EP0279042B2 - Arrangement for protecting relay contacts - Google Patents

Arrangement for protecting relay contacts Download PDF

Info

Publication number
EP0279042B2
EP0279042B2 EP19870117879 EP87117879A EP0279042B2 EP 0279042 B2 EP0279042 B2 EP 0279042B2 EP 19870117879 EP19870117879 EP 19870117879 EP 87117879 A EP87117879 A EP 87117879A EP 0279042 B2 EP0279042 B2 EP 0279042B2
Authority
EP
European Patent Office
Prior art keywords
switching
switching device
glow plug
switched
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870117879
Other languages
German (de)
French (fr)
Other versions
EP0279042B1 (en
EP0279042A1 (en
Inventor
Hans-Joachim Dipl.-Ing. Thiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella KGaA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6319328&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0279042(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hella KGaA Huek and Co filed Critical Hella KGaA Huek and Co
Publication of EP0279042A1 publication Critical patent/EP0279042A1/en
Publication of EP0279042B1 publication Critical patent/EP0279042B1/en
Application granted granted Critical
Publication of EP0279042B2 publication Critical patent/EP0279042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/022Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means

Definitions

  • Glow plug device for self-igniting internal combustion engines, in particular in motor vehicles
  • the invention relates to a preheating device for self-igniting internal combustion engines, in particular in motor vehicles, with a power source, with a glow plug, with a first switching device for connecting the glow plug to the power source via a resistor, with a second switching device, which is designed as a relay, for direct connection the glow plug with the current source and with a time switching device by means of which the first switching device can be switched on before the second switching device.
  • Such preheating devices are used for heating glow plugs via a heating current, in particular from the starter battery of motor vehicles.
  • the glow plugs promote the ignition of the diesel fuel injected into the cold self-igniting internal combustion engine.
  • the heating current can reach orders of magnitude up to 300 amperes and larger.
  • Such a preheating device is known from DE-OS 29 07 772, in which to protect relay contacts and glow plugs, the glow plugs as electrical consumers during a first heating period via a first switching device which is designed as a relay and connected to the power source via a series resistor and thereby be supplied with a correspondingly low heating current. Only after a predetermined period of time of a few seconds to a few minutes is the glow plug directly connected to the power source via a second switching device.
  • the known device has disadvantages.
  • the glow plugs By supplying the glow plugs with a low heating current during a first heating period, the glow plugs heat up more slowly than with preheating devices which take the measures of not have known device. This means that the waiting time of the machine operator until the self-igniting internal combustion engine can be started increases noticeably compared to preheating devices that have no means to protect relay contacts. This leads to a loss of comfort when operating the self-igniting internal combustion engine.
  • the series resistor is additionally required in the known device.
  • Such a series resistor with a correspondingly high load capacity is expensive to procure and takes up space, eg. B. in the engine compartment of motor vehicles. This means that the previously known device can only be produced in a complex and expensive manner.
  • the invention has for its object to provide a preheating device which is simpler and less expensive to produce than the prior art, which, while protecting relay contacts, enables the electrical consumer to be supplied with the full supply voltage and which provides for monitoring the circuit for short circuit and power interruption.
  • the first switching device is a semiconductor component, that the resistance is the internal resistance of the switching path of the semiconductor component, that a monitoring device is provided which measures the voltage drop across the internal resistance of the switching path of the semiconductor component and with compares predetermined threshold values when the first switching device is switched on and the second switching device is switched off, that the monitoring device switches off the switching devices when the value falls below a first threshold value and / or delivers a first error signal for a first display device and / or that the monitoring device when monitoring a second threshold value switches off the switching devices and / or supplies a second spring signal to a second display device.
  • the first switching device as a semiconductor component, unlike in the prior art, it is not possible for relay contacts of a first switching device to be overloaded because there are no relay contacts.
  • the internal resistance of the switching path of the semiconductor component is small compared to the series resistance of the previously known device, so that the time until the glow plug heats up can be significantly reduced compared to the prior art.
  • no additional expensive and space-consuming series resistor is required.
  • the device according to the invention also has the advantage that the first period, during which the first switching device is switched on and the second switching device is still switched off, can be reduced to times of the order of 1 ms, inter alia, due to the shorter switching times of the semiconductor component.
  • the result of this is that z. B. the time to complete heating of the glow plug can be shortened compared to the prior art and essentially corresponds to the time period with constant direct feeding of the glow plug from the power source.
  • a monitoring device which the voltage drop across the internal resistance of the switching path of the Semiconductor component measures and compares with predetermined threshold values when the first switching device is switched on and the second switching device is switched off, the monitoring device switching off the switching devices when the value falls below a first threshold value and / or supplying a first error signal to a first display device and / or the monitoring device when Exceeding a second threshold value, the switching device switches off and / or supplies a second error signal to a second display device, the heating circuit can be checked for short circuits and circuit interruptions. Due to the short switching times of the semiconductor component, a short first period of approximately 1 ms is also sufficient for this circuit monitoring.
  • a semiconductor device can use a bipolar transistor.
  • It can also be a MOS-FET with an integrated monitoring device, such as that used for Is currently freely available, so that the additional effort for the construction of the monitoring device is low.
  • the time switch device and / or the monitoring device can be designed as part of a microcomputer.
  • the time switching device in such a way that it switches the switching devices on and off periodically, in particular at a constant frequency and depending on the supply voltage and the glow plug temperature of variable switch-on time, because this measure compensates for supply voltage fluctuations and controls the glow plug temperature Changing the switch-on times of the first and second switching device is possible.
  • the advantages of the preheating device according to the invention become particularly clear because the frequent switching on and off of the first and second switching devices with frequencies of z. B. 2 Hz, the load on the relay contacts is particularly high.
  • the relay contacts can have burned down after only about 8 months of operation of a motor vehicle with a self-igniting internal combustion engine and over 2 million actuations of the relay contacts, so that attempts to start the internal combustion engine are no longer possible, as tests have shown.
  • the glow plug circuit is a current source (B), which can be designed as a motor vehicle battery, a glow plug (VS), which can be designed as the first catch of a glow plug of a motor vehicle, an electrical consumer (V), which is designed as a glow plug and a first switching device, which is designed as a semiconductor component (HL), in particular as a MOS-FET, and a second switching device, which is designed as a relay contact set (RK) of an electromagnetic relay.
  • the semiconductor component (HL) and the relay contact set (RK) are connected in parallel in the glow plug circuit.
  • the semiconductor component (HL) and the electromagnetic relay (RK, RS) can be switched on and off by a time switch, which is designed as part of a microcomputer (MC).
  • the microcomputer (MC) is connected in a known manner to the current source (B) for the power supply.
  • an NPN driver transistor (TR1) is provided, the base of which can be controlled by the output signal of the microcomputer (MC) and whose emitter is connected to the negative pole of the current source (B) and its Collector is connected to the positive pole of the power source (B) via the electromagnetic relay coil (RS).
  • the semiconductor switch (HL) can also be controlled by the microcomputer (MC) via a voltage doubler circuit (SPV).
  • the voltage doubler circuit (SPV) is required because an N-channel MOS-FET is used here as the semiconductor component and the potential at the gate input (G) must always be greater than the potential at the SOURCE- to control the MOS-FET. Port (S).
  • the first Zener diode (Z1) and the second Zener diode (Z2) also serve to protect the MOS-FET (HL) and the NPN transistor (TR1).
  • the first Zener diode (Z1) protects the NPN transistor (TR1) against overvoltage and is reverse polarity protection.
  • the second Zener diode (Z2) serves to limit the voltage at the GATE input compared to the voltage at the SOURCE connection of the MOS-FET (HL). This voltage difference must not exceed a value specified by the design of the MOS-FET.
  • the SOURCE connection of the MOS-FET (HL) is thus via the glow plug (V) with the negative coil of the current source (B) and via the DRAIN connection (D) and the preheat switch (VS) with the positive pole of the current source (B) conductively connected.
  • the potential or the voltage drop (UDS) on the switching path of the MOS-FET (HL) is tapped between the SOURCE connection (S) and the DRAIN connection (D) and fed to an analog-to-digital converter (ADC), which, however, is also used as Comparator can be formed.
  • the output signal of the analog-to-digital converter (ADC) is fed to the microcomputer (MC) to determine contact actuation, line interruptions and short circuits.
  • the analog-to-digital converter (ADC) is part of a monitoring device, the other part of which is formed in the microcomputer (MC).
  • the monitoring device compares the voltage drop (UDS) across the internal resistance of the switching path of the semiconductor component (HL) with predetermined threshold values when the first switching device, i.e. the MOS-FET (HL), is switched on and the second switching device, i.e. the electromagnetic relay, is switched off . If the voltage drop (UDS) falls below a first threshold value, the monitoring device switches off the first switching device (HL) and prevents the second switching device (RK) from being switched on and outputs a first error signal to a first display device (FL1), which is shown in FIG simple indicator lamp is shown.
  • the monitoring device switches the first switching device (HL) off and prevents the second switching device (RK) from being switched on, and a second error signal is delivered to a second display device (FL2), which is also in 1 as a simple indicator lamp is shown.
  • the error signals can also be used to control other devices on the self-igniting internal combustion engine or the motor vehicle.
  • the preheat switch (VS) is in the open position shown in FIG. 1. Then the entire preheating device according to the invention is de-energized and no potential differences can be measured. If the preheating switch (VS) is now closed, the first switching device (HL) and the second switching device (RK) remain open from this point in time, which is marked with the time zero in FIG. 2, until the point in time (T1) Position so that no current can flow through the glow plug (V). A potential is then measured at the switching path of the semiconductor switch as a voltage drop (UDS) that corresponds to the battery voltage (UB) of the current source (B).
  • UDS voltage drop
  • the semiconductor switch (HL) is now switched on at time (T1), the current flow from the positive pole of the battery via the glow plug (VS), the switching path of the semiconductor switch (HL) and the glow plug (V) to the negative pole of the current source (B) is made possible .
  • the glow plug (V) is in an electrically perfect condition, a small amount (U1) of the total voltage applied drops across the switching path of the semiconductor switch (HL). This voltage drop (U1) can be measured over the entire period (T), which extends from T1 to T2 and in which the semiconductor switch (HL) is switched on and the second switching device (RK) is switched off.
  • This voltage drop (U1) is measured by the analog-to-digital converter (ADC) and passed on in a converted form to the microcomputer (MC).
  • ADC analog-to-digital converter
  • the second switching device (RK) is additionally switched on at the time (T2) after the time period (T) has elapsed, then because of the low contact resistance between the Relay contacts (RK) only a negligible voltage drop (UDS) on the switching path of the semiconductor switch (HL) can be measured.
  • the second switching device (RK) is opened so that the current flows again over the switching path of the semiconductor component (HL).
  • a voltage amount (U1) drops across the switching path of the semiconductor component (HL).
  • the glow plug (V) is not in perfect condition, this can be detected by the monitoring device during the period (T). If the glow plug (V) had a short circuit, the entire voltage (UB) at the switching path of the semiconductor component (HL) would drop during the period (T). This means that the measured voltage drop (UDS) would be above the first threshold value (US1) shown in FIG. 2. This increased voltage drop would be recognized by the monitoring device and a first error signal delivered to the first display device (FL1). At the same time, the semiconductor switch (HL) is then switched off in order to prevent the semiconductor components (HL) from being overloaded.
  • the preheating device not only protects the relay contacts (RK) easily and inexpensively, but also enables the glow plug circuit to be monitored for short circuits and line interruptions in a simple manner.
  • the glow plug (V) can advantageously be switched on and off periodically by the preheating device according to the invention.
  • This has the advantage that Supply voltage fluctuations and the glow plug temperature can be changed by changing the switch-on times. It is particularly advantageous to carry out this periodic switch-on and switch-off with a constant switch-on time and a switch-off time that is variable depending on the supply voltage and the glow plug temperature, because the clock signal required for this can be provided in a simple manner by using the microcomputer (MC). This means that the switch-on and switch-off process shown in FIG. 2 would be repeated periodically.
  • the advantages of the preheating device according to the invention become particularly noticeable because the preheating device according to the invention means that the relay contacts (RK) are hardly noticeable.

Description

Vorglüheinrichtung für selbstzündende Brennkraftmaschinen insbesondere in KraftfahrzeugenGlow plug device for self-igniting internal combustion engines, in particular in motor vehicles

Die Erfindung betrifft eine Vorglüheinrichtung für selbstzündende Brennkraftmaschinen, insbesondere in Kraftfahrzeugen, mit einer Stromquelle, mit einer Glühkerze, mit einer ersten Schalteinrichtung zum Verbinden der Glühkerze mit der Stromquelle über einen Widerstand, mit einer zweiten Schalteinrichtung, die als Relais ausgebildet ist, zum direkten Verbinden der Glühkerze mit der Stromquelle und mit einer Zeitschalteinrichtung, durch die die erste Schalteinrichtung vor der zweiten Schalteinrichtung einschaltbar ist.The invention relates to a preheating device for self-igniting internal combustion engines, in particular in motor vehicles, with a power source, with a glow plug, with a first switching device for connecting the glow plug to the power source via a resistor, with a second switching device, which is designed as a relay, for direct connection the glow plug with the current source and with a time switching device by means of which the first switching device can be switched on before the second switching device.

Solche Vorglüheinrichtungen werden zur Aufheizung von Glühkerzen über einen Heizstrom, insbesondere aus der Starterbatterie von Kraftfahrzeugen, verwendet. Die Glühkerzen fördern die Zündung des in die kalte selbstzündende Brennkraftmaschine eingespritzten Dieselkraftstoffs. Der Heizstrom kann dabei Größenordnungen bis zu 300 Ampere und größer erreichen.Such preheating devices are used for heating glow plugs via a heating current, in particular from the starter battery of motor vehicles. The glow plugs promote the ignition of the diesel fuel injected into the cold self-igniting internal combustion engine. The heating current can reach orders of magnitude up to 300 amperes and larger.

Eine derartige Vorglüheinrichtung ist aus der DE-OS 29 07 772 vorbekannt, bei der zur Schonung von Relais-Kontakten und Glühkerzen die Glühkerzen als elektrische Verbraucher während einer ersten Heizperiode über eine erste Schalteinrichtung die als Relais ausgebildet ist und über einen Vorwiderstand mit der Stromquelle verbunden und dadurch mit einem entsprechend geringen Heizstrom versorgt werden. Erst nach einer vorgegebenen Zeitdauer von einigen Sekunden bis zu einigen Minuten, wird die Glühkerze über eine zweite Schalteinrichtung direkt mit der Stromquelle leitend verbunden.Such a preheating device is known from DE-OS 29 07 772, in which to protect relay contacts and glow plugs, the glow plugs as electrical consumers during a first heating period via a first switching device which is designed as a relay and connected to the power source via a series resistor and thereby be supplied with a correspondingly low heating current. Only after a predetermined period of time of a few seconds to a few minutes is the glow plug directly connected to the power source via a second switching device.

Die vorbekannte Vorrichtung hat jedoch Nachteile. Durch die Versorgung der Glühkerzen mit einem geringen Heizstrom während einer ersten Heizperiode, heizen sich die Glühkerzen langsamer auf, als bei Vorglüheinrichtungen, die die Maßnahmen der vorbekannten Vorrichtung nicht aufweisen. Das heißt, die Wartezeit des Maschinenbedieners bis zum möglichen Anlassen der selbstzündenden Brennkraftmaschine verlängert sich merklich gegenüber Vorglüheinrichtungen, die keine Mittel zur Schonung von Relaiskontakten aufweisen. Dies führt zu einer Komforteinbuße bei der Bedienung der selbstzündenden Brennkraftmaschine.However, the known device has disadvantages. By supplying the glow plugs with a low heating current during a first heating period, the glow plugs heat up more slowly than with preheating devices which take the measures of not have known device. This means that the waiting time of the machine operator until the self-igniting internal combustion engine can be started increases noticeably compared to preheating devices that have no means to protect relay contacts. This leads to a loss of comfort when operating the self-igniting internal combustion engine.

Weiterhin ist bei der vorbekannten Vorrichtung der Vorwiderstand zusätzlich erforderlich. Ein solcher Vorwiderstand mit entsprechend hoher Belastbarkeit ist teuer in der Beschaffung und beansprucht einen Bauraum, z. B. im Motorraum von Kraftfahrzeugen. Das heißt, die vorbekannte Vorrichtung ist nur aufwendig und teuer herstellbar.Furthermore, the series resistor is additionally required in the known device. Such a series resistor with a correspondingly high load capacity is expensive to procure and takes up space, eg. B. in the engine compartment of motor vehicles. This means that the previously known device can only be produced in a complex and expensive manner.

Aus der US-PS 35 58 910 ist eine Einrichtung zum Schonen von Relaiskontakten in Wechselspannungsschaltanlagen bekannt, bei der vor dem Schließen der Relaiskontakte der Stromkreis über einen TRIAC geschlossen wird. Der TRIAC in der dort beschriebenen Beschaltung ist jedoch nur in Wechselspannungsschaltanlagen einsetzbar. Zudem weist diese Einrichtung ebenso wie die Vorglüheinrichtung der DE-OS 29 07 772 keinerlei Maßnahmen auf, um den Stromkreis auf Kurzschluß und Leitungsunterbrechungen zu überwachen.From US-PS 35 58 910 a device for protecting relay contacts in AC switchgear is known in which the circuit is closed via a TRIAC before closing the relay contacts. However, the TRIAC with the circuitry described there can only be used in AC switchgear. In addition, this device, like the preheating device of DE-OS 29 07 772, has no measures at all to monitor the circuit for short circuits and line interruptions.

Die Erfindung hat die Aufgabe, eine Vorglüheinrichtung zu schaffen, die gegenüber dem Vorbekannten einfacher und kostengünstiger herstellbar ist, die bei gleichzeitiger Schonung von Relaiskontakten die Versorgung des elektrischen Verbrauchers mit der vollen Versorgungsspannung ermöglicht und die eine Überwachung des Stromkreises auf Kurzschluß und Leistungsunterbrechung vorsieht.The invention has for its object to provide a preheating device which is simpler and less expensive to produce than the prior art, which, while protecting relay contacts, enables the electrical consumer to be supplied with the full supply voltage and which provides for monitoring the circuit for short circuit and power interruption.

Diese Aufgabe wird dadurch gelöst, daß die erste Schalteinrichtung ein Halbleiter-Bauelement ist, daß der Widerstand der Innenwiderstand der Schaltstrecke des Halbleiter-Bauelements ist, daß eine Überwachungseinrichtung vorgesehen ist, die den Spannungsabfall an dem Innenwiderstand der Schaltstrecke des Halbleiterbauelements mißt und mit vorgegebenen Schwellwerten vergleicht, wenn die erste Schalteinrichtung eingeschaltet und die zweite Schalteinrichtung ausgeschaltet ist, daß die Überwachungseinrichtung bei Unterschreiten eines ersten Schwellwertes die Schalteinrichtungen ausschaltet und/oder ein erstes Fehersignal für eine erste Anzeigeeinrichtung liefert und/oder, daß die Überwachungseinrichtung beim Überwachen eines zweiten Schwellwerts die Schalteinrichtungen ausschaltet und/oder ein zweites Federsignal an eine zweite Anzeigeeinrichtung liefert.This object is achieved in that the first switching device is a semiconductor component, that the resistance is the internal resistance of the switching path of the semiconductor component, that a monitoring device is provided which measures the voltage drop across the internal resistance of the switching path of the semiconductor component and with compares predetermined threshold values when the first switching device is switched on and the second switching device is switched off, that the monitoring device switches off the switching devices when the value falls below a first threshold value and / or delivers a first error signal for a first display device and / or that the monitoring device when monitoring a second threshold value switches off the switching devices and / or supplies a second spring signal to a second display device.

Durch die Ausbildung der ersten Schalteinrichtung als Halbleiter-Bauelement ist es, anders als beim Vorbekannten, nicht möglich, daß Relaiskontakte einer ersten Schalteinrichtung überlastet werden, weil keine Relaiskontakte vorhanden sind. Der Innenwiderstand der Schaltstrecke des Halbleiter-Bauelements ist verglichen mit dem Vorwiderstand der vorbekannten Vorrichtung klein, so daß die Zeitdauer bis zur Aufheizung der Glühkerze gegenüber dem Vorbekannten wesentlich verkürzt werden kann. Es ist, anders als beim Vorbekannten, kein zusätzlicher teurer und platzbeanspruchender Vorwiderstand erforderlich. Bei Anwendung dieser Maßnahme ist dennoch die Schonung der Relaiskontakte der zweiten Schalteinrichtung sichergestellt, weil beim Schließen der Relaiskontakte kein Lichtbogen gebildet wird.By designing the first switching device as a semiconductor component, unlike in the prior art, it is not possible for relay contacts of a first switching device to be overloaded because there are no relay contacts. The internal resistance of the switching path of the semiconductor component is small compared to the series resistance of the previously known device, so that the time until the glow plug heats up can be significantly reduced compared to the prior art. In contrast to the prior art, no additional expensive and space-consuming series resistor is required. When this measure is used, the protection of the relay contacts of the second switching device is nevertheless ensured, because no arc is formed when the relay contacts are closed.

Die erfindungsgemäße Vorrichtung hat weiterhin den Vorteil, daß unter anderem aufgrund der kürzeren Schaltzeiten des Halbleiter-Bauelements die erste Periode, während der die erste Schalteinrichtung eingeschaltet und die zweite Schalteinrichtung noch ausgeschaltet ist, auf Zeiten von der Größenordnung 1 ms verringert werden können. Dies hat zur Folge,-daß z. B. die Zeitdauer bis zur vollständigen Aufheizung der Glühkerze gegenüber dem Vorbekannten zusätzlich verkürzt werden kann und im wesentlichen der Zeitdauer bei ständiger direkter Speisung der Glühkerze aus der Stromquelle entspricht.The device according to the invention also has the advantage that the first period, during which the first switching device is switched on and the second switching device is still switched off, can be reduced to times of the order of 1 ms, inter alia, due to the shorter switching times of the semiconductor component. The result of this is that z. B. the time to complete heating of the glow plug can be shortened compared to the prior art and essentially corresponds to the time period with constant direct feeding of the glow plug from the power source.

Dadurch, daß eine Überwachungsvorrichtung vorgesehen ist, die den Spannungsabfall an dem Innenwiderstand der Schaltstrecke des Halbleiter-Bauelements mißt und mit vorgegebenen Schwellwerten vergleicht, wenn die erste Schalteinrichtung eingeschaltet und die zweite Schalteinrichtung ausgeschaltet ist, wobei die Überwachungseinrichtung bei Unterschreiten eines ersten Schwellwerts die Schalteinrichtungen ausschaltet und/oder ein erstes Fehlersignal an eine erste Anzeigeeinrichtung liefert und/oder die Überwachungseinrichtung beim Überschreiten eines zweiten Schwellwertes die Schalteinrichtung ausschaltet und/oder ein zweites Fehlersignal an eine zweite Anzeigeeinrichtung liefert, ist die Kontrolle des Heizstromkreises auf Kurzschlüsse und Stromkreisunterbrechungen möglich. Durch die kurzen Schaltzeiten des Halbleiterbauelements ist auch eine kurze erste Periode von etwa 1 ms für diese Stromkreisüberwachung ausreichend.The fact that a monitoring device is provided which the voltage drop across the internal resistance of the switching path of the Semiconductor component measures and compares with predetermined threshold values when the first switching device is switched on and the second switching device is switched off, the monitoring device switching off the switching devices when the value falls below a first threshold value and / or supplying a first error signal to a first display device and / or the monitoring device when Exceeding a second threshold value, the switching device switches off and / or supplies a second error signal to a second display device, the heating circuit can be checked for short circuits and circuit interruptions. Due to the short switching times of the semiconductor component, a short first period of approximately 1 ms is also sufficient for this circuit monitoring.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen des Erfindungsgegenstands gehen aus den Unteransprüchen hervor.Further advantageous refinements and developments of the subject matter of the invention emerge from the subclaims.

Es ist vorteilhaft, als Halbleiter-Bauelement einen Feldeffekt-Transistor, insbesondere einen MOS-FET, zu verwenden, weil der Innenwiderstand der Schaltstrecke genügend klein ist, um die am Feldeffekt-Transistor sich bildende Verlustwärme ohne weitere Hilfsmittel, wie z. B. Kühlkörper, an die Umgebung abzuführen. Man kann ein Halbleiter-Bauelement einen bipolaren Transistor verwenden.It is advantageous to use a field-effect transistor, in particular a MOS-FET, as the semiconductor component, because the internal resistance of the switching path is sufficiently small to withstand the heat loss which forms on the field-effect transistor without further aids, such as, for. B. heat sink to dissipate to the environment. A semiconductor device can use a bipolar transistor.

Es kann auch ein MOS-FET mit integrierter Überwachungseinrichtung, wie er z. Zt. frei käuflich ist, verwendet werden, so daß der zusätzliche Aufwand für den Aufbau der überwachungseinrichtung gering ist.It can also be a MOS-FET with an integrated monitoring device, such as that used for Is currently freely available, so that the additional effort for the construction of the monitoring device is low.

Insbesondere zur Verringerung des Schaltungsaufwandes kann man die Zeitschalteinrichtung und/oder die Überwachungseinrichtung als Teil eines Mikrorechners ausbilden.In particular in order to reduce the circuit complexity, the time switch device and / or the monitoring device can be designed as part of a microcomputer.

Um auch zum Ende der Aufheizung der Glühkerzen den Vorteil der Schonung der Relaiskontakte der zweiten Schalteinrichtung zu nutzen, ist es vorteilhaft die Zeitschalteinrichtung derart auszubilden, daß die zweite Schalteinrichtung vor der ersten Schalteinrichtung ausschaltbar ist.In order to use the advantage of protecting the relay contacts of the second switching device at the end of the heating of the glow plugs, it is advantageous to design the time switching device in such a way that the second switching device can be switched off before the first switching device.

Schließlich ist es besonders vorteilhaft, die Zeitschalteinrichtung derart auszubilden, daß sie die Schalteinrichtungen periodisch, insbesondere mit konstanter Frequenz und abhängig von der Versorgungsspannung und der Glühkerzentemperatur veränderlicher Einschaltzeit ein- und ausschaltet, weil mit dieser Maßnahme die Kompensation von Versorgungsspannungsschwankungen und die Steuerung der Glühkerzentemperatur durch Veränderung der Einschaltzeiten der ersten und zweiten Schalteinrichtung möglich ist. Insbesondere bei Anwendung dieser Maßnahme werden die Vorteile der erfindungsgemäßen Vorglüheinrichtung besonders deutlich, weil durch das häufige Ein- und Ausschalten der ersten und zweiten Schalteinrichtungen mit Frequenzen von z. B. 2 Hz die Belastung der Relaiskontakte besonders hoch ist. Ohne die Verwendung der erfindungsgemäßen Vorglüheinrichtung können die Relaiskontakte schon nach ca. 8 Monaten Betriebsdauer eines Kraftfahrzeugs mit selbstzündender Brennkraftmaschine und über 2 Millionen Betätigungen der Relaiskontakte soweit abgebrannt sein, daß ein Anlassen der Brennkraftmaschine nicht mehr möglich ist, wie Versuche gezeigt haben.Finally, it is particularly advantageous to design the time switching device in such a way that it switches the switching devices on and off periodically, in particular at a constant frequency and depending on the supply voltage and the glow plug temperature of variable switch-on time, because this measure compensates for supply voltage fluctuations and controls the glow plug temperature Changing the switch-on times of the first and second switching device is possible. In particular when using this measure, the advantages of the preheating device according to the invention become particularly clear because the frequent switching on and off of the first and second switching devices with frequencies of z. B. 2 Hz, the load on the relay contacts is particularly high. Without the use of the preheating device according to the invention, the relay contacts can have burned down after only about 8 months of operation of a motor vehicle with a self-igniting internal combustion engine and over 2 million actuations of the relay contacts, so that attempts to start the internal combustion engine are no longer possible, as tests have shown.

Ein Ausführungsbeispiel des Erfindungsgegenstands ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert.An embodiment of the subject of the invention is shown in the drawings and is explained in more detail below.

Es zeigen

  • Figur 1 schematisch eine erfindungsgemäße Vorrichtung, die als Vorglüheinrichtung für selbstzündende Brennkraftmaschinen ausgebildet ist und
  • Figur 2 ein Diagramm, in dem der Spannungsabfall am Innenwiderstand des Halbleiter-Bauelements abhängig von den Einschaltzeiten der ersten und zweiten Schalteinrichtung dargestellt ist.
Show it
  • Figure 1 schematically shows a device according to the invention, which is designed as a preheating device for self-igniting internal combustion engines and
  • Figure 2 is a diagram in which the voltage drop across the internal resistance of the semiconductor device depending on the Switch-on times of the first and second switching device is shown.

In der Figur 1 wird der Vorglühstromkreis durch eine Stromquelle (B), die als Kraftfahrzeugbatterie ausgebildet sein kann, einen Vorglühschalter (VS), der als erste Rastung eines Vorglühanlaßschalters eines Kraftfahrzeugs ausgebildet sein kann, einen elektrischen Verbraucher (V), der als Glühkerze ausgebildet ist, und eine erste Schalteinrichtung, die als Halbleiter-Bauelement (HL), insbesondere als MOS-FET ausgebildet ist und eine zweite Schalteinrichtung, die als Relaiskontaktsatz (RK) eines elektromagnetischen Relais ausgebildet ist, gebildet. Das Halbleiter-Bauelement (HL) und der Relaiskontaktsatz (RK) sind dabei in Parallelschaltung in den Glühkerzenstromkreis geschaltet.In Figure 1, the glow plug circuit is a current source (B), which can be designed as a motor vehicle battery, a glow plug (VS), which can be designed as the first catch of a glow plug of a motor vehicle, an electrical consumer (V), which is designed as a glow plug and a first switching device, which is designed as a semiconductor component (HL), in particular as a MOS-FET, and a second switching device, which is designed as a relay contact set (RK) of an electromagnetic relay. The semiconductor component (HL) and the relay contact set (RK) are connected in parallel in the glow plug circuit.

Das Halbleiter-Bauelement (HL) und das elektromagnetische Relais (RK, RS) sind dabei durch eine Zeitschalteinrichtung ein- und ausschaltbar, die als Teil eines Mikrorechners (MC) ausgebildet ist. Der Mikrorechner (MC) ist in bekannter Art und Weise zur Stromversorgung mit der Stromquelle (B) verbunden. Zur Verstärkung des Steuerstroms des Mikrorechners (MC) und zum Schalten des elektromagnetischen Relais ist ein NPN-Treibertransistor (TR1) vorgesehen, dessen Basis durch das Ausgangssignal des Mikrorechners (MC) steuerbar ist und dessen Emitter mit dem Minuspol der Stromquelle (B) und dessen Kollektor mit dem Pluspol der Stromquelle (B) über die elektromagnetische Relaisspule (RS) verbunden ist.The semiconductor component (HL) and the electromagnetic relay (RK, RS) can be switched on and off by a time switch, which is designed as part of a microcomputer (MC). The microcomputer (MC) is connected in a known manner to the current source (B) for the power supply. To amplify the control current of the microcomputer (MC) and to switch the electromagnetic relay, an NPN driver transistor (TR1) is provided, the base of which can be controlled by the output signal of the microcomputer (MC) and whose emitter is connected to the negative pole of the current source (B) and its Collector is connected to the positive pole of the power source (B) via the electromagnetic relay coil (RS).

Der Halbleiterschalter (HL) ist ebenfalls durch den Mikrorechner (MC) über eine Spannungsverdopplerschaltung (SPV) steuerbar. Die Spannungsverdopplerschaltung (SPV) ist erforderlich, weil als Halbleiter-Bauelement hier ein N-Kanal-MOS-FET verwendet wird und zur Ansteuerung des MOS-FETs das Potential am Gate-Eingang (G) immer größer sein muß als das Potential am SOURCE-Anschluß (S).The semiconductor switch (HL) can also be controlled by the microcomputer (MC) via a voltage doubler circuit (SPV). The voltage doubler circuit (SPV) is required because an N-channel MOS-FET is used here as the semiconductor component and the potential at the gate input (G) must always be greater than the potential at the SOURCE- to control the MOS-FET. Port (S).

Dem Schutz des MOS-FETs (HL) und des NPN-Transistors (TR1) dienen auch die erste Zenerdiode (Z1) und die zweite Zenerdiode (Z2).The first Zener diode (Z1) and the second Zener diode (Z2) also serve to protect the MOS-FET (HL) and the NPN transistor (TR1).

Die erste Zenerdiode (Z1) schützt den NPN-Transistor (TR1) vor Überspannung und ist ein Verpolungsschutz. Die zweite Zenerdiode (Z2) dient zur Begrenzung der Spannung am GATE-Eingang gegenüber der Spannung am SOURCE-Anschluß des MOS-FETs (HL). Diese Spannungsdifferenz darf einen durch die Bauart des MOS-FETs vorgegebenen Wert nicht überschreiten.The first Zener diode (Z1) protects the NPN transistor (TR1) against overvoltage and is reverse polarity protection. The second Zener diode (Z2) serves to limit the voltage at the GATE input compared to the voltage at the SOURCE connection of the MOS-FET (HL). This voltage difference must not exceed a value specified by the design of the MOS-FET.

Der SOURCE-Anschluß des MOS-FETs (HL) ist also über die Glühkerze (V) mit dem Minuspul der Stromquelle (B) und über den DRAIN-Anschluß (D) und den Vorglühschalter (VS) mit dem Pluspol der Stromquelle (B) leitend verbunden. Das Potential oder der Spannungsabfall (UDS) an der Schaltstrecke des MOS-FETs (HL) wird zwischen SOURCE-Anschluß (S) und DRAIN-Anschluß (D) abgegriffen und einem Analog-Digital-Umsetzer (ADC) zugeführt, der aber auch als Komparator ausgebildet sein kann. Das Ausgangssignal des Analog-Digital-Umsetzers (ADC) wird zur Ermittlung von Kontaktbetätigung, Leitungsunterbrechungen und Kurzschlüssen dem Mikrorechner (MC) zugeleitet. Der Analog-Digital-Umsetzer (ADC) ist Teil einer Überwachungseinrichtung, deren anderer Teil im Mikrorechner (MC) ausgebildet ist.The SOURCE connection of the MOS-FET (HL) is thus via the glow plug (V) with the negative coil of the current source (B) and via the DRAIN connection (D) and the preheat switch (VS) with the positive pole of the current source (B) conductively connected. The potential or the voltage drop (UDS) on the switching path of the MOS-FET (HL) is tapped between the SOURCE connection (S) and the DRAIN connection (D) and fed to an analog-to-digital converter (ADC), which, however, is also used as Comparator can be formed. The output signal of the analog-to-digital converter (ADC) is fed to the microcomputer (MC) to determine contact actuation, line interruptions and short circuits. The analog-to-digital converter (ADC) is part of a monitoring device, the other part of which is formed in the microcomputer (MC).

Die Überwachungseinrichtung vergleicht den Spannungsabfall (UDS) an dem Innenwiderstand der Schaltstrecke des Halbleiter-Bauelements (HL) mit vorgegebenen Schwellwerten, wenn die erste Schalteinrichtung, also der MOS-FET (HL) eingeschaltet und die zweite Schalteinrichung, also das elektromagnetische Relais, ausgeschaltet ist. Unterschreitet der Spannungsabfall (UDS) einen ersten Schwellwert, so schaltet die Überwachungseinrichtung die erste Schalteinrichtung (HL) aus und verhindert das Einschalten der zweiten Schalteinrichtung (RK) und gibt ein erstes Fehlersignal an eine erste Anzeigeeinrichtung (FL1), die in der Figur 1 als einfache Anzeigelampe dargestellt ist. Überschreitet der Spannungsabfall (UDS) einen zweiten Schwellwert, so schaltet die Überwachungseinrichtung die erste Schalteinrichtung (HL) aus und verhindert das Einschalten der zweiten Schalteinrichtung (RK), und es wird ein zweites Fehlersignal an eine zweite Anzeigeeinrichtung (FL2) geliefert, die ebenfalls in der Figur 1 als einfache Anzeigelampe dargestellt ist. Die Fehlersignale können jedoch auch zur Steuerung weiterer Einrichtungen an der selbstzündenden Brennkraftmaschine oder des Kraftfahrzeugs benutzt werden.The monitoring device compares the voltage drop (UDS) across the internal resistance of the switching path of the semiconductor component (HL) with predetermined threshold values when the first switching device, i.e. the MOS-FET (HL), is switched on and the second switching device, i.e. the electromagnetic relay, is switched off . If the voltage drop (UDS) falls below a first threshold value, the monitoring device switches off the first switching device (HL) and prevents the second switching device (RK) from being switched on and outputs a first error signal to a first display device (FL1), which is shown in FIG simple indicator lamp is shown. If the voltage drop (UDS) exceeds a second threshold value, the monitoring device switches the first switching device (HL) off and prevents the second switching device (RK) from being switched on, and a second error signal is delivered to a second display device (FL2), which is also in 1 as a simple indicator lamp is shown. However, the error signals can also be used to control other devices on the self-igniting internal combustion engine or the motor vehicle.

Die Funktion der erfindungsgemäßen Vorglüheinrichtung nach der Figur 1 wird nun anhand der Figur 2 näher erläutert:The function of the preheating device according to the invention according to FIG. 1 will now be explained in more detail with reference to FIG. 2:

Zu Beginn befindet sich der Vorglühschalter (VS) in der in der Figur 1 dargestellten geöffneten Stellung. Dann ist die gesamte erfindungsgemäße Vorglüheinrichtung stromlos, und es sind keine Potentialunterschiede meßbar. Wird nun der Vorglühschalter (VS) geschlossen, so verbleiben die erste Schalteinrichtung (HL) und die zweite Schalteinrichtung (RK) von diesem Zeitpunkt an, der mit der Zeit Null in der Figur 2 gekennzeichnet ist, bis zum Zeitpunkt (T1) in der geöffneten Stellung, so daß kein Strom durch die Glühkerze (V) fließen kann. An der Schaltstrecke des Halbleiter-Schalters wird dann als Spannungsabfall (UDS) ein Potential gemessen, daß der Batteriespannung (UB) der Stromquelle (B) entspricht.At the beginning, the preheat switch (VS) is in the open position shown in FIG. 1. Then the entire preheating device according to the invention is de-energized and no potential differences can be measured. If the preheating switch (VS) is now closed, the first switching device (HL) and the second switching device (RK) remain open from this point in time, which is marked with the time zero in FIG. 2, until the point in time (T1) Position so that no current can flow through the glow plug (V). A potential is then measured at the switching path of the semiconductor switch as a voltage drop (UDS) that corresponds to the battery voltage (UB) of the current source (B).

Wird nun zum Zeitpunkt (T1) der Halbleiterschalter (HL) eingeschaltet, so wird der Stromfluß vom Pluspol der Batterie über den Vorglühschalter (VS), die Schaltstrecke des Halbleiterschalters (HL) und die Glühkerze (V) zum Minuspol der Stromquelle (B) ermöglicht. Ist die Glühkerze (V) in elektrisch einwandfreiem Zustand, so fällt an der Schaltstrecke des Halbleiterschalters (HL) ein geringer Betrag (U1) der gesamten anliegenden Spannung ab. Dieser Spannungsabfall (U1) ist über den gesamten Zeitraum (T), der sich von T1 bis T2 erstreckt und in dem der Halbleiterschalter (HL) eingeschaltet und die zweite Schalteinrichtung (RK) ausgeschaltet ist, meßbar. Dieser Spannungsabfall (U1) wird durch den Analog-Digital-Umsetzer (ADC) gemessen und in umgewandelter Form dem Mikrorechner (MC) weitergegeben.If the semiconductor switch (HL) is now switched on at time (T1), the current flow from the positive pole of the battery via the glow plug (VS), the switching path of the semiconductor switch (HL) and the glow plug (V) to the negative pole of the current source (B) is made possible . If the glow plug (V) is in an electrically perfect condition, a small amount (U1) of the total voltage applied drops across the switching path of the semiconductor switch (HL). This voltage drop (U1) can be measured over the entire period (T), which extends from T1 to T2 and in which the semiconductor switch (HL) is switched on and the second switching device (RK) is switched off. This voltage drop (U1) is measured by the analog-to-digital converter (ADC) and passed on in a converted form to the microcomputer (MC).

Wird nun zum Zeitpunkt (T2) nach Ablauf der Zeitdauer (T) zusätzlich die zweite Schalteinrichtung (RK) eingeschaltet, so ist wegen des geringen Übergangswiderstands zwischen den Relaiskontakten (RK) nur noch ein verschwindend geringer Spannungsabfall (UDS) an der Schaltstrecke des Halbleiterschalters (HL) meßbar.If the second switching device (RK) is additionally switched on at the time (T2) after the time period (T) has elapsed, then because of the low contact resistance between the Relay contacts (RK) only a negligible voltage drop (UDS) on the switching path of the semiconductor switch (HL) can be measured.

Zum Zeitpunkt (T3) wird die zweite Schalteinrichtung (RK) geöffnet, so daß der Stromfluß wieder über die Schaltstrecke des Halbleiter-Bauelements (HL) erfolgt. Entsprechend fällt ein Spannungsbetrag (U1) an der Schaltstrecke des Halbleiter-Bauelements (HL) ab. Nach Ablauf der Zeitdauer (T), also zum Zeitpunkt T4 in der Figur 2, wird auch das Halbleiter-Bauelement (HL) ausgeschaltet. Der Stromfluß wird unterbrochen. An der Schaltstrecke des Halbleiterschalters (HL) liegt nun wieder die gesamte Batteriespannung (UB) an.At time (T3), the second switching device (RK) is opened so that the current flows again over the switching path of the semiconductor component (HL). Correspondingly, a voltage amount (U1) drops across the switching path of the semiconductor component (HL). After the time period (T) has elapsed, that is to say at time T4 in FIG. 2, the semiconductor component (HL) is also switched off. The current flow is interrupted. The entire battery voltage (UB) is now again applied to the switching path of the semiconductor switch (HL).

Befindet sich die Glühkerze (V) nicht in einwandfreiem Zustand, so kann dies während der Zeitdauer (T) durch die überwachungseinrichtung erfaßt werden. Weist die Glühkerze (V) einen Kurzschluß auf, so würde während der Zeitdauer (T) die gesamte Spannung (UB) an der Schaltstrecke des Halbleiter-Bauelements (HL) abfallen. Das heißt, der gemessene Spannungsabfall (UDS) würde über dem in der Figur 2 dargestellten ersten Schwellwert (US1) liegen. Dieser erhöhte Spannungsabfall würde durch die Überwachungseinrichtung erkannt und ein erstes Fehlersignal an die erste Anzeigeeinrichtung (FL1) geliefert. Zugleich wird dann der Halbleiterschalter (HL) ausgeschaltet, um eine Überlastung des Halbleiter-Bauelemente (HL) zu verhindern.If the glow plug (V) is not in perfect condition, this can be detected by the monitoring device during the period (T). If the glow plug (V) had a short circuit, the entire voltage (UB) at the switching path of the semiconductor component (HL) would drop during the period (T). This means that the measured voltage drop (UDS) would be above the first threshold value (US1) shown in FIG. 2. This increased voltage drop would be recognized by the monitoring device and a first error signal delivered to the first display device (FL1). At the same time, the semiconductor switch (HL) is then switched off in order to prevent the semiconductor components (HL) from being overloaded.

Liegt im Glühkerzenstromkreis oder an der Glühkerze (V) eine Leitungsunterbrechung vor, so würde an der Schaltstrecke des Halbleiter-Bauelements (HL) in der Zeitdauer (T) nur ein verschwindend geringer Spannungsbetrag abfallen. Das heißt, der gemessene Spannungsabfall liegt dann unterhalb der in der Figur 2 dargestellten zweiten Spannungsschwelle (US2). Dieser Sachverhalt wird ebenfalls von der Überwachungseinrichtung ermittelt und führt dazu, daß die Überwachungseinrichtung ein zweites Fehlersignal an die zweite Anzeigeeinrichtung (FL2) liefert.If there is a line interruption in the glow plug circuit or on the glow plug (V), only a negligibly small amount of voltage would drop across the switching path of the semiconductor component (HL) in the time period (T). This means that the measured voltage drop is then below the second voltage threshold (US2) shown in FIG. 2. This fact is also determined by the monitoring device and leads to the monitoring device supplying a second error signal to the second display device (FL2).

Es zeigt sich, daß durch die erfindungsgemäße Vorglüheinrichtung nicht nur einfach und kostengünstig die Relaiskontakte (RK) geschont werden können, sondern auch auf einfache Art und Weise eine Überwachung des Glühkerzenstromkreises auf Kurzschlüsse und Leitungsunterbrechungen möglich ist.It turns out that the preheating device according to the invention not only protects the relay contacts (RK) easily and inexpensively, but also enables the glow plug circuit to be monitored for short circuits and line interruptions in a simple manner.

Es ist weiterhin insbesondere aufgrund der kurzen Schaltzeit des Halbleiter-Bauelements (HL) möglich, die Zeitdauer (T) gegenüber dem Vorbekannten auf einen Wert von etwa 1 ms zu verkürzen. Dadurch wird sichergestellt, daß die Zeitdauer bis zum vollständigen Aufheizen der Glühkerzen (V) gegenüber dem Vorbekannten wesentlich verkürzt ist. Dies bedeutet einen großen Komfortgewinn für die Bedienung der selbstzündenden Brennkraftmaschine.It is also possible, in particular due to the short switching time of the semiconductor component (HL), to shorten the time period (T) to a value of approximately 1 ms compared to the prior art. This ensures that the time it takes for the glow plugs (V) to heat up completely to be shortened compared to the prior art. This means a great gain in comfort for the operation of the self-igniting internal combustion engine.

Schließlich kann durch die erfindungsgemäße Vorglüheinrichtung vorteilhaft die Glühkerze (V) periodisch ein- und ausgeschaltet werden. Dies hat den Vorteil, daß
Versorgungsspannungsschwankungen und die Glühkerzentemperatur durch Veränderung der Einschaltzeiten verändert werden können. Es ist insbesondere vorteilhaft, diese periodische Ein- und Ausschaltung mit konstanter Einschaltzeit und abhängig von der Versorgungsspannung und der Glühkerzentemperatur veränderlicher Ausschaltzeit durchzuführen, weil durch die Verwendung des Mikrorechners (MC) das dazu erforderliche Taktsignal auf einfache Art und Weise bereitgestellt werden kann. Das heißt, der in der Figur 2 dargestellte Ein- und Ausschaltvorgang würde sich periodisch wiederholen.
Finally, the glow plug (V) can advantageously be switched on and off periodically by the preheating device according to the invention. This has the advantage that
Supply voltage fluctuations and the glow plug temperature can be changed by changing the switch-on times. It is particularly advantageous to carry out this periodic switch-on and switch-off with a constant switch-on time and a switch-off time that is variable depending on the supply voltage and the glow plug temperature, because the clock signal required for this can be provided in a simple manner by using the microcomputer (MC). This means that the switch-on and switch-off process shown in FIG. 2 would be repeated periodically.

Aufgrund der großen Zahl von Schaltvorgängen, die bei einer periodischen Aufheizung der Glühkerze (V) erforderlich sind, machen sich die Vorteile der erfindungsgemäßen Vorglüheinrichtung dann besonders stark bemerkbar, weil durch die erfindungsgemäße Vorglüheinrichtung ein Abbrand der Relaiskontakte (RK) kaum mehr merklich ist.Because of the large number of switching operations that are required for periodic heating of the glow plug (V), the advantages of the preheating device according to the invention become particularly noticeable because the preheating device according to the invention means that the relay contacts (RK) are hardly noticeable.

Claims (7)

  1. Pre-heating device for compression-ignition combustion engimes, particularly in motor vehicles, having a power source, a glow plug, a first switching device for connecting the glow plug to the power source via a resistor, a second switching device, which is configured as a relay, for the direct connection of the glow plug to the power source and having a timing device, which allows the first switching device to be switched on before the second switching device, characterised in that the first switching device is a semiconductor module (HL), in that the resistance is the internal resistance through the switching element of the semiconductor module (HL) in that a monitoring device is provided, which measures the voltage drop (UDS) across the internal resistance of the switching element of the semiconductor module (HL) and compares this with specified thresholds, when the first switching device is switched on and the second switching device is switched off, in that the monitoring device switches off the switching devices (HL, RK) if a first threshold is undershot, and/or supplies a first fault signal to a first indicator device (FL1) and/or in that the monitoring device switches off the switching devices (HL, RK) if a second threshold is exceeded and/or supplies a second fault signal to a second indicator device (FL2).
  2. Pre-heating device according to Claim 1, characterised in that the semiconductor module is a field-effect transistor, particularly a MOSFET.
  3. Pre-heating device according to Claim 1, characterised in that the semiconductor module is a bipolar transistor.
  4. Pre-heating device according to Claim 1, characterised in that a MOSFET with integrated monitoring device is used.
  5. Pre-heating device according to Claim 1, characterised in that the timing device and/or the monitoring device are configured as part of a- microprocessor (MC).
  6. Pre-heating device according to Claim 1, characterised in that the second switching device (RK) can be switched off by the timing device before the first switching device (HL).
  7. Pre-heating device according to Claim 1, characterised in that the timing device switches the switching devices (HL, RK) on and off periodically, particularly with a constant switch-on time and a variable switch-off time depending on the supply voltage (UB) and the glow plug temperature.
EP19870117879 1987-01-23 1987-12-03 Arrangement for protecting relay contacts Expired - Lifetime EP0279042B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3701838 1987-01-23
DE19873701838 DE3701838A1 (en) 1987-01-23 1987-01-23 DEVICE FOR PROTECTING RELAY CONTACTS

Publications (3)

Publication Number Publication Date
EP0279042A1 EP0279042A1 (en) 1988-08-24
EP0279042B1 EP0279042B1 (en) 1991-08-07
EP0279042B2 true EP0279042B2 (en) 1994-05-25

Family

ID=6319328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870117879 Expired - Lifetime EP0279042B2 (en) 1987-01-23 1987-12-03 Arrangement for protecting relay contacts

Country Status (3)

Country Link
EP (1) EP0279042B2 (en)
DE (1) DE3701838A1 (en)
ES (1) ES2024482T5 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012470A1 (en) * 1990-04-19 1991-10-24 Hella Kg Hueck & Co Relay contact protector in car network - is for relay with break and make contacts, conductively coupled to consumer appliance
DE4244116C1 (en) * 1992-12-24 1994-03-24 Hella Kg Hueck & Co Protecting relay contacts against overloading - using controllable switch with path in parallel with contacts and electronic control
DE4244119C1 (en) * 1992-12-24 1994-03-24 Hella Kg Hueck & Co Protecting relay contacts against overloading - using controlled switch with switching path in parallel with contacts and monitoring elements for load current circuit
DE102005002490A1 (en) * 2005-01-19 2006-07-27 Hella Kgaa Hueck & Co. Motor vehicle electrical system switching device, has charging and discharging unit to charge and discharge electrical components of vehicle electrical system and switched before closing or after opening of isolating switch

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558910A (en) * 1968-07-19 1971-01-26 Motorola Inc Relay circuits employing a triac to prevent arcing
CA1132661A (en) * 1979-02-14 1982-09-28 Rodney Hayden Resistive device sensor
DE2907772A1 (en) * 1979-02-28 1980-09-11 Vdo Schindling METHOD AND CIRCUIT FOR PREHEATING A DIESEL ENGINE
DE2935196A1 (en) * 1979-08-31 1981-03-19 Robert Bosch Gmbh, 7000 Stuttgart SAFETY DEVICE FOR ELECTRICAL CONSUMERS IN MOTOR VEHICLES
US4420784A (en) * 1981-12-04 1983-12-13 Eaton Corporation Hybrid D.C. power controller
JPS58189375U (en) * 1982-06-14 1983-12-16 日産自動車株式会社 Internal combustion engine glow plug control device
DE3224587A1 (en) * 1982-07-01 1984-01-05 Bayerische Motoren Werke AG, 8000 München SWITCHING ARRANGEMENT FOR GLOW PLUGS OF A DIESEL INTERNAL COMBUSTION ENGINE
YU115584A (en) * 1984-07-02 1987-06-30 Iskra Sozd Elektro Indus Circuit for automatic controlled glowing device
DE3433367A1 (en) * 1984-09-12 1986-03-20 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR CONTROLLING THE ENERGY SUPPLY TO A HOT PLACE
US4636907A (en) * 1985-07-11 1987-01-13 General Electric Company Arcless circuit interrupter
DE3608602A1 (en) * 1986-03-14 1987-09-17 Siemens Ag Method for the activation of glow plugs in diesel engines

Also Published As

Publication number Publication date
EP0279042B1 (en) 1991-08-07
EP0279042A1 (en) 1988-08-24
DE3701838C2 (en) 1991-08-14
ES2024482T5 (en) 1995-08-16
ES2024482B3 (en) 1992-03-01
DE3701838A1 (en) 1988-08-04

Similar Documents

Publication Publication Date Title
EP0935540B1 (en) Control unit for the power supply system on-board
DE2843796A1 (en) CONTROL CIRCUIT FOR THE OPERATION OF A GLOW PLUG IN A DIESEL ENGINE
DE3100464C2 (en) Plasma jet ignition device for an internal combustion engine
DE2726458A1 (en) ELECTRICALLY POWERED RAPID HEATING DEVICE
EP0315934B1 (en) Regulation method for the glow plug temperature in a diesel engine, and circuit therefor
DE2913101C2 (en) Glow plug temperature control circuit
DE10040161A1 (en) Semiconductor ignition device for automobile i.c. engine has timing circuit signal used for controlled reduction of current through controlled switch in series with ignition coil
DE10026339A1 (en) Device for pre-heating air in induction line leading to diesel engine has heating flange with semiconducting switch element for electrical heating element heated by electrical current
EP1224722B1 (en) Semiconductor fuse for electrical consumers
EP0288085B1 (en) Method and means for fast heating of electric heating device
DE3112279A1 (en) ELECTRICAL BATTERY CHARGING SYSTEM WITH A CHARGING AND COMPENSATING MODE FOR MOTOR VEHICLES
DE3309447A1 (en) CONTROL DEVICE FOR CONTROLLING THE OUTPUT SIGNAL OF A GENERATOR
DE3044150C2 (en) Additional device for a standard voltage regulator of a motor vehicle alternator
DE2618028C2 (en) Universally applicable timing element that can be implemented in integrated circuit technology
EP0314681A1 (en) Final stage of a bridge circuit.
EP0279042B2 (en) Arrangement for protecting relay contacts
DE4041630C2 (en)
DE2750464C2 (en) Control device for the glow plugs of an air-compressing internal combustion engine
DE2825830C3 (en) Ignition device for internal combustion engines
WO1993012338A1 (en) Internal combustion engine
DE4231037C2 (en) Current limiting circuit with switchable maximum current value for consumers with impedance
EP1321751B1 (en) Method and circuit for the determination of the electrical resistance of a PTC-heating element
DE3532339C2 (en)
DE3037195A1 (en) Overload protection for automobile starter motor battery - short-circuits engine cut=out switch in dependence on voltage across battery
DE1178717B (en) Device for controlling the automatic engagement and disengagement of an electromagnetically operated clutch for motor vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB SE

17P Request for examination filed

Effective date: 19890112

17Q First examination report despatched

Effective date: 19910117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920205

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

EPTA Lu: last paid annual fee
26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19920416

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940525

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): ES FR GB SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19940518

ET3 Fr: translation filed ** decision concerning opposition
EAL Se: european patent in force in sweden

Ref document number: 87117879.4

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19950816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971204

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971203

EUG Se: european patent has lapsed

Ref document number: 87117879.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990114