiloxanes, emulsions of poytetrafluoroethylene and non-ionic surfactants. Such lubricants may be applied to the fibres by spray or dip techniques well known in the art.
  • the assemblage of macrofibres and microfibres may be a batt consisting of plied card-laps although other fibrous forms such as air-laid webs are equally suitable. Webs and batts in which some fibres are oriented in the through-the-thickness direction as well as in the primary sheet plane are of distinct advantage from a mechanical performance standpoint. Webs of continuous filaments whether spun, bonded or otherwise produced may be used.
  • the assemblage may be in the form of clusters or balls.
  • clusters can be prepared by hand or through the use of commercially available machinery such as automatic dicing, tumbling or ball-rolling machinery.
  • Batts or clusters in accordance with the invention may achieve densities comparable to the densities of natural down, i.e. of the order of less than 16 kg/m3 (1.0 lb/ft3) and typically about 8 kg/m3 (0.5 lb/ft3).
  • the insulator material of this invention surprisingly provides extremely good recovery from compressional loading. Furthermore, since it is compatible with current down processing equipment, it represents a viable synthetic down replacement material both from a performance and a processing standpoint.
  • Thermal insulating material in accordance with the present invention in the form of clusters tends to enjoy a more random orientation of the fibres, thus providing greater compressional recovery and more uniform properties. These clusters furthermore enjoy the advantage of being capable of being handled in established down handling and filling machinery.
  • Such clusters may be made by shaping the fibre assemblage using a "cotton ball" rolling machine. Typical machines suitable for this purpose are manufactured by Bodolay/Pratt Division of the Package Machinery Co., of Florida, USA, and by Internationale Verbandstoff-Fabrik of Switzerland.
  • Compressional Strain Strain at 34.4 kPa (5 lb/in2), which was the maximum strain in the compressional recovery test sequence, was recorded for each test.
  • Section 4.3.2 of Military Specification MIL-B-41826E describes a compressional-recovery test technique for fibrous batting that was adapted for this work.
  • the essential difference between the Military Specification method and the one employed is the lower pressure at which initial thickness and recovered-to-thickness were measured.
  • the measuring pressure in the specification is 0.07 kPa(0.01 lb/in2) whereas 0.014 kPa (0.002 lb/in2) was used in this work.
  • ASTM Method D1117 provided the starting point for development of the water absorption-capacity and absorption-time test used. However, wetted-sample weighings were made at frequent intervals during the first six hours of immersion and another weighing was made after twenty-four hours (Method D1117 requires only one wetted sample weighing). A unique sample-holder and a repeatable technique for draining excess water prior to each weighing were adopted after some initial experimentation.
  • Drying Time After each absorption capacity test, weighings were made at one-half hour intervals as the sample air-dried on a wire rack in a 21°C (70°F), 65% r.h. atmosphere.
  • Batt Cohesiveness A 5.1 cm (2 inch) thick, 14.5 cm (5.7 inch) diameter circular test-specimen was cut from each batt. Each specimen was gripped so that it could be pulled apart in the direction perpendicular to the batt plane, i.e. tensile tested in the through-the-thickness direction. Results were recorded in terms of tensile strain at the time of initial batt separation and expressed as extension ratios, which are defined as the ratio of the batt thickness at separation or disruption to the original batt thickness under zero applied load.
  • Cluster Cohesiveness Individual clusters weighing 60 mg. and having diameters of 3.05 to 3.15 cm (1.20 to 1.25 inches) were mounted in light-weight spring-action jaws in a tensile test machine. The jaw faces were lined with rubber and measured 0.64 x 0.64 cm (0.25 x 0.25 inches); they were spaced to provide an initial separation (gauge length) of 1.91 cm (0.75 inch). The maximum force attained as each cluster was drawn apart and fully separated was recorded.
  • down used throughout the examples was actually a down/feathers mixture, 80/20 by weight, per MIL-F-43097G, Type II, Class I. This mixture is commonly and commercially referred to as “down” and is referred to as “down” herein.
  • Comparative Example 1 The procedure of Comparative Example 1 was repeated with the exception that the macrofibre used therein was replaced with 20 percent by weight of uncrimped poly(p-phenylene teraphthalamide) fibres having a diameter of 12 microns, a length of 7.6 cm (3.0 in), and a silicone lubricant finish.
  • the physical characteristics of the material formed are given in Table I below.
  • a quantity of 0.55 dtex (0.5 denier) 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in) and crimped was first opened in a wire-clothed carding machine. The opened fibre was then scoured, dried and treated with a silicone finish that imparts lubricity and water repellency. The microfibre was then combined and uniformly blended with a 4.4 dtex, 5.1 cm (4 denier, 2 in) long polyester binder fibre of the side-by-side type (Type TJO4S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine.
  • the mixture ratio was 90/10, microfibre/binder macrofibre, by weight.
  • card laps output webs from the carding machine
  • the final processing step was oven exposure of the batts at 160°C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds ensured that each batt was a cohesive, non-separable fibrous assembly.
  • a quantity of 0.55 dtex (0.5 denier) 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in), and crimped was first opened in a wire-clothed carding machine. The opened fibre was then scoured, dried and treated with a silicone finish that imparts lubricity and water repellency. The microfibre was then combined and uniformly blended with 4.4 dtex, 5.1cm (4 denier, 2 in) long, polyester binder fibre of the side-by-side type (Type TJ04S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine.
  • the mixture ratio was 90/10, microfibre/binder macrofibre, by weight.
  • the card lap output of the carding machine
  • Cluster formation was achieved in the laboratory through hand manipulation, although at least two commercial processes for transforming carded fibres into clusters or balls are known.
  • the final processing step was oven exposure of the down-like clusters to a temperature of 160° C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds made each individual cluster a cohesive, non-separable unit.
  • a quantity of 0.55 dtex (0.5 denier) 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in), and crimped was first opened in a wire-clothed carding machine. The opened fibre was then scoured, dried and treated with a silicone finish that imparts lubricity and water repellency. The microfibre was then combined and uniformly blended with 4.4 dtex, 5.1 cm (4 denier, 2 in) long, polyester binder fibre of the side-by-side type (Type TJ04S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine. The mixture ratio was 85/15, microfibre/binder macrofibre by weight.
  • card laps output webs from the carding machine
  • card laps output webs from the carding machine
  • the final processing step was oven exposure of the batts at 160°C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds ensured that each batt was a cohesive, non-separable fibrous assembly.
  • the insulator produced in this example was used to manufacture jackets, sleeping bags and quilts. All were found to have and maintain thermal insulating performance equivalent to or better than those using down as the insulator.
  • a quantity of 0.55 dtex (0.5 denier), 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in), and crimped was first opened in a wire-clothed carding machine. The opened fibre was then scoured, dried and treated with a silicone finish that imparts lubricity and water repellency. The microfibre was then combined and uniformly blended with 4.4 dtex, 5.1 cm (4 denier, 2 in) long, polyester binder fibre of the side-by-side type (Type TJ04S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine. The mixture ratio was 85/15 microfibre/binder macrofibre, by weight.
  • the card lap (output of the carding machine) was separated into clusters. These clusters were more or less spherical in shape with an average diameter of 1.91 cm (0.75 in) and an average weight of 15 mg. Cluster formation was achieved in laboratory through hand manipulation, although at least two commercial processes for transforming carded fibres into clusters or batts are known.
  • the final processing step was oven exposure of the down-like clusters to a temperature of 160°C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds made each individual cluster a cohesive, non-separable unit.
  • a quantity of 0.55 dtex (0.5 denier), 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in), and crimped was first opened in a wire-clothed carding machine. The opened fibre was then scoured, dried, and treated with a silicone finish that imparts lubricity and water repellency. The microfibre was then combined and uniformly blended with 4.4 dtex, 5.1 cm (4 denier, 2 in) long, polyester binder fibre of the side-by-side type (Type TJ04S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine.
  • card laps output webs from the carding machine
  • card laps output webs from the carding machine
  • the final processing step was oven exposure of the batts at 160°C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds ensured that each batt was a cohesive, non-separable fibrous assembly.
  • a quantity of 0.55 dtex (0.5 denier) 7.5 micron diameter polyester microfibre that had been spun, drawn, cut to a staple length of 3.0 cm (1.2 in), and crimped was first opened in a wire-clothed carding machine.
  • the opened fibre was then scoured, dried and treated with a silicone finish that imparts lubricity and water repellency.
  • the microfibre was then combed and uniformly blended with 4.4 dtex, 5.1 cm (4 denier, 2 in) long, polyester binder fibre of the side-by-side type (Type TJ04S2, available from Teijin). Blending was achieved by subjecting the mixed fibre stock to several passes through a carding machine.
  • the mixture ratio was 80/20, microfibre/binder macrofibre, by weight.
  • the card lap output of the carding machine
  • Clusters were more or less spherical in shape with an average diameter of 1.91 cm (0.75 in) and an average weight of 15 mg. Cluster formation was achieved in the laboratory through hand manipulation.
  • the final processing step was oven exposure of the down-like clusters to a temperature of 160°C (320°F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres. These bonds made each individual cluster a cohesive, non-separable unit.
  • An aggregation of clusters like those of Examples 2, 4 and 6 constitutes a collection of fibres of random orientation. This is in distinct contrast to the ordered fibre orientation of the batt form. A large fraction of the fibres that comprise each batt lie more or less parallel to the plane of the batt, contributing relatively little to its loftiness and compressional elasticity.
  • the random fibre alignment provides some fibres that are perpendicular to, or nearly perpendicular to, the insulator plane. These fibres are, in effect, structural columns. They improve the loftiness of the assembly and, through elastic bending and/or buckling, greatly enhance the compressional recovery of the insulator.
  • Example 1 The procedure of Example 1 was repeated to produce another batt having a fibre mixture ratio of 90/10, microfibre/binder macrofibre by weight. However, the final processing step described for Example 1, oven exposure, was omitted to provide a non-bonded batt for comparative purposes.
  • Example 5 The procedure of Example 5 was repeated to produce another batt having a fibre mixture ratio of 80/20, microfibre/binder macrofibre by weight. However, the final processing step described for Example 5, oven exposure, was omitted to provide a non-bonded batt for comparative purposes.
  • Example 4 The basic procedure of Example 4 was repeated to produce another collection of clusters having a fibre mixture ratio of 85/15 microfibre/binder macrofibre, by weight, with the exception that the final oven exposure step was omitted.
  • the clusters produced differed from those of Example 4 in that their average diameter was 3.0 cm (1.2 in), their average weight was 60 mg, and they were not bonded.
  • Example 4 The basic procedure of Example 4 was repeated to produce another collection of clusters having a fibre mixture ratio of 85/15, microfibre/binder macrofibre by weight.
  • the clusters produced differed from those of Example 4 only in size and weight.
  • the clusters of this example like those of Comparative Example 5, had an average diameter of 3.0 cm (1.2 in), and an average weight of 60 mg.
  • the clusters of the present example were, however, subjected to oven exposure at 160° C (320° F) for 5 minutes to obtain thermoplastic bonds between microfibres and binder macrofibres and between binder macrofibres.
  • Insulating batts of Examples 1 and 5 of the subject invention and Comparative Examples 3 and 4 were evaluated, the batt cohesiveness test previously herein described being used, and the results are set forth in the following table.
  • Example 1 and Comparative Example 3 are alike in terms of types of fibres and proportional quantities of fibres that they contain and (2) that they differ in that only the batt of Example 1 has been subjected to oven exposure to achieve fibre-to-fibre bonding.
  • batts of Example 5 and Comparative Example 4 are alike in basic composition but differ in that only Example 5 contains fibre-to-fibre bonds.
  • Bonded structures were produced in the manner described in Example 1 using a mix of macrofibres.
  • the microfibres are a 0.55 dtex (0.5 denier) polyester fibre.
  • the macrofibres were a blend of a 4.4 dtex (4 denier) polyester binder fibre as described in Example 1 with a 1.5 dtex (1.4 denier) stiffening fibre of "Kevlar 49".

Claims (22)

  1. Ein Verfahren zum Bilden eines thermisch isolierenden Materials, welches Verfahren umfaßt:
       Bilden einer Faserkomposition aus 70 bis 95 Gew.% synthetischen Polymermikrofasern mit einem Durchmesser von 3 bis 12 Mikron; und
       5 bis 30 Gew.% synthetischen Polymermakrofasern mit einem Durchmesser nicht unter 12 Mikron,
       Formen der so gebildeten Komposition, und
       Bewirken einer Haftung zwischen mindestens einigen der Fasern an ihren Kontaktpunkten derart, daß die Dichte der resultierenden Struktur innerhalb des Bereichs von 3 bis 16 kg/m³ (0.2 to 1.0 lb/ft³) liegt, wobei die Haftung herbeigeführt wird ohne merkbaren Verlust der thermischen Isolationseigenschaften im Vergleich mit der haftungsfreien Komposition.
  2. Ein Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Haftung durch Anwendung von Wärme durch autologes Haften oder durch Haftmittel bewirkt wird.
  3. Ein Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß das Formen der Komposition ausgeführt wird unter Verwendung einer Kardiermaschine und einer automatischen Kugelrollmaschine (Wattebauschmaschine) oder mittels einer Kardiermaschine und einer Legemaschine für das Falten von Kardenwickeln in eine Lage.
  4. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Haften bewirkt wird zwischen mindestens einigen der Makrofasern zum Bilden einer Supportstruktur für die Mikrofasern.
  5. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Makrofaser und/oder die Mikrofaser ausgewählt wird aus einem oder mehreren von Polyester, Nylon-, Rayon-, Acetat-, Acryl-, Modacryl-, Polyolefin-, Spandex-, Polyaramid-, Polyimid-, Fluorocarbon-, Polybenzimidazol-, Polyvinylalkohol-, Polydiacetylen-, Polyätherketon-, Polyimidazol- und Phenyl-Sulfidpolymeren.
  6. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Makrofaser ausgewählt wird aus einem oder mehreren von:
    (i) Multikomponentenfasern mit einem Anteil zum Erleichtern der Makrofasermakrofaserhaftung;
    (ii) einem Fasergemisch, bei dem mindestens 10 Gew.% der Makrofasern Makrofasern eines niedrigschmelzenden Materials umfassen und
    (iii) einem Fasergemisch umfassend Multikomponentenmakrofasern und Einzelkomponentenmakrofasern, die fähig sind, miteinander Haftverbindungen einzugehen.
  7. Ein Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß Multikomponentenmakrofasern ausgewählt werden aus Zweikomponentenfasern in einem Seite-an-Seite Aufbau oder in einem Hüllen/Kernaufbau.
  8. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das haftende Material einen Strahlungsparameter aufweist, definiert als den Schnittpunkt auf der Ordinatenachse bei Dichte null einer Kurve von KcPF über PF weniger als 0,173 (W/m-K) (kg/m³) [0,075 (Btu-in/hr-ft² - °F) (lb/ft³)]
    Figure imgb0016
    Figure imgb0017
    und Dichte PF von 3,2 bis 16 kg/m³ (0,2 bis 1,0 lb/ft³) und eine scheinbar thermische Leitfähigkeit Kc, gemessen bei dem Platte-gegen-Platte Verfahren nach ASTM C518 mit einem Wärmeabwärtsfluß von weniger als 0,072 W/m-K (0,5 Btu-in/hr-ft²-°F)
    Figure imgb0018
    .
  9. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine der Faserkomponenten mit einem Finnish behandelt wird, das wasserabstoßende oder schmierende Eigenschaften hat.
  10. Ein Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Mikrofasern und/oder die Makrofasern vor dem Haftungsschritt gekräuselt werden.
  11. Ein Verfahren nach einem der vorangehenden Ansprüche, gekennzeichnet durch das Zufügen eines Anteils an Versteifungsfaser innerhalb der Faserstruktur.
  12. Ein synthetisches thermisch isolierendes Fasermaterial in Form einer zusammenhaltenden Faserstruktur, welche Struktur eine Komposition umfaßt von:
    (a) 70 bis 95 Gew.% gesponnener, gereckter, synthetischer Polymermikrofaser mit einem Durchmesser von 3 bis 12 Mikron und
    (b) 5 bis 30 Gew.% synthetischer Polymermakrofaser mit einem Durchmesser von 12 bis 50 Mikron, dadurch gekennzeichnet, daß an Mikrofaser/Makrofaserkontaktpunkten die Mikrofasern an den Makrofasern haften und an Makrofaser/Makrofaserkontaktpunkten die Makrofasern an den Makrofasern haften, wobei die Anhaftung derart ist, daß die Makrofaserkomponente nicht ihre strukturelle Integrität verliert und die Dichte der resultierenden Struktur innerhalb des Bereichs von 3 bis 16 kg/m³ liegt, wobei die thermisch isolierenden Eigenschaften der haftenden Komposition gleich sind oder nicht wesentlich geringer sind als die thermischen Isolationseigenschaften einer vergleichbaren jedoch haftungsfreien Komposition.
  13. Ein synthetisches, thermisch isolierendes Fasermaterial in Form einer zusammenhaltenden Faserstruktur, welche Struktur eine Komposition umfaßt von:
    (a) 70 bis 95 Gew.% gesponnener und gereckter synthetischer Polymermikrofasern mit einem Durchmesser von 3 bis 12 Mikron; und
    (b) 5 bis 30 Gew.% synthetischer Polymermakrofasern mit einem Durchmesser von 12 bis 50 Mikron, dadurch gekennzeichnet, daß die Majorität der Makrofasern an ihren Kontaktpunkten aneinanderhaften, wodurch eine Supportstruktur für die Mikrofasern gebildet wird, wobei das Anhaften derart ist, daß die Makrofaserkomponente nicht ihre strukturelle Integrität verliert und die Dichte der resultierenden Struktur innerhalb des Bereichs von 3 bis 16 kg/m³ liegt, wobei die thermischen Isolationseigenschaften der verhafteten Komposition gleich oder nicht wesentlich geringer sind als die thermischen Isolationseigenschaften einer vergleichbaren jedoch haftungsfreien Komposition.
  14. Ein synthetisches thermisch isolierendes Fasermaterial nach Anspruch 12 oder Anspruch 13, dadurch gekennzeichnet, daß das Material einen Strahlungsparameter hat, definiert als den Schnittpunkt auf der Ordinatenachse bei Dichte null einer Kurve von KC PF über PF von weniger als 0,173 (W/m-K) (kg/cm³) und eine scheinbare thermische Leitfähigkeit KC, gemessen nach dem Platte-gegen-Platte Verfahren gemäß ASTM C518 mit einem Wärmeabwärtsfluß von weniger als 0,072 W/m-K.
  15. Ein Material nach Anspruch 12, Anspruch 13 oder Anspruch 14, dadurch gekennzeichnet, daß die Mikrofaser ausgewählt ist aus einem oder mehreren der Polyester-, Nylon-, Rayon-, Acetat-, Acryl-, Modacryl-, Polyolefin-, Spandex-, Polyaramid-, Polyimid-, Fluorocarbon-, Polybenzimidazol-, Polyvinylalkohol-, Polydiacetylen-, Polyätherketon-, Polymidazol- und Phenyl-Sulfidpolymeren.
  16. Ein Material nach Anspruch 12, Anspruch 13, Anspruch 14 oder Anspruch 15, dadurch gekennzeichnet, daß die Makrofaser ausgewählt ist aus einem oder mehreren der Polyester-, Nylon-, Rayon-, Acetat-, Acryl-, Modacryl-, Polyolefin-, Spandex-, Polyaramid-, Polyimid-, Fluorocarbon-, Polybenzimidazol-, Polyvinylalkohol-, Polydiacetylen-, Polyätherketon-, Polyimidazol- und Phenyl-Sulfidpolymeren.
  17. Ein Material nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß die Makrofaser ausgewählt ist aus einem oder mehreren von:
    (i) Mehrkomponentenfasern mit einem Teil, der die Makrofasermakrofaserhaftung erleichtert;
    (ii) einem Fasergemisch, in welchem mindestens 10 Gew.% der Makrofasern Makrofasern eines Materials niedrigen Schmelzpunktes umfassen und
    (iii) einem Fasergemisch umfassend Mehrkomponentenmakrofasern und Einkomponentenmakrofasern, die zur Haftung aneinanderbringbar sind.
  18. Ein Material nach Anspruch 17, bei dem die Mehrkomponentenmakrofasern ausgewählt sind aus Zweikomponentenfasern in einem Seite-an-Seite-Aufbau oder in einem Hüllen/Kern-Aufbau.
  19. Ein Material nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß mindestens eine der Faserkomponenten ein wasserabweisendes Finish, ein schmierendes Finish oder ein wasserabstoßendes und zugleich schmierendes Finish aufweist.
  20. Ein Material nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, daß die Mikrofasern,die Makrofasern und/oder die Mikrofasern gekräuselt sind.
  21. Ein Material nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, daß das Material in der Form von Lagen vorliegt.
  22. Ein Material nach einem der Ansprüche 12 bis 21, dadurch gekennzeichnet, daß das Material in der Form von Klustern vorliegt.
EP19880301381 1987-02-20 1988-02-18 Künstliche Daunen Expired - Lifetime EP0279677B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88301381T ATE89696T1 (de) 1987-02-20 1988-02-18 Kuenstliche daunen.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US1747287A 1987-02-20 1987-02-20
US17472 1987-02-20
GB8718330 1987-08-03
GB878718330A GB8718330D0 (en) 1987-08-03 1987-08-03 Synthetic down
GB8728582 1987-12-07
GB878728582A GB8728582D0 (en) 1987-12-07 1987-12-07 Improvements in & relating to synthetic down

Publications (3)

Publication Number Publication Date
EP0279677A2 EP0279677A2 (de) 1988-08-24
EP0279677A3 EP0279677A3 (en) 1990-01-17
EP0279677B1 true EP0279677B1 (de) 1993-05-26

Family

ID=27263536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880301381 Expired - Lifetime EP0279677B1 (de) 1987-02-20 1988-02-18 Künstliche Daunen

Country Status (4)

Country Link
EP (1) EP0279677B1 (de)
CA (1) CA1318118C (de)
DE (1) DE3881230T2 (de)
ES (1) ES2040332T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571884B1 (de) * 1992-05-27 1997-04-02 Hoechst Aktiengesellschaft Verbundwerkstoffe enthaltend Fäden aus Polyetherketonen
DE9408097U1 (de) * 1994-05-17 1995-09-14 Faist M Gmbh & Co Kg Schalldämmender Bauteil
WO2004008897A1 (de) * 2002-07-18 2004-01-29 Thermobalance Ag Daunenähnliches füllmaterial und verfahren zu dessen herstellung
CN103882714B (zh) * 2012-12-21 2016-07-13 3M创新有限公司 制造拒水无纺保暖材料的方法及拒水无纺保暖材料
RU2580487C1 (ru) 2013-01-22 2016-04-10 Прималофт, Инк. Распушиваемый теплоизоляционный материал, обладающий повышенной долговечностью и водоотталкивающей способностью
DE102014002060B4 (de) * 2014-02-18 2018-01-18 Carl Freudenberg Kg Volumenvliesstoffe, Verwendungen davon und Verfahren zu ihrer Herstellung
DE102016224251B4 (de) 2016-12-06 2019-02-28 Adidas Ag Wärmedämmende Struktur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD211711A1 (de) * 1982-11-29 1984-07-25 Forschungszentrum Fuer Textilt Verfahren zur herstellung kuenstlicher bettfedern
US4588635A (en) * 1985-09-26 1986-05-13 Albany International Corp. Synthetic down

Also Published As

Publication number Publication date
EP0279677A2 (de) 1988-08-24
EP0279677A3 (en) 1990-01-17
DE3881230D1 (de) 1993-07-01
ES2040332T3 (es) 1993-10-16
DE3881230T2 (de) 1993-10-07
CA1318118C (en) 1993-05-25

Similar Documents

Publication Publication Date Title
US4992327A (en) Synthetic down
EP0217484B1 (de) Synthetischer Flaum
DE102005015550C5 (de) Verwendung eines thermisch gebundenen Vliesstoffs
EP0760029B1 (de) Mehrschichtige thermisch isolierende vliesstoffe
EP1190133B1 (de) Bauschige dämmfaseraggregate
EP0364194B1 (de) Wärmeisolierungsmaterialien aus kontinuierlichen Fäden
KR100523312B1 (ko) 이중 유리 섬유의 카딩성 블렌드, 이로부터 제조된 응집성 웹, 이로부터 제조된 펠트, 이중 유리 섬유 함유 펠트의 형성 방법
WO2000065139A1 (en) Blowable insulation clusters
EP0279677B1 (de) Künstliche Daunen
EP1969168B1 (de) Verblasbare isolationsbüschel aus natürlichem material
US4681789A (en) Thermal insulator comprised of split and opened fibers and method for making same
AU592259B2 (en) Improvements in and relating to synthetic down
JPS63243358A (ja) 熱絶縁性材料及びその形成法
MXPA96005502A (en) Blocks of fibrous material, thermal insulators, non-woven, of multiple ca

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900620

17Q First examination report despatched

Effective date: 19911213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALBANY INTERNATIONAL CORP.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 89696

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3881230

Country of ref document: DE

Date of ref document: 19930701

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3008447

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040332

Country of ref document: ES

Kind code of ref document: T3

K2C2 Correction of patent specification (partial reprint) published

Effective date: 19930526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19931229

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940218

Ref country code: AT

Effective date: 19940218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940219

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940228

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ALBANY INTERNATIONAL CORP.

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940218

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88301381.5

Effective date: 19940910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950831

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3008447

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050218