EP0274637A1 - Steam generator with a circulating fluidised bed - Google Patents

Steam generator with a circulating fluidised bed Download PDF

Info

Publication number
EP0274637A1
EP0274637A1 EP87117708A EP87117708A EP0274637A1 EP 0274637 A1 EP0274637 A1 EP 0274637A1 EP 87117708 A EP87117708 A EP 87117708A EP 87117708 A EP87117708 A EP 87117708A EP 0274637 A1 EP0274637 A1 EP 0274637A1
Authority
EP
European Patent Office
Prior art keywords
ash
heating surfaces
steam generator
generator system
heating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117708A
Other languages
German (de)
French (fr)
Other versions
EP0274637B1 (en
Inventor
Günter Bauer
Hermann Brückner
Detlef Kraft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87117708T priority Critical patent/ATE66728T1/en
Publication of EP0274637A1 publication Critical patent/EP0274637A1/en
Application granted granted Critical
Publication of EP0274637B1 publication Critical patent/EP0274637B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed

Definitions

  • the invention relates to a steam generator system with a circulating fluidized bed combustion system, with a fluidized bed combustion chamber, with at least one dust separator, with at least one fluid bed cooler and with a secondary heating surface arrangement arranged in the flue gas stream, and with heating surfaces in the walls of the fluidizing chamber.
  • a steam generator system with a circulating fluidized bed combustion system, with dust separators and fluid bed coolers and with a secondary heating surface arrangement arranged in the flue gas stream is in operation at the Stadtwerke Duisburg.
  • the sensible heat of that part of the amount of ash circulating in the circulating fluidized bed combustion system in the fluidized bed coolers is transferred to the water / steam cycle, which is currently being drawn off.
  • the ash is separated from the flue gas in several cyclones and divided into two unequal streams in downstream metering devices, so-called immersion pot distributors, with the larger ash stream being returned to the fluidized-bed combustion chamber and the smaller ash stream being fed to a so-called fluid bed cooler.
  • the ashes are swirled between the heating surfaces of the water-steam cycle using flue gas.
  • the ash emits its heat to the heating surfaces.
  • the ashes cooled in this way are separated out.
  • the flue gas which is largely freed from the ash and coal particles in the cyclones, flows through a secondary heating surface arrangement in which it gives off its heat to the water / steam circuit before it is fed into the chimney via an electrostatic filter system and an air preheater.
  • It is a peculiarity of such steam generator systems that Different amounts of heat are generated in the ash or fluid bed coolers in an unpredictable manner because the ash distribution in the immersion pots cannot be precisely metered. This leads to repeated temperature and pressure drops during the operation of the steam generator systems. In fluidized bed combustion plants with high-quality steam processes, ie with high-pressure and reheater systems, such temperature drops can even lead to a load shedding of the steam turbine. In any case, the service life of the entire system is reduced due to the temperature fluctuations.
  • the invention has for its object to provide a way how fluctuations in the quality of the steam can be avoided as much as possible when operating a circulating fluidized bed combustion system with ash coolers.
  • a substantial homogenization of the heat emission results if, according to the invention, several ash coolers are connected in parallel with regard to the ash flow and can be loaded with ash independently of one another via a separate metering device, and superheater and reheater heating surfaces are present in these ash coolers and in the secondary heating surface arrangement.
  • the fluctuations in the heating power of the ashes in the ash coolers are mutually equalized and by the heating power of the flue gases in the corresponding superheater and reheater heating surfaces of the secondary heating surface arrangement.
  • the probability of the steam turbine shedding loads is significantly reduced. Fluctuations in the heat output in one of the ash coolers also lead to significantly smaller fluctuations in the total heat supply in all ash coolers connected in parallel.
  • a further equalization of the heat supply is achieved in that the individual types of heating surfaces on the steam side are connected in series with one another in the various ash coolers. This means that increased and reduced heating capacities of the heating surfaces in the individual ash coolers can be even better compensated for by the heating capacities in the similar heating surfaces of parallel ash coolers connected in series.
  • the figure is a schematic representation of a steam generating plant according to the invention.
  • the vortex combustion chamber 1 is shown schematically on the left side of the figure. On the fuel side, it is connected to a coal processing plant 2 with a coal bunker 3, a lime bunker 4, a metering device 5 for adding lime and a mill 6. On the air side, the vortex combustion chamber 1 is connected to a fresh air line 9 leading via an air compressor 7 and air preheater 8. The walls of the vortex combustion chamber 1 are designed as fin tube walls 10 (not shown) and are connected at the upper and at the lower end to the water / steam circuit of the steam generating plant 13 via a collecting ring line 11, 12 each. On the exhaust gas side, the vortex combustion chamber 1 is connected via two exhaust gas lines 14, 15 to a pair of cyclone dusting devices 16, 17.
  • the flue gas line 18 connected to the two pairs of cyclone dedusters leads to a secondary heating surface arrangement with four different heating surfaces in the exemplary embodiment, a superheater heating surface 20 and an intermediate superheater surface 21, a preheater surface 22 and an economizer heating surface 23.
  • An electrostatic filter 24 is connected to the secondary heating surface arrangement 19, the air preheater already mentioned at the beginning 8 and a fireplace 25.
  • the cyclone dusting pairs 16, 17 are each followed by a metering device, in the exemplary embodiment a diving pot ash distributor 26, 27 each. These are each connected to the swirl combustion chamber 1 above the nozzle base 30 with a first ash line 28, 29 assigned to the larger part of the ash flow, and each with a second ash line 31, 32 assigned to the smaller part of the ash flow, each designed as a fluidized bed cooler 33, 34 Ash cooler connected.
  • superheater heating surfaces 35, 36, intermediate superheater heating surfaces 37, 38 and evaporator heating surfaces 39, 40 are installed one after the other in the flow direction of the ash.
  • the superheater heating surfaces, the intermediate superheater heating surfaces and the evaporator heating surfaces of the fluid bed coolers 33, 34 connected in parallel on the ash side are connected in series with one another.
  • the superheater heating surfaces 35, 36 of the fluidized bed cooler 33, 34 connected in series with one another are connected downstream of the preheater heating surfaces 22 in the secondary heating surface arrangement 19 and upstream of the superheating heating surface 20 in the secondary heating surface arrangement 19.
  • the intermediate reheater 21 connected in series with one another is connected upstream of the secondary heating surface arrangement 19.
  • the evaporator heating surfaces 39.40 of the fluid bed cooler 33, 34 are connected downstream of the economiser heating surface 23 of the secondary heating surface arrangement 19 and connected to the preheater heating surface 22 of the secondary heating surface arrangement 19 via a water vapor separation vessel 41.
  • the water vapor separation vessel is in turn connected on the water side via a pump 42 to the input of the economizer 23.
  • the economizer 23 is connected to the series-connected pipe walls 43, 44, the fluidized bed cooler 33, 34, the pipe wall 10 of the swirl combustion chamber 1 and the pipe wall 47 of the secondary heating surface arrangement 19 connected via collecting ring lines 45, 46.
  • Injection coolers 49, 50, 51 are installed in the feed lines to the superheater 20, to the reheater 21 and also in the line 41 coming from the pre-heater 22 of the secondary heating surface arrangement 19.
  • the high pressure stage 52 is connected to the superheater heating surface 20 of the secondary heating surface arrangement 19 and the low pressure stage 53 of a steam turbine power plant 54 is connected to the intermediate superheater heating surface 21 of the secondary heating surface arrangement.
  • the flue gas which is largely freed of ash and dust particles, flows via the flue gas line 18 into the secondary heating surface arrangement 19 and there releases its heat one after the other to the superheater heating surfaces 20, reheater heating surfaces 21, preheater heating surfaces 22 and economizer heating surfaces 23, and then via the electrostatic filter 24 and the air preheater 8 to flock to the fireplace 25.
  • the solid particles separated in the cyclone duster pairs 16, 17 are divided into two submersible ash distributors 26, 27 each in two streams, of which the larger particle stream is returned to the vortex combustion chamber 1 via first ash lines 28, 29 and the smaller particle stream is returned to the swirl combustion chamber 1 via the second ash lines 31, 32 both in the embodiment designated 33 and 34 connected to each other connected fluid bed cooler.
  • these fluid bed coolers in which ashes are whirled up with flue gas injected via flue gas auxiliary lines (not shown further here) so that they remain flowable, the hot ashes pass their heat one by one to a superheater heating surface 35, 36, a reheater heating surface 37, 38 and an evaporator heating surface 39.40 before it is forwarded to an ash bunker 55.
  • coal processing plant 2 an amount corresponding to ash is discharged into the fluid bed cooler, coal is continuously withdrawn from the coal bunker 3 and ground to coal dust in the mill 6.
  • the coal flowing into the mill 6 is mixed with lime from the lime bunker 4 by means of a metering device 5. This keeps the amount of fuel converted constant and the sulfur contained in the coal is bound after combustion.
  • the cold feed water flowing to the steam generating system 1 is first heated in the economizer heating surfaces 23 of the secondary heating surface arrangement 19, in order to then further heat up in the tube walls 43, 44 of the fluidized bed coolers 34, 35, which are connected in series with one another, and in the heated one State in the pipe wall 10 provided with a chamotte 57 of the swirl combustion chamber 1 and from this into the pipe wall 47 of the secondary heating surface arrangement 19.
  • the hot feed water reaches the evaporator heating surfaces 39, 40 of the fluidized bed cooler 33, 34 which are connected in series, where it partially evaporates and from where the water-steam mixture flows into the water vapor separation vessel 41.
  • the water is separated from the steam and the steam flows via the preheater heating surface 22 of the secondary heating surface arrangement 19 into the superheater heating surfaces 35, 36 of the fluidized bed cooler 33, 34 connected in series and from there into the superheater heating surfaces 20 of the secondary heating surface arrangement 19, from where it leads to flows to a consumer shown here as a high pressure stage 52 of a steam turbine power plant 54.
  • the partially expanded steam flowing back from this consumer via the connecting line 56 passes through the series superheater heating surfaces 37, 38 of the fluidized bed cooler 33, 34 into the intermediate superheater 21 of the secondary heating surface arrangement 19. From there, it can be used, for example, as low-pressure steam in the low-pressure stage 53 of the steam turbine power plant 54 or to another consumer.
  • the steam cooler and thus also the temperature in the superheater heating surfaces of the fluidized bed cooler and the intermediate and final superheater heating surfaces of the secondary heating surface arrangement can be regulated by the injection cooler connected downstream of the preheater 22 of the secondary heating surface arrangement 19 and upstream of the intermediate superheater 21 and superheater 20 of the secondary heating surface arrangement.
  • this makes it possible to even out the temperature of the steam flowing into the superheater heating surfaces or to cool the steam in the event of an excess supply in these superheater heating surfaces before entering them, in order to achieve a uniformization of the steam temperature behind these superheater heating surfaces 35, 36 of the fluid bed cooler, which then can be readjusted by the injection cooler in front of the superheater heating surfaces 20 of the secondary switching surface arrangement 19.
  • This thus achieved equalization of the steam temperature has the great advantage that irregularities in the heat supply in the fluidized bed coolers can be regulated so strongly that load shedding of the steam turbine can be safely avoided and the life of the overall system is increased due to lower temperature fluctuations.

Abstract

The steam generator contains a circulatory fluidised-bed firing system with a combustion chamber, a dust separator, a bed cooler, after-heating surfaces in the path of the combustion gases, and other heating surfaces in the walls of the combustion chamber. Superheating (20,35,36) and intermediate heating surfaces (21,37,38) are installed in the after-heating system (19) and in the ash cooler (33,34). There can be several ash coolers connected in parallel, each supplied independently with ash by a separate metering mechanism (26,27).

Description

Die Erfindung bezieht sich auf eine Dampferzeugeranlage mit einer zirkulierenden Wirbelschichtfeuerungsanlage, mit einer Wirbelbrennkammer, mit mindestens einem Staubabscheider, mit mindestens einem Fließbettkühler und mit einer im Rauchgas­strom angeordneten Nachschaltheizflächenanordnung sowie mit Heizflächen in den Wänden der Wirbelkammer.The invention relates to a steam generator system with a circulating fluidized bed combustion system, with a fluidized bed combustion chamber, with at least one dust separator, with at least one fluid bed cooler and with a secondary heating surface arrangement arranged in the flue gas stream, and with heating surfaces in the walls of the fluidizing chamber.

Eine Dampferzeugeranlage mit einer zirkulierenden Wirbel­schichtfeuerungsanlage, mit Staubabscheidern und Fließbett­kühlern sowie mit einer im Rauchgasstrom angeordneten Nach­schaltheizflächenanordnung ist bei den Stadtwerken Duisburg in Betrieb. Bei dieser Anlage wird die fühlbare Wärme jenes Teils der in der zirkulierenden Wirbelschichtfeuerungsanlage umlaufenden Aschemenge in den Fließbettkühlern an den Wasser-­Dampfkreislauf übertragen, der jeweils gerade abgezogen wird. Hierzu wird die Asche in mehreren Zyklonen vom Rauchgas abge­trennt und in nachgeschalteten Dosiervorrichtungen, sogenann­ten Tauchtopfascheverteilern, in jeweils zwei ungleiche Ströme aufgeteilt, wobei der größere Aschestrom in die Wirbel­brennkammer zurückgeleitet und der kleinerer Aschestrom je einem sogenannten Fließbettkühler zugeführt wird. In den Fließbettkühlern wird die Asche mittels Rauchgas zwischen Heizflächen des Wasser-Dampfkreislaufs verwirbelt. Dabei gibt die Asche ihre Wärme an die Heizflächen ab. Die so abgekühlte Asche wird ausgeschieden. Das in den Zyklonen weitgehend von den Asche- und Kohlepartikeln befreite Rauchgas durchströmt eine Nachschaltheizflächenanordnung, in der es seine Wärme an den Wasser-Dampfkreislauf abgibt, bevor es über eine Elektro­filteranlage und einen Luftvorwärmer in den Kamin geleitet wird. Es ist eine Eigenart solcher Dampferzeugeranlgen, daß in den Asche- bzw. Fließbettkühlern in unvorhersehbarer Weise unterschiedlich viel Wärme anfällt, weil die Ascheaufteilung in den Tauchtöpfen nicht genau dosierbar ist. Dies führt dazu, daß während des Betriebes der Dampferzeugeranlagen immer wieder Temperatur- und damit auch Druckeinbrüche auftreten. Bei Wirbelschichtfeuerungsanlagen mit hochwertigen Dampf­prozessen, d.h. mit Hochdruck- und Zwischenüberhitzersystemen können solche Temperatureinbrüche sogar zu einem Lastabwurf der Dampfturbine führen. In jedem Fall verringert sich die Lebensdauer der Gesamtanlage wegen der Temperaturschwankungen.A steam generator system with a circulating fluidized bed combustion system, with dust separators and fluid bed coolers and with a secondary heating surface arrangement arranged in the flue gas stream is in operation at the Stadtwerke Duisburg. In this system, the sensible heat of that part of the amount of ash circulating in the circulating fluidized bed combustion system in the fluidized bed coolers is transferred to the water / steam cycle, which is currently being drawn off. For this purpose, the ash is separated from the flue gas in several cyclones and divided into two unequal streams in downstream metering devices, so-called immersion pot distributors, with the larger ash stream being returned to the fluidized-bed combustion chamber and the smaller ash stream being fed to a so-called fluid bed cooler. In the fluid bed coolers, the ashes are swirled between the heating surfaces of the water-steam cycle using flue gas. The ash emits its heat to the heating surfaces. The ashes cooled in this way are separated out. The flue gas, which is largely freed from the ash and coal particles in the cyclones, flows through a secondary heating surface arrangement in which it gives off its heat to the water / steam circuit before it is fed into the chimney via an electrostatic filter system and an air preheater. It is a peculiarity of such steam generator systems that Different amounts of heat are generated in the ash or fluid bed coolers in an unpredictable manner because the ash distribution in the immersion pots cannot be precisely metered. This leads to repeated temperature and pressure drops during the operation of the steam generator systems. In fluidized bed combustion plants with high-quality steam processes, ie with high-pressure and reheater systems, such temperature drops can even lead to a load shedding of the steam turbine. In any case, the service life of the entire system is reduced due to the temperature fluctuations.

Der Erfindung liegt die Aufgabe zugrunde, einen Weg zu weisen, wie beim Betrieb einer zirkulierenden Wirbelschichtfeuerungs­anlage mit Aschekühlern Schwankungen in der Qualität des Dampfes soweit wie möglich vermieden werden können.The invention has for its object to provide a way how fluctuations in the quality of the steam can be avoided as much as possible when operating a circulating fluidized bed combustion system with ash coolers.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Weiterbildungen sind den Ansprüchen 2 bis 11 zu entnehmen.This object is solved by the features of claim 1. Further advantageous developments can be found in claims 2 to 11.

Eine wesentliche Vergleichmäßigung der Wärmeabgabe ergibt sich, wenn erfindungsgemäß mehrere Aschekühler hinsichtlich des Ascheflusses parallel geschaltet und über je eine sepa­rate Dosiervorrichtung unabhängig voneinander mit Asche be­schickbar sind und in diesen Aschekühlern als auch in der Nachschaltheizflächenanordnung Überhitzer- und Zwischenüber­hitzerheizflächen vorhanden sind. In diesem Fall gleichen sich die Schwankungen der Heizleistung der Asche in den Asche­kühlern untereinander und durch die Heizleistung der Rauch­gase in den entsprechenden Überhitzer- und Zwischenüberhitzer­heizflächen der Nachschaltheizflächenanordnung teilweise wie­der aus. Die Wahrscheinlichkeit eines Lastabwurfs der Dampf­turbine ist deutlich vermindert. Auch führen Schwankungen der Heizleistung in einem der Aschekühler zu wesentlich geringe­ren Schwankungen des gesamten Wärmeangebots in allen zueinan­der parallel geschalteten Aschekühlern.A substantial homogenization of the heat emission results if, according to the invention, several ash coolers are connected in parallel with regard to the ash flow and can be loaded with ash independently of one another via a separate metering device, and superheater and reheater heating surfaces are present in these ash coolers and in the secondary heating surface arrangement. In this case, the fluctuations in the heating power of the ashes in the ash coolers are mutually equalized and by the heating power of the flue gases in the corresponding superheater and reheater heating surfaces of the secondary heating surface arrangement. The probability of the steam turbine shedding loads is significantly reduced. Fluctuations in the heat output in one of the ash coolers also lead to significantly smaller fluctuations in the total heat supply in all ash coolers connected in parallel.

Eine weitere Vergleichmäßigung des Wärmeangebots wird dadurch erreicht, daß die einzelnen wasserdampfseitigen Heizflächen­arten in den verschiedenen Aschekühlern untereinander in Se­rie geschaltet sind. Dies führt dazu, daß erhöhte und vermin­derte Heizleistungen der Heizflächen in den einzelnen Asche­kühlern durch die Heizleistungen in den jeweils hierzu in Se­rie geschalteten gleichartigen Heizflächen paralleler Asche­kühler noch besser ausgeglichen werden können.A further equalization of the heat supply is achieved in that the individual types of heating surfaces on the steam side are connected in series with one another in the various ash coolers. This means that increased and reduced heating capacities of the heating surfaces in the individual ash coolers can be even better compensated for by the heating capacities in the similar heating surfaces of parallel ash coolers connected in series.

Weitere Einzelheiten der Erfindung werden anhand eines in der Figur dargestellten Ausführungsbeispieles näher erläutert.Further details of the invention are explained in more detail with reference to an embodiment shown in the figure.

Es zeigt:It shows:

Die Figur eine schematische Darstellung einer erfindungsge­mäßen Dampferzeugungsanlage.The figure is a schematic representation of a steam generating plant according to the invention.

Auf der linken Seite der Figur ist die Wirbelbrennkammer 1 schematisch dargestellt. Sie ist brennstoffseitig an eine Kohleaufbereitungsanlage 2 mit einem Kohlebunker 3, einem Kalkbunker 4, einer Dosiervorrichtung 5 für die Kalkzugabe und einer Mühle 6 angeschlossen. Luftseitig ist die Wirbel­brennkammer 1 an eine über einen Luftverdichter 7 und Luft­vorwärmer 8 führende Frischluftleitung 9 angeschlossen. Die Wände der Wirbelbrennkammer 1 sind als Flossenrohrwände 10 ausgebildet (nicht dargestellt) und am oberen und am unteren Ende über je eine Sammelringleitung 11,12 an den Wasser-Dampf­kreislauf der Dampferzeugungsanlage 13 angeschlossen. Abgas­seitig ist die Wirbelbrennkammer 1 über zwei Abgasleitungen 14,15 an je ein Zyklonentstauberpaar 16,17 angeschlossen. Die an die beiden Zyklonenentstauberpaare angeschlossene Rauch­gasleitung 18 führt zu einer Nachschaltheizflächenanordnung mit im Ausführungsbeispiel vier verschiedenen Heizflächen, einer Überhitzerheizfläche 20 und einer Zwischenüberhitzer­fläche 21, einer Vorüberhitzerfläche 22 und einer Economiser­heizfläche 23. An der Nachschaltheizflächenanordnung 19 schließt sich rauchgasseitig ein Elektrofilter 24, der ein­gangs bereits genannte Luftvorwärmer 8 sowie ein Kamin 25 an.The vortex combustion chamber 1 is shown schematically on the left side of the figure. On the fuel side, it is connected to a coal processing plant 2 with a coal bunker 3, a lime bunker 4, a metering device 5 for adding lime and a mill 6. On the air side, the vortex combustion chamber 1 is connected to a fresh air line 9 leading via an air compressor 7 and air preheater 8. The walls of the vortex combustion chamber 1 are designed as fin tube walls 10 (not shown) and are connected at the upper and at the lower end to the water / steam circuit of the steam generating plant 13 via a collecting ring line 11, 12 each. On the exhaust gas side, the vortex combustion chamber 1 is connected via two exhaust gas lines 14, 15 to a pair of cyclone dusting devices 16, 17. The The flue gas line 18 connected to the two pairs of cyclone dedusters leads to a secondary heating surface arrangement with four different heating surfaces in the exemplary embodiment, a superheater heating surface 20 and an intermediate superheater surface 21, a preheater surface 22 and an economizer heating surface 23. An electrostatic filter 24 is connected to the secondary heating surface arrangement 19, the air preheater already mentioned at the beginning 8 and a fireplace 25.

Ascheseitig sind den Zyklonentstauberpaaren 16,17 je eine Dosiervorrichtung, im Ausführungsbeispiel je ein Tauchtopf­ascheverteiler 26,27 nachgeschaltet. Diese sind mit je einer dem größeren Teil des Aschestromes zugeordneten ersten Asche­leitung 28,29 an die Wirbelbrennkammer 1 oberhalb des Düsen­bodens 30 angeschlossen, und mit je einer dem kleineren Teil des Aschestromes zugeordneten zweiten Ascheleitung 31,32 mit je einen als Fließbettkühler 33,34 ausgeführten Aschekühler verbunden. In diesen Fließbettkühlern, in denen die Asche in hier nicht weiter dargestellter Weise durch eingedüste Rauch­gase in fließfähigen Zustand versetzt wird, sind in Strö­mungsrichtung der Asche nacheinander jeweils Überhitzerheiz­flächen 35,36, Zwischenüberhitzerheizflächen 37,38 und Ver­dampferheizflächen 39,40 eingebaut. Dabei sind die Überhitzer­heizflächen, die Zwischenüberhitzerheizflächen und die Ver­dampferheizflächen der ascheseitig parallel geschalteten Fließbettkühler 33,34 untereinander in Reihe geschaltet.On the ash side, the cyclone dusting pairs 16, 17 are each followed by a metering device, in the exemplary embodiment a diving pot ash distributor 26, 27 each. These are each connected to the swirl combustion chamber 1 above the nozzle base 30 with a first ash line 28, 29 assigned to the larger part of the ash flow, and each with a second ash line 31, 32 assigned to the smaller part of the ash flow, each designed as a fluidized bed cooler 33, 34 Ash cooler connected. In these fluid bed coolers, in which the ash is brought into a flowable state by the smoke gases injected in a manner not shown here, superheater heating surfaces 35, 36, intermediate superheater heating surfaces 37, 38 and evaporator heating surfaces 39, 40 are installed one after the other in the flow direction of the ash. The superheater heating surfaces, the intermediate superheater heating surfaces and the evaporator heating surfaces of the fluid bed coolers 33, 34 connected in parallel on the ash side are connected in series with one another.

Im Ausführungsbeispiel sind die untereinander in Serie ge­schalteten Überhitzerheizflächen 35,36 der Fließbettkühler 33,34, den Vorüberhitzerheizflächen 22 in der Nachschaltheiz­flächenanordnung 19 nachgeschaltet und der Überhitzerheiz­fläche 20 in der Nachschaltheizflächenanordnung 19 vorge­schaltet. Die untereinander in Serie geschalteten Zwischen­dem Zwischenüberhitzer 21 der Nachschaltheizflächenanordnung 19 vorgeschaltet. Die Verdampferheizflächen 39,40 der Fließbett­ kühler 33,34 sind der Economiserheizfläche 23 der Nachschalt­heizflächenanordnung 19 nachgeschaltet und über ein Wasser­dampftrenngefäß 41 an die Vorüberhitzerheizfläche 22 der Nach­schaltheizflächenanordnung 19 angeschlossen. Das Wasserdampf­trenngefäß ist wasserseitig über eine Pumpe 42 wiederum an den Eingang des Economisers 23 angeschlossen. Der Economiser 23 ist an die in Serie geschalteten Rohrwände 43,44 der Fließbettkühler 33,34 der Rohrwand 10 der Wirbelbrennkammer 1 und der über Sammelringleitungen 45,46 angeschlossenen Rohr­wand 47 der Nachschaltheizflächenanordnung 19 geschaltet. In den Zuleitungen zum Überhitzer 20, zum Zwischenüberhitzer 21 als auch in der vom Vorüberhitzer 22 der Nachschaltheiz­flächenanordnung 19 kommenden Leitung 41 sind jeweils Ein­spritzkühler 49,50,51 eingebaut. An die Überhitzerheizfläche 20 der Nachschaltheizflächenanordnung 19 ist im Ausführungs­beispiel als Verbraucher die Hochdruckstufe 52 und an der Zwischenüberhitzerheizfläche 21 der Nachschaltheizflächen­anordnung die Niederdruckstufe 53 eines Dampfturbinenkraft­werks 54 angeschlossen.In the exemplary embodiment, the superheater heating surfaces 35, 36 of the fluidized bed cooler 33, 34 connected in series with one another are connected downstream of the preheater heating surfaces 22 in the secondary heating surface arrangement 19 and upstream of the superheating heating surface 20 in the secondary heating surface arrangement 19. The intermediate reheater 21 connected in series with one another is connected upstream of the secondary heating surface arrangement 19. The evaporator heating surfaces 39.40 of the fluid bed cooler 33, 34 are connected downstream of the economiser heating surface 23 of the secondary heating surface arrangement 19 and connected to the preheater heating surface 22 of the secondary heating surface arrangement 19 via a water vapor separation vessel 41. The water vapor separation vessel is in turn connected on the water side via a pump 42 to the input of the economizer 23. The economizer 23 is connected to the series-connected pipe walls 43, 44, the fluidized bed cooler 33, 34, the pipe wall 10 of the swirl combustion chamber 1 and the pipe wall 47 of the secondary heating surface arrangement 19 connected via collecting ring lines 45, 46. Injection coolers 49, 50, 51 are installed in the feed lines to the superheater 20, to the reheater 21 and also in the line 41 coming from the pre-heater 22 of the secondary heating surface arrangement 19. In the exemplary embodiment, the high pressure stage 52 is connected to the superheater heating surface 20 of the secondary heating surface arrangement 19 and the low pressure stage 53 of a steam turbine power plant 54 is connected to the intermediate superheater heating surface 21 of the secondary heating surface arrangement.

Beim Betrieb der Dampferzeugungsanlage 13 wird über den Luft­verdichter 7 Frischluft durch den Luftvorwärmer 8 gesaugt, verdichtet und über die Frischluftleitung 9 unter den Düsen­boden 30 der Wirbelbrennkammer 1 gedrückt. Die aufgeheizte Frischluft strömt mit Überdruck durch den Düsenboden der Wirbelbrennkammer 1 hindurch und wirbelt dabei die Brenn­stoff- und Aschepartikel über dem Düsenboden 30 auf. Bei den herrschenden Temperaturen oxidieren die Brennstoffpartikel mit dem Luftsauerstoff und werden zusammen mit der Asche und den dabei gebildeten Verbrennungsgasen über die beiden Abgas­leitungen 14,15 des Ausführungsbeispiels in die paarweise hintereinandergeschalteten Zyklone geleitet. In den Zyklonen werden die Feststoffpartikel, d.h. die Asche- und Brennstoff­partikel vom Rauchgas getrennt. Zur Verbesserung der Asche­abscheidung sind jeweils zwei Zyklone rauchgasseitig in Serie geschaltet. Das so weitgehend von Asche- und Staubpartikel befreite Rauchgas strömt über die Rauchgasleitung 18 in die Nachschaltheizflächenanordnung 19 und gibt dort seine Wärme nacheinander an die Überhitzerheizflächen 20, Zwischenüber­hitzerheizflächen 21, Vorüberhitzerheizflächen 22 und Econo­miserheizflächen 23 ab, um sodann über das Elektrofilter 24 und den Luftvorwärmer 8 zum Kamin 25 zu strömen.When the steam generating system 13 is in operation, fresh air is drawn in through the air preheater 8 via the air compressor 7, compressed and pressed under the nozzle base 30 of the swirl combustion chamber 1 via the fresh air line 9. The heated fresh air flows with overpressure through the nozzle base of the swirl combustion chamber 1 and thereby swirls the fuel and ash particles over the nozzle base 30. At the prevailing temperatures, the fuel particles oxidize with the atmospheric oxygen and, together with the ash and the combustion gases formed in the process, are passed via the two exhaust pipes 14, 15 of the exemplary embodiment into the cyclones connected in series in pairs. The solid particles, ie the ash and fuel particles, are separated from the flue gas in the cyclones. To improve the ash separation, two cyclones are in series on the flue gas side switched. The flue gas, which is largely freed of ash and dust particles, flows via the flue gas line 18 into the secondary heating surface arrangement 19 and there releases its heat one after the other to the superheater heating surfaces 20, reheater heating surfaces 21, preheater heating surfaces 22 and economizer heating surfaces 23, and then via the electrostatic filter 24 and the air preheater 8 to flock to the fireplace 25.

Die in den Zyklonentstauberpaaren 16,17 abgetrennten Feststoff­partikel werden in zwei Tauchtopfascheverteilern 26,27 in je zwei Ströme geteilt, von denen der größere Partikelstrom über erste Ascheleitungen 28,29 in die Wirbelbrennkammer 1 zurück, der kleinere Partikelstrom über zweite Ascheleitungen 31,32 in die beiden im Ausführungsbeispiel mit 33 und 34 bezeichne­ten zueinander parallel geschalteten Fließbettkühler geleitet wird. In diesen Fließbettkühlern, in denen Asche mit über hier nicht weiter dargestellte Rauchgashilfsleitungen einge­düstem Rauchgas aufgewirbelt wird, so daß sie fließfähig bleibt, gibt die heiße Asche ihre Wärme beim Vorbeifließen nacheinander an je eine Überhitzerheizfläche 35,36, eine Zwischenüberhitzerheizfläche 37,38 und eine Verdampferheiz­fläche 39,40 ab, bevor sie in einen Aschebunker 55 weiter­geleitet wird. In der Kohleaufbereitungsanlage 2 wird in entsprechender Menge wie Asche in die Fließbettkühler abge­leitet wird fortlaufend Kohle aus dem Kohlebunker 3 abgezogen und in der Mühle 6 zu Kohlenstaub vermahlen. Der der Mühle 6 zuströmenden Kohle wird mittels einer Dosiervorrichtung 5 Kalk aus dem Kalkbunker 4 beigemischt. Dadurch wird die umgesetzte Brennstoffmenge konstant gehalten sowie der in der Kohle enthaltene Schwefel nach der Verbrennung gebunden.The solid particles separated in the cyclone duster pairs 16, 17 are divided into two submersible ash distributors 26, 27 each in two streams, of which the larger particle stream is returned to the vortex combustion chamber 1 via first ash lines 28, 29 and the smaller particle stream is returned to the swirl combustion chamber 1 via the second ash lines 31, 32 both in the embodiment designated 33 and 34 connected to each other connected fluid bed cooler. In these fluid bed coolers, in which ashes are whirled up with flue gas injected via flue gas auxiliary lines (not shown further here) so that they remain flowable, the hot ashes pass their heat one by one to a superheater heating surface 35, 36, a reheater heating surface 37, 38 and an evaporator heating surface 39.40 before it is forwarded to an ash bunker 55. In the coal processing plant 2, an amount corresponding to ash is discharged into the fluid bed cooler, coal is continuously withdrawn from the coal bunker 3 and ground to coal dust in the mill 6. The coal flowing into the mill 6 is mixed with lime from the lime bunker 4 by means of a metering device 5. This keeps the amount of fuel converted constant and the sulfur contained in the coal is bound after combustion.

Das der Dampferzeugungsanlage 1 zuströmende kalte Speisewasser wird zunächst in den Economiserheizflächen 23 der Nachschalt­heizflächenanordnung 19 aufgeheizt, um sodann in den Rohr­wänden 43,44 der Fließbettkühler 34,35, die untereinander in Serie geschaltet sind, weiter aufgeheizt und im aufgeheizten Zustand in die mit einer Schamottierung 57 versehene Rohrwand 10 der Wirbelbrennkammer 1 und von dieser in die Rohrwand 47 der Nachschaltheizflächenanordnung 19 geleitet. Von der Rohr­wand 47 der Nachschaltheizflächenanordnung gelangt das heiße Speisewasser in die untereinander in Serie geschalteten Ver­dampferheizflächen 39,40 der Fließbettkühler 33,34 wo es teil­weise verdampft und von wo das Wasser-Dampf-Gemisch in das Wasserdampftrenngefäß 41 strömt. In dem Wasserdampftrenngefäß wird das Wasser vom Dampf separiert und strömt der Dampf über die Vorüberhitzerheizfläche 22 der Nachschaltheizflächenanord­nung 19 in die untereinander in Serie geschalteten Überhitzer­heizflächen 35,36 der Fließbettkühler 33,34 und von dort in die Überhitzerheizflächen 20 der Nachschaltheizflächenanord­nung 19, von wo es zu einem hier als Hochdruckstufe 52 eines Dampfturbinenkraftwerks 54 dargestellten Verbraucher strömt. Der von diesem Verbraucher über die Anschlußleitung 56 zurück­strömende, teilweise entspannte Dampf gelangt durch die unter­einander in Serie geschalteten Zwischenüberhitzerheizflächen 37,38 der Fließbettkühler 33,34 in den Zwischenüberhitzer 21 der Nachschaltheizflächenanordnung 19. Von dort kann er beispiels­weise als Niederdruckdampf in die Niederdruckstufe 53 des Dampf­turbinenkraftwerks 54 oder in einen anderen Verbraucher geleitet werden. Durch die den Vorüberhitzer 22 der Nachschaltheizflächen­anordnung 19 nachgeschaltete und den Zwischenüberhitzer 21 und Überhitzer 20 der Nachschaltheizflächenanordnung vorgeschalte­ten Einspritzkühler 49,50,51 kann die Dampfqualität und damit auch die Temperatur in den Überhitzerheizflächen der Fließbett kühler und den Zwischen- und Endüberhitzerheizflächen der Nach­schaltheizflächenanordnung geregelt werden.The cold feed water flowing to the steam generating system 1 is first heated in the economizer heating surfaces 23 of the secondary heating surface arrangement 19, in order to then further heat up in the tube walls 43, 44 of the fluidized bed coolers 34, 35, which are connected in series with one another, and in the heated one State in the pipe wall 10 provided with a chamotte 57 of the swirl combustion chamber 1 and from this into the pipe wall 47 of the secondary heating surface arrangement 19. From the tube wall 47 of the secondary heating surface arrangement, the hot feed water reaches the evaporator heating surfaces 39, 40 of the fluidized bed cooler 33, 34 which are connected in series, where it partially evaporates and from where the water-steam mixture flows into the water vapor separation vessel 41. In the water vapor separation vessel, the water is separated from the steam and the steam flows via the preheater heating surface 22 of the secondary heating surface arrangement 19 into the superheater heating surfaces 35, 36 of the fluidized bed cooler 33, 34 connected in series and from there into the superheater heating surfaces 20 of the secondary heating surface arrangement 19, from where it leads to flows to a consumer shown here as a high pressure stage 52 of a steam turbine power plant 54. The partially expanded steam flowing back from this consumer via the connecting line 56 passes through the series superheater heating surfaces 37, 38 of the fluidized bed cooler 33, 34 into the intermediate superheater 21 of the secondary heating surface arrangement 19. From there, it can be used, for example, as low-pressure steam in the low-pressure stage 53 of the steam turbine power plant 54 or to another consumer. The steam cooler and thus also the temperature in the superheater heating surfaces of the fluidized bed cooler and the intermediate and final superheater heating surfaces of the secondary heating surface arrangement can be regulated by the injection cooler connected downstream of the preheater 22 of the secondary heating surface arrangement 19 and upstream of the intermediate superheater 21 and superheater 20 of the secondary heating surface arrangement.

Es ist ein besonderer Vorteil dieser Anordnung, daß trotz der unvermeidlichen Schwankungen des Wärmeangebotes in den Fließ­bettkühlern 33,34, die durch das mengenmäßig und temperatur­mäßig ungleichmäßige Wärmeangebot der zu den Fließbettkühlern strömenden Asche bedingt sind, Schwankungen der Qualität des Dampfes weitgehend ausgeglichen werden. Dieser Ausgleich erfolgt zum einen dadurch, daß die einzelnen Arten der Heizflächen in den Fließbettkühlern untereinander in Serie geschaltet sind und sich so geringere oder größere Heiz­leistungen in diesen Heizflächen teilweise gegenseitig kom­pensieren. Darüber hinaus können diese Schwankungen durch die in Serie geschalteten weiteren gleichartigen Heizflächen der Nachschaltheizflächenanordnung 19 nochmals abgemildert werden. Schließlich ist durch die Einspritzkühler 49,50,51 die weitere Möglichkeit gegeben, Übertemperaturen vor Ein­strömung in die Überhitzer- und Zwischenüberhitzerheizflächen abzubauen. Dies erlaubt es einerseits, die Temperatur des in die Überhitzerheizflächen einströmenden Dampfes zu ver­gleichmäßigen bzw. den Dampf bei einem Wärmeüberangebot in diesen Überhitzerheizflächen vor Eintritt in dieselben abzukühlen, um hinter diesen Überhitzerheizflächen 35,36 der Fließbettkühler eine Vergleichmäßigung der Dampftemperatur zu erreichen, die dann noch durch die Einspritzkühler vor den Überhitzerheizflächen 20 der Nachschaltzheizflächenanordnung 19 nachgeregelt werden kann. Diese dadurch erzielte Ver­gleichmäßigung der Dampftemperatur bringt den großen Vorteil mit sich, daß Ungleichmäßigkeiten im Wärmeangebot in den Fließbettkühlern so stark ausgeregelt werden können, daß Lastabwürfe der Dampfturbine sicher vermieden werden können und die Lebensdauer der Gesamtanlage infolge geringerer Temperaturschwankungen vergrößert wird.It is a particular advantage of this arrangement that, despite the inevitable fluctuations in the heat supply in the fluid bed coolers 33, 34, which are caused by the quantity and temperature nonuniform heat supply of the ash flowing to the fluid bed coolers, fluctuations in the quality of the Steam can be largely compensated. This compensation takes place, on the one hand, in that the individual types of heating surfaces in the fluidized bed coolers are connected in series with one another and in this way, lower or higher heating outputs in these heating surfaces partially compensate one another. In addition, these fluctuations can be alleviated again by the further heating surfaces of the secondary heating surface arrangement 19 connected in series. Finally, the injection cooler 49, 50, 51 offers the further possibility of reducing excess temperatures before inflow into the superheater and reheater heating surfaces. On the one hand, this makes it possible to even out the temperature of the steam flowing into the superheater heating surfaces or to cool the steam in the event of an excess supply in these superheater heating surfaces before entering them, in order to achieve a uniformization of the steam temperature behind these superheater heating surfaces 35, 36 of the fluid bed cooler, which then can be readjusted by the injection cooler in front of the superheater heating surfaces 20 of the secondary switching surface arrangement 19. This thus achieved equalization of the steam temperature has the great advantage that irregularities in the heat supply in the fluidized bed coolers can be regulated so strongly that load shedding of the steam turbine can be safely avoided and the life of the overall system is increased due to lower temperature fluctuations.

Claims (11)

1. Dampferzeugeranlage mit einer zirkulierenden Wirbelschicht­feuerungsanlage, mit einer Wirbelbrennkammer, mit mindestens einem Staubabscheider, mit mindestens einem Fließbettkühler, mit einer im Rauchgasstrom angeordneten Nachschaltheizflächen­anordnung sowie mit Heizflächen in den Wänden der Wirbelbrenn­kammer,
dadurch gekennzeichnet,
daß mehrere hinsichtlich des Ascheflusses parallel geschaltete Aschekühler (33,34) vorhanden und über je eine separate Dosier­vorrichtung (26,27) unabhängig voneinander mit Asche beschick­bar sind und daß sowohl in dem Aschekühler (33,34) als auch in der Nachschaltheizflächenanordnung (19) Überhitzer- (20,35,36) und Zwischenüberhitzerheizflächen (21,37,38) vorhanden sind, wo­bei die einzelnen Heizflächenarten (35,36 und 37,38 und 39,40) in den verschiedenen Aschekühlern (33,34) untereinander in Se­rie geschaltet sind.
1. steam generator system with a circulating fluidized bed combustion system, with a fluidized bed combustion chamber, with at least one dust separator, with at least one fluid bed cooler, with a secondary heating surface arrangement arranged in the flue gas stream and with heating surfaces in the walls of the fluidized bed combustion chamber,
characterized,
that several ash coolers (33, 34) connected in parallel with regard to the ash flow are present and can be charged with ash independently of one another via a separate metering device (26, 27) and that both in the ash cooler (33, 34) and in the secondary heating surface arrangement (19) Superheater (20,35,36) and intermediate superheater heating surfaces (21,37,38) are present, the individual heating surface types (35,36 and 37,38 and 39,40) in the various ash coolers (33,34) in series with each other are switched.
2. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Überhitzerheizflächen (20,35,36) sowohl der Asche­kühler (33,34) als auch der Nachschaltheizflächenanordnung (19) in Serie geschaltet sind.
2. steam generator system according to claim 1,
characterized,
that the superheater heating surfaces (20, 35, 36) both the ash cooler (33, 34) and the secondary heating surface arrangement (19) are connected in series.
3. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Zwischenüberhitzerheizflächen (21,37,38) sowohl der Aschekühler (33,34) als auch der Nachschaltheizflächenanord­nung (19) in Serie geschaltet sind.
3. steam generator system according to claim 1,
characterized,
that the reheater heating surfaces (21, 37, 38) both the ash cooler (33, 34) and the secondary heating surface arrangement (19) are connected in series.
4. Dampferzeugeranlage nach Anspruch 4,
dadurch gekennzeichnet,
daß die Überhitzerheizflächen (35,36), der Aschekühler (33,34) und die Vorüberhitzerheizflächen (22) der Nachschaltheiz­flächenanordnung (19) in Serie geschaltet sind.
4. Steam generator system according to claim 4,
characterized,
that the superheater heating surfaces (35, 36), the ash cooler (33, 34) and the preheater heating surfaces (22) of the secondary heating surface arrangement (19) are connected in series.
5. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß sowohl der Aschekühler (33,34) als auch die Nachschalt­heizflächenanordnung (19) Economiserheizflächen (23,43,44) enthalten.
5. steam generator system according to claim 1,
characterized,
that both the ash cooler (33, 34) and the secondary heating surface arrangement (19) contain economizer heating surfaces (23, 43, 44).
6. Dampferzeugeranlage nach Anspruch 3,
dadurch gekennzeichnet,
daß die Überhitzerheizflächen (36) des ersten Aschekühlers (34) jenen (35) des zweiten Aschekühlers (33) vorgeschaltet sind und die Zwischenüberhitzerheizflächen (37) des zweiten Aschekühlers (33) jenen (38) des ersten Aschekühlers (34) vorgeschaltet sind oder umgekehrt.
6. steam generator system according to claim 3,
characterized,
that the superheater heating surfaces (36) of the first ash cooler (34) precede those (35) of the second ash cooler (33) and the intermediate superheater heating surfaces (37) of the second ash cooler (33) precede those (38) of the first ash cooler (34) or vice versa .
7. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Rohrwände (10) der Wirbelbrennkammer (1) als Ver­dampferheizflächen ausgebildet sind.
7. steam generator system according to claim 1,
characterized,
that the tube walls (10) of the vortex combustion chamber (1) are designed as evaporator heating surfaces.
8. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Rohrwände (47) der Nachschaltheizflächenanordnung (19) als Verdampferheizflächen ausgebildet sind.
8. steam generator system according to claim 1,
characterized,
that the tube walls (47) of the secondary heating surface arrangement (19) are designed as evaporator heating surfaces.
9. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Rohrwände (47) der Nachschaltheizflächenanordnung (19) den Rohrwänden (10) der Wirbelbrennkammer (1) nachgeschaltet und den Verdampferheizflächen (39,40) in den Aschekühlern (33,34) vorgeschaltet sind.
9. steam generator system according to claim 1,
characterized,
that the tube walls (47) of the secondary heating surface arrangement (19) are connected downstream of the tube walls (10) of the swirl combustion chamber (1) and the evaporator heating surfaces (39, 40) are connected upstream in the ash coolers (33, 34).
10. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß die Rohrwand (10) der Wirbelbrennkammer (1) schamottiert ist.
10. steam generator system according to claim 1,
characterized,
that the tube wall (10) of the swirl combustion chamber (1) is fireclayed.
11. Dampferzeugeranlage nach Anspruch 1,
dadurch gekennzeichnet,
daß den Überhitzerheizflächen (20,35,36) und Zwischenüber­hitzerheizflächen (21) Einspritzkühler (49,50,51) vorge­schaltet sind.
11. Steam generator system according to claim 1,
characterized,
that the superheater heating surfaces (20, 35, 36) and intermediate superheater heating surfaces (21) have injection coolers (49, 50, 51) connected upstream.
EP87117708A 1986-12-11 1987-11-30 Steam generator with a circulating fluidised bed Expired - Lifetime EP0274637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117708T ATE66728T1 (en) 1986-12-11 1987-11-30 STEAM GENERATOR PLANT WITH A CIRCULATION FLUID BED.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863642396 DE3642396A1 (en) 1986-12-11 1986-12-11 STEAM GENERATOR SYSTEM WITH A CIRCULATING FLUID BED
DE3642396 1986-12-11

Publications (2)

Publication Number Publication Date
EP0274637A1 true EP0274637A1 (en) 1988-07-20
EP0274637B1 EP0274637B1 (en) 1991-08-28

Family

ID=6316008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117708A Expired - Lifetime EP0274637B1 (en) 1986-12-11 1987-11-30 Steam generator with a circulating fluidised bed

Country Status (5)

Country Link
EP (1) EP0274637B1 (en)
AT (1) ATE66728T1 (en)
DE (2) DE3642396A1 (en)
ES (1) ES2024481B3 (en)
GR (1) GR3002722T3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008917A1 (en) * 1989-01-24 1990-08-09 A. Ahlstrom Corporation System and method for reheat steam temperature control in circulating fluidized bed boilers
EP0444927A2 (en) * 1990-03-01 1991-09-04 Foster Wheeler Energy Corporation Fluidized bed steam temperature enhancement system
WO1998028570A1 (en) * 1996-12-23 1998-07-02 Combustion Engineering, Inc. A control scheme for large circulating fluid bed steam generators (cfb)
FR2767380A1 (en) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind HEAT EXCHANGE DEVICE FOR A FLUIDIZED BED CIRCULATING BOILER
FR2767379A1 (en) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind EXTERNAL DENSE FLUIDIZED BED BOILER
EP2478073A1 (en) * 2009-09-18 2012-07-25 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US9873840B2 (en) 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US11572518B2 (en) 2019-11-25 2023-02-07 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4224959A1 (en) * 1992-07-24 1994-01-27 Ver Energiewerke Ag Method to operate combination power station - uses part flue gas flow, which is branched-off in substoichiometric combustion area, in front of secondary air supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033713A1 (en) * 1980-01-18 1981-08-12 Battelle Development Corporation Controlling steam temperature to turbines
EP0068301A1 (en) * 1981-07-01 1983-01-05 Deutsche Babcock Anlagen Aktiengesellschaft Steam generator with circulating atmospheric or supercharged fluidised-bed combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033713A1 (en) * 1980-01-18 1981-08-12 Battelle Development Corporation Controlling steam temperature to turbines
EP0068301A1 (en) * 1981-07-01 1983-01-05 Deutsche Babcock Anlagen Aktiengesellschaft Steam generator with circulating atmospheric or supercharged fluidised-bed combustion

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMIE INGENIEUR TECHNIK, Band 55, Nr. 2, Februar 1983, Seiten 87-93, Verlag Chemie GmbH, Weinheim, DE; L. REH et al.: "Wirbelschicht-Prozesse für die Chemie- und Hütten-Industrie, die Energieumwandlung und den Umweltschutz" *
REVUE GENERAL DE THERMIQUE, Band 24, Nr. 278, Februar 1985, Seiten 81-88, Editions Europeennes Thermiques et Industrie, Paris, FR; J.F. LARGE: "Combustion désulfurante du charbon en lit fluidisé" *
VGB KRAFTWERKSTECHNIK, Band 60, Nr. 5, Mai 1980, Seiten 366-376, Essen, DE; E. BITTERLICH: "Die Wirbelschicht-Technologie als Prozess zur umweltfreundlichen Energie-Erzeugung" *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008917A1 (en) * 1989-01-24 1990-08-09 A. Ahlstrom Corporation System and method for reheat steam temperature control in circulating fluidized bed boilers
AU639437B2 (en) * 1989-01-24 1993-07-29 Foster Wheeler Energia Oy System and method for reheat steam temperature control in circulating fluidized bed boilers
LT3379B (en) 1989-01-24 1995-08-25 Ahlstroem Oy System and method for reheat steam temperature control in circulating fluidized bed boilers
EP0444927A2 (en) * 1990-03-01 1991-09-04 Foster Wheeler Energy Corporation Fluidized bed steam temperature enhancement system
EP0444927A3 (en) * 1990-03-01 1992-05-06 Foster Wheeler Energy Corporation Fluidized bed steam temperature enhancement system
WO1998028570A1 (en) * 1996-12-23 1998-07-02 Combustion Engineering, Inc. A control scheme for large circulating fluid bed steam generators (cfb)
CZ299336B6 (en) * 1996-12-23 2008-06-25 Alstom Power Inc. Circulating fluidized bed steam generator
EP0898116A1 (en) * 1997-08-18 1999-02-24 GEC ALSTHOM Stein Industrie Heat exchange device for a circulating fluidized bed boiler
FR2767379A1 (en) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind EXTERNAL DENSE FLUIDIZED BED BOILER
EP0898115A1 (en) * 1997-08-18 1999-02-24 GEC ALSTHOM Stein Industrie Boiler with external dense fluidised bed
US6003476A (en) * 1997-08-18 1999-12-21 Gec Alsthom Stein Industrie Boiler having an external dense fluidized bed
FR2767380A1 (en) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind HEAT EXCHANGE DEVICE FOR A FLUIDIZED BED CIRCULATING BOILER
EP2478073A1 (en) * 2009-09-18 2012-07-25 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
EP2478073A4 (en) * 2009-09-18 2014-01-01 Wormser Energy Solutions Inc Integrated gasification combined cycle plant with char preparation system
US9873840B2 (en) 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US11572518B2 (en) 2019-11-25 2023-02-07 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture

Also Published As

Publication number Publication date
DE3772544D1 (en) 1991-10-02
ES2024481B3 (en) 1992-03-01
EP0274637B1 (en) 1991-08-28
ATE66728T1 (en) 1991-09-15
GR3002722T3 (en) 1993-01-25
DE3642396A1 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
EP0152529B1 (en) Steam generator with a stationary fluidized bed combuster
EP0037858B1 (en) Steam power station with pressure-fired fluidised bed steam generator
EP0068301B2 (en) Steam generator with circulating atmospheric or supercharged fluidised-bed combustion
EP0274637B1 (en) Steam generator with a circulating fluidised bed
EP0254985A1 (en) Steam generator with circulating atmospheric or supercharged fluidized-bed combustion, and process for its control
DE3625992C2 (en)
EP0086261A1 (en) Combination of a gas-turbine and steam-turbine cycle
DE3644030A1 (en) CHARGED, COAL-FIRED STEAM GENERATOR
DD279937A1 (en) DEVICE FOR DRYING, GRINDING AND BURNING BALLASTIC FUELS
EP0199251B1 (en) Waste heat steam generator
EP0098481B1 (en) Method for generating electric power in a combined power plant with fluidised bed combustion
DD296542A5 (en) FIRE, ESPECIALLY SWITCHING
DE10039317A1 (en) Steam generating plant
DE3644083A1 (en) STEAM GENERATOR
WO1996021825A1 (en) Method of burning waste material to recover thermal energy
DE2916345A1 (en) System for part-load control of fluidised bed furnaces - varies bed material, as well as fuel and air quantity and quality
DE3004847C2 (en) Steam generator with a fluidized bed furnace
DE3638766C2 (en)
EP0784186B1 (en) Steam generator with supercharged circulating fluidized bed combustion
DE3511877A1 (en) CONTINUOUS STEAM GENERATOR
DE4218016A1 (en) Method and device for controlling the flue gas temperature at the outlet of a steam generator
DE973349C (en) Device for generating steam
DE928613C (en) Gas steam power plant
DE2424394A1 (en) Steam-generator with heat-exchanger and fluidised beds - fuel beds have air passage for temp. regulation
WO2011134749A2 (en) Steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB GR

17P Request for examination filed

Effective date: 19890120

17Q First examination report despatched

Effective date: 19900509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES GB GR

REF Corresponds to:

Ref document number: 66728

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3772544

Country of ref document: DE

Date of ref document: 19911002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024481

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3002722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19921106

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19921113

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940531

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3002722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951025

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010122

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011112

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

GBPC Gb: european patent ceased through non-payment of renewal fee