EP0271222A2 - Herstellung von Verbundwerkstoffen mit Metallmatrix - Google Patents

Herstellung von Verbundwerkstoffen mit Metallmatrix Download PDF

Info

Publication number
EP0271222A2
EP0271222A2 EP87309973A EP87309973A EP0271222A2 EP 0271222 A2 EP0271222 A2 EP 0271222A2 EP 87309973 A EP87309973 A EP 87309973A EP 87309973 A EP87309973 A EP 87309973A EP 0271222 A2 EP0271222 A2 EP 0271222A2
Authority
EP
European Patent Office
Prior art keywords
metal
preform
die
layer
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87309973A
Other languages
English (en)
French (fr)
Other versions
EP0271222A3 (de
Inventor
David James Lloyd
Willard Mark Truman Gallerneault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Publication of EP0271222A2 publication Critical patent/EP0271222A2/de
Publication of EP0271222A3 publication Critical patent/EP0271222A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould

Definitions

  • This invention relates to the production of metal matrix composites, and more particularly to methods of producing cast metal matrix composite articles, as well as to the products of such methods.
  • Metal matrix composites are articles constituted of a metal matrix, e.g. aluminium or alloys thereof, having distributed therein a divided solid filler, viz. a fibrous or particulate material which is capable of being incorporated in and distributed through such metal matrix and which at least substant­ially maintains its integrity as thus incorporated rather than losing its form or identity by dissolution in or chemical combination with the metal.
  • a metal matrix e.g. aluminium or alloys thereof
  • a divided solid filler viz. a fibrous or particulate material which is capable of being incorporated in and distributed through such metal matrix and which at least substant­ially maintains its integrity as thus incorporated rather than losing its form or identity by dissolution in or chemical combination with the metal.
  • the present invention provides a new and improved method of producing a composite cast article comprising a metal matrix and a divided solid filler incorporated in and distributed through the whole or at least a desired region of the matrix. At least one layer comprising a preform of a divided solid filler and a melt of the metal matrix are provided in a die cavity and pressure is exerted thereon in a direction parallel to the cavity axis for forcing the molten metal to fully infiltrate the preform filler, after which the resultant cast article is solidified.
  • One embodiment includes the steps of disposing at least one layer comprising a preform of a divided solid filler and at least two layers of initially solid matrix metal as a stack, with the filler layer between the metal layers, in a cavity defined by a die wall laterally surrounding the stack, the cavity having an axis extending through all the layers of the stack; heating the die wall for raising the temperature of the matrix metal in the stack above the liquidus of the metal, thereby to melt fully the matrix metal in the stack; and thereupon exerting pressure on the stack in a direction parallel to the cavity axis, for forcing the molten metal to fully infiltrate or impregnate the preform filler layer, while solidifying the infiltrating metal.
  • the preform filler may be infiltr­ated with molten metal by pushing the preform through molten metal in the die cavity.
  • preform refers to an effectively integral, porous compacted body of divided solid filler fibres or particles which has been subjected to sufficient comp­acting pressure to develop green strength, viz. strength such that the compacted body is self-sustain­ing in shape and dimensions when handled.
  • the solidifying step is performed by controlling heat flow within the die cavity in such manner that a solidification front advances unidirectionally, along the cavity axis, entirely through the metal-infiltrated preform layer, while the metal ahead of this front within and at least immediately beyond the preform layer remains molten; and the metal layer disposed beyond the preform layer (with respect to the direction of advance of the aforementioned solidification front) contains metal in excess of the amount which infiltrates the preform from that metal layer during the pressure-exerting step. It is found that this combination of features enables production of composite articles which are advantag­eously free of porous zones and which, in consequence, are characterized by fully adequate mechanical properties throughout.
  • contraction-­ created pores cannot be enclosed between converging solidification fronts in a filler layer because there is only a single solidification front advancing uni­directionally through the entire preform layer; and ahead of this front there is a continuing supply of molten metal, which fills any contraction-vacated space, under the continuing applied infiltration pressure.
  • the requisite control of heat flow within the die cavity during the pressure-exerting step is effected, in currently preferred embodiments of the invention, by establishing a temperature differential between opposite ends of the die cavity, as for example by selectively heating or cooling one end of the die; by selectively thermally insulating one end of the die, so that heat is preferentially transferred from the other end of the cavity; or by an appropriate combin­ation of these techniques.
  • a temperature differential between opposite ends of the die cavity, as for example by selectively heating or cooling one end of the die; by selectively thermally insulating one end of the die, so that heat is preferentially transferred from the other end of the cavity; or by an appropriate combin­ation of these techniques.
  • two opposed solidification fronts may nevertheless advance toward each other along the cavity axis from the opposite ends of the cavity, but with different initiation times and/or rates of advance, so that they meet within the zone or layer of excess metal beyond the preform layer rather than within the preform layer itself, and only one of the solidification fronts passes through the pre
  • the heating step may be preformed concurrently with the pressure-exerting step by moving an external source of heat (for melting the matrix metal) progressively and unidirectionally along the die from one end of the die to the other and parallel to the axis thereof as infiltrating pressure is exerted endwise on the metal-preform stack within the cavity.
  • a unidir­ectionally advancing solidification front in this case, follows the heat source along the cavity axis. This is particularly convenient for producing a comp­ osite article from a stack containing a plurality of filler preforms alternating with matrix metal layers, as may be advantageous to form an article of substan­tial axial length.
  • Each layer of the matrix metal is preferably an integral unitary continuous body of the metal at least about 2.5 mm thick, and the preform is also at least about 2.5 mm thick.
  • the invention will be described as embodied in methods of producing cast composite billets of aluminium (matrix metal) and discontinuous reinforcing fibres of a refractory material such as SiC or Al2O3.
  • Such composites have utility for structural and other purposes, being characterised by light weight and high strength.
  • a die 10 fabricated of a suitably thermally conductive material (e.g. steel), defining an axially vertical and upwardly opening cylindrical die cavity having its lower end closed by a metal or like die plate 11.
  • the die plate is supported on a steel base plate 12 and is separated therefrom by a layer 14 of compressible thermal insulation, e.g. Fibrefrax®.
  • a quantity of matrix metal 16 and a disc-shaped preform 18 of a refractory fibre material which is to be impregnated with the matrix metal to produce a composite metal-­fibre article are disposed within the die cavity.
  • suitable fibre materials for the preform include particles of alumina, zirconia, silica, silicon carbide, silicon nitride or titanium diboride, in particular alumina in the form of chopped fibres, and silicon carbide or silicon nitride in the form of either whiskers or chopped fibres.
  • the matrix metal comprises two discs of solid metal, with the preform 18 sandwiched between them.
  • the lower of the two matrix metal discs rests on a layer 20 of thermal insulation which in turn rests on the die plate 11, while a further layer 22 of the thermal insulation rests on top of the upper matrix metal disc.
  • Both insulating layers are made of fibrous or like material (e.g. "Fibrefrax” aluminium silicate fibre).
  • the die is first heated, to melt the matrix metal, e.g. by means of a conventional induction or resistance heater 24 surrounding the die and arranged to minimise heating of the base plate 12.
  • a vertically movable ram 26, positioned in register with the die cavity, is advanced downwardly to bear against the upper insulation layer 22; when the matrix metal has become fully molten, heating is terminated, and the ram is operated to exert pressure in a downward vertical direction (arrows 28) on the contents of the die cavity.
  • Figure 1 illustrates that point in the perfor­mance of the method at which the matrix metal is entirely molten, heating has been discontinued, and the ram has just come into contact with the upper insulation layer 22. Thereafter, pressure exerted by the ram forces the molten matrix metal into the insulation layers 20 and 22 and the preform 18, and also compresses the insulation layer 14.
  • the insulation layers 20 and 22 are of coarser weave than the preform 18, so that these layers become infiltrated in advance of the preform; also preferably, the preform has a compressive strength sufficient to withstand the pressure applied by the ram, and hence substantially retains its initial shape and dimensions.
  • the matrix metal cools and solidifies since heat is no longer being supplied to the system.
  • the ram is withdrawn upwardly, and the formed composite product may be removed from the die and trimmed to remove the impregnated insul­ation layers 20 and 22 and any excess metal.
  • a temperature differential is established between the upper and lower ends of the contents of the die cavity. Cooling, and resultant solidification, proceed inwardly in vertical directions from the top and bottom of the die cavity, but owing to the temperature differential, and to the relative initial vertical dimensions of metal above and below the preform and of the preform itself, the advancing upper and lower solidification fronts meet in the metal below the preform rather than within the preform itself.
  • a two-stage pressure cycle is employed, including a first, brief period of relatively low pressure (during which the insulation layers 20 and 22 become impregnated with matrix metal) and a second, longer period of substantially higher pressure effective to achieve complete impregnation of the preform 18.
  • the ram 26 is fabricated of a metal of high thermal conductivity such as die steel (which may also be the material of the base plate 12) or copper bronze and is "cold", i.e. unheated, as introduced to the die cavity; if desired for expedited matrix metal solidification, the ram may be internally cooled, but such positive cooling is not required in all instances.
  • the die plate 11 is heated by the resistance or induction heater 24 before the ram is introduced, it being noted that the peripheral portion of this plate is in direct contact with the heated die and that plate is initially well insulated by layer 14 from the relatively unheated base plate 12, so as to minimise heat losses.
  • the ram begins to press against the upper end of the die cavity contents, its relatively low temperature, and the relatively high temperature of the die plate 11 at the lower end of the cavity contents, cause the lower end of the cavity to be hotter than the upper end.
  • the cool ram abstracts heat from the top end of the die cavity, solidifying metal which has infiltrated the insulation layer 22 (thereby providing a seal against molten metal leakage) and initiating a first solidification front that moves downwardly through the cavity.
  • pressure exerted by the ram compresses the insulation layer 14 between the die plate 11 and the base plate 12, reducing the insulating effect of the layer 14 and enhancing the thermal contact between the initially heated die plate and the initially cool base plate, heat is abstracted from the lower end of the die cavity.
  • solidific­ation of the contained metal commences at that locality, sealing any escape paths for molten metal at the bottom of the die and initiating a second, upwardly moving solidification front.
  • the effect of the initial heat differential between the top and bottom of the die cavity is to retard the upward advance of the second front relative to the downward advance of the first front; hence the fronts ultimately meet at a level, in the cavity, which is substantially below the midpoint between their respective starting levels.
  • the initial thickness of matrix metal below the preform may be selected to be roughly about twice the initial thickness of matrix metal above the preform. More particularly, in the embodiment of Figure 1, it is at present preferred that the initial vertical thickness Y of the matrix metal above the preform (i.e. before application of pressure) be given by the relation.
  • Y (Z/Q) + I, where Z is the initial vertical thickness of the matrix metal below the preform, Q is a value between about 1.8 and about 2.0 (most preferably about 1.9), and I is the thickness of the insulation layer 22; and that the value of Z be equal to or greater than 0.5 times the vertical thickness of the preform 18 (Z preferably being about equal to the preform thickness).
  • the preform preferably has a thickness of no more than 25 mm in order to assure rapid heating of the fibres.
  • the lower metal layer thickness Z is sufficient so that, when impregnation of the preform is complete, there will remain a layer of excess metal below the preform in which the solidification fronts can meet.
  • the provision of excess molten metal in the pool below the preform is important to ensure a continuing supply of molten metal for infiltration of the preform at all times as the first solidification front advances down­wardly through the preform.
  • the die 10 has a wall thickness of 25 mm and an internal diameter of about 75 mm, this being also the approximate diameter of the ram 26, which however can enter the die cavity with slight clearance.
  • the central portion of the die plate 11 has a vertical thickness of 6 mm, and its thinner edge portion has a vertical thickness of 3 mm, while the base plate 12 has a vertical thickness of 25 mm.
  • Both the base plate and the ram are fabricated of die steel.
  • the insulating layers are constituted of "Fibrefrax" refractory fibres; layer 14 has an uncompressed vertical thickness of 3 mm, and the vertical thickness of each of layers 20 and 22 is 1.5 mm.
  • the heater 24 is a resistance heater.
  • a refractory fibre preform 18 of those dimensions is placed in the die cavity between lower and upper solid discs of a suitable aluminium alloy as matrix metal.
  • the vertical thickness Z of matrix metal below the preform is 30 mm, while the vertical thickness Y of matrix metal above the preform is 17 mm.
  • a two-step ram pressure cycle is used, comprising 5 seconds at 21 kg/sq.cm and 240 seconds at 211 kg/sq.cm.
  • Figure 2 illustrates the same apparatus as Figure 1 as used to produce a disc shaped metal article having an annular fibre - reinforced region.
  • annular preform 18a of refractory fibre material in place of the disc-shaped preform of Figure 1, there is provided an annular preform 18a of refractory fibre material.
  • the central hole of the preform is initially filled with a slug of the matrix metal.
  • the annular preform, with its central slug is placed in the cavity of die 10 between solid upper and lower discs 16a and 16b of matrix metal to form a vertical stack, the metal discs having relative vertical thicknesses Y and Z as defined in relation to the vertical thickness of the preform; and the method of the invention is performed in the manner described above with reference to Figure 1, to produce the desired composite article.
  • the molten metal flows around the outer surface of the preform and, together with the metal of the slug 18f, infiltrates the preform laterally; hence, in the final article, there is a central fibre-free metal region surrounded concentrically by a fibre-reinforced ring and a peripheral zone of fibre-free metal.
  • the preform annulus has a vertical thickness of 45 mm, an outer diameter of 60 mm, and an inner diameter of 30 mm.
  • Metal thicknesses of Y and Z are, respectively, 25 mm and 45 mm. All other dimensions are as given for the example described above with reference to Figure 1.
  • FIG. 3 An alternative embodiment of the method of the invention is illustrated in Figure 3. As there shown, since it is ordinarily preferred that the thickness of the fibre layer not exceed about 25 mm, a plurality of fibre layers 118a, 118b, 118c, 118d, 118e (each being a single, effectively integral preform at least about 2.5 mm thick), and a plurality of metal layers 116a, 116b, 116c, 116d, 116e (each being a single, integral body of the metal at least about 2.5 mm thick) alternating with and contiguous to the fibre layers, are employed to build up a stack when it is desired to produce a cast composite of substantial axial length.
  • a plurality of fibre layers 118a, 118b, 118c, 118d, 118e each being a single, effectively integral preform at least about 2.5 mm thick
  • metal layers 116a, 116b, 116c, 116d, 116e each being a single, integral body of the metal at least about
  • the stack of multiple layers each of fibre and metal is placed in an axially vertical cylindrical cavity (closed below by a plug 11 ⁇ ) of a die 10 ⁇ generally similar to the die 10 of Figures 1 and 2, and, as in the embodiments of Figures 1 and 2, is subjected to heat and pressure, to raise the temperature of the metal layers above the liquidus of the metal, thereby to melt the metal (with essentially simultaneous heating of the fibres), and to consolidate the stack.
  • heat is supplied to the die by an axially short heat source (shown diagrammatically at 24 ⁇ ) surrounding the die wall and axially movable relative thereto.
  • the heat source 24 ⁇ is advanced progressively from the lower end to the upper end of the stack of fibre and metal layers in the die while pressure is applied endwise to the stack, in an axial direction (arrow 28 ⁇ ), by a ram 26 ⁇ .
  • the moving heat source 24 ⁇ successively melts the metal layers 116a, 116b, etc., at the same time heating the fibres, and the pressure exerted by the ram causes the metal, when molten, to infiltrate the heated layers of fibres.
  • a unidirectional solidification front follows the heat source upwardly through the stack, thereby providing the advantages of the invention with respect to avoidance of porous zones in the produced composite.
  • the localised, progressive heating performed in the embodiment of Figure 3 also facilitates expulsion of air and gas from the fibre layers as infiltration proceeds. If gas entrapment is a particular problem in specific operations, and/or if special precautions are desirable or necessary to minimise oxidation, the die can be evacuated in known manner, as mentioned above.
EP87309973A 1986-11-12 1987-11-11 Herstellung von Verbundwerkstoffen mit Metallmatrix Withdrawn EP0271222A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93032786A 1986-11-12 1986-11-12
US930327 1986-11-12

Publications (2)

Publication Number Publication Date
EP0271222A2 true EP0271222A2 (de) 1988-06-15
EP0271222A3 EP0271222A3 (de) 1989-07-12

Family

ID=25459207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87309973A Withdrawn EP0271222A3 (de) 1986-11-12 1987-11-11 Herstellung von Verbundwerkstoffen mit Metallmatrix

Country Status (4)

Country Link
EP (1) EP0271222A3 (de)
JP (1) JPS63140751A (de)
KR (1) KR880005986A (de)
BR (1) BR8706087A (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312294A1 (de) * 1987-10-14 1989-04-19 Alcan International Limited Veredlung von Aluminium-Silicium-Legierungen in Verbundwerkstoffen mit Metallmatrix
EP0320302A2 (de) * 1987-12-10 1989-06-14 General Electric Company Verfahren und Vorrichtung zum Herstellen eines Gegenstandes aus faserverstärktem Verbundwerkstoff
EP0368785A1 (de) * 1988-11-10 1990-05-16 Lanxide Technology Company, Lp. Gerichtete Erstarrung von Verbundwerkstoff-Körpern mit Metallmatrix
WO1991017011A1 (en) * 1990-05-09 1991-11-14 Lanxide Technology Company, Lp Gating means for metal matrix composite manufacture
DE19650056A1 (de) * 1996-12-03 1998-06-04 Thyssen Guss Ag Verfahren zur Herstellung einer Bremsscheibe, insbesondere als Achs- oder Radbremsscheibe für Schienenfahrzeuge
DE19712624A1 (de) * 1997-03-26 1998-10-01 Vaw Motor Gmbh Aluminiummatrix-Verbundwerkstoff und Verfahren zu seiner Herstellung
US5851686A (en) * 1990-05-09 1998-12-22 Lanxide Technology Company, L.P. Gating mean for metal matrix composite manufacture
US20170297674A1 (en) * 2015-10-28 2017-10-19 Airbus Operations Gmbh Fibre-reinforced metal component for an aircraft or spacecraft and production methods for fibre-reinforced metal components
US10179364B2 (en) 2012-04-12 2019-01-15 Rel, Inc. Thermal isolation for casting articles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2147735A1 (de) * 1971-09-24 1973-03-29 Battelle Institut E V Verfahren zur herstellung von gegenstaenden oder halbzeug aus verbundwerkstoffen mit metallischer matrix und mit verstaerkungseinlagerungen
US3970136A (en) * 1971-03-05 1976-07-20 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method of manufacturing composite materials
GB2080165A (en) * 1980-07-17 1982-02-03 Rolls Royce Making article having internal passages eg turbine blade
EP0094970A1 (de) * 1981-11-30 1983-11-30 Toyota Jidosha Kabushiki Kaisha Kompositmaterial und verfahren zu dessen herstellung
JPS6099474A (ja) * 1983-11-04 1985-06-03 Toyota Motor Corp 複合材料部材の製造方法
US4573517A (en) * 1982-02-08 1986-03-04 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fiber-reinforced metals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970136A (en) * 1971-03-05 1976-07-20 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method of manufacturing composite materials
DE2147735A1 (de) * 1971-09-24 1973-03-29 Battelle Institut E V Verfahren zur herstellung von gegenstaenden oder halbzeug aus verbundwerkstoffen mit metallischer matrix und mit verstaerkungseinlagerungen
GB2080165A (en) * 1980-07-17 1982-02-03 Rolls Royce Making article having internal passages eg turbine blade
EP0094970A1 (de) * 1981-11-30 1983-11-30 Toyota Jidosha Kabushiki Kaisha Kompositmaterial und verfahren zu dessen herstellung
US4573517A (en) * 1982-02-08 1986-03-04 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fiber-reinforced metals
JPS6099474A (ja) * 1983-11-04 1985-06-03 Toyota Motor Corp 複合材料部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 245 (M-418)[1968], 2nd October 1985; & JP-A-60 99 474 (TOYOTA JIDOSHA K.K.) 03-06-1985 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312294A1 (de) * 1987-10-14 1989-04-19 Alcan International Limited Veredlung von Aluminium-Silicium-Legierungen in Verbundwerkstoffen mit Metallmatrix
EP0320302A2 (de) * 1987-12-10 1989-06-14 General Electric Company Verfahren und Vorrichtung zum Herstellen eines Gegenstandes aus faserverstärktem Verbundwerkstoff
EP0320302A3 (de) * 1987-12-10 1992-01-02 General Electric Company Verfahren und Vorrichtung zum Herstellen eines Gegenstandes aus faserverstärktem Verbundwerkstoff
EP0368785A1 (de) * 1988-11-10 1990-05-16 Lanxide Technology Company, Lp. Gerichtete Erstarrung von Verbundwerkstoff-Körpern mit Metallmatrix
AU625092B2 (en) * 1988-11-10 1992-07-02 Lanxide Corporation Directional solidification of metal matrix composites
US5851686A (en) * 1990-05-09 1998-12-22 Lanxide Technology Company, L.P. Gating mean for metal matrix composite manufacture
WO1991017011A1 (en) * 1990-05-09 1991-11-14 Lanxide Technology Company, Lp Gating means for metal matrix composite manufacture
DE19650056A1 (de) * 1996-12-03 1998-06-04 Thyssen Guss Ag Verfahren zur Herstellung einer Bremsscheibe, insbesondere als Achs- oder Radbremsscheibe für Schienenfahrzeuge
DE19712624A1 (de) * 1997-03-26 1998-10-01 Vaw Motor Gmbh Aluminiummatrix-Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19712624C2 (de) * 1997-03-26 1999-11-04 Vaw Motor Gmbh Aluminiummatrix-Verbundwerkstoff und Verfahren zu seiner Herstellung
US10179364B2 (en) 2012-04-12 2019-01-15 Rel, Inc. Thermal isolation for casting articles
US10434568B2 (en) 2012-04-12 2019-10-08 Loukus Technologies, Inc. Thermal isolation spray for casting articles
US20170297674A1 (en) * 2015-10-28 2017-10-19 Airbus Operations Gmbh Fibre-reinforced metal component for an aircraft or spacecraft and production methods for fibre-reinforced metal components
US10399657B2 (en) * 2015-10-28 2019-09-03 Airbus Operations Gmbh Fibre-reinforced metal component for an aircraft or spacecraft and production methods for fibre-reinforced metal components

Also Published As

Publication number Publication date
EP0271222A3 (de) 1989-07-12
JPS63140751A (ja) 1988-06-13
BR8706087A (pt) 1988-06-21
KR880005986A (ko) 1988-07-21

Similar Documents

Publication Publication Date Title
US4889177A (en) Method and apparatus for sand moulding composite articles with a die made of light alloy and a fibrous insert
US3970136A (en) Method of manufacturing composite materials
Cook et al. Pressure infiltration casting of metal matrix composites
US5616421A (en) Metal matrix composites containing electrical insulators
US4735128A (en) Piston
JP2989774B2 (ja) 複合材料の製造方法及び装置
JP2002542035A (ja) 部品を製造するためのダイおよび方法
EP0271222A2 (de) Herstellung von Verbundwerkstoffen mit Metallmatrix
KR20000005112A (ko) 내연기관용 실린더 헤드의 제조방법
US5398745A (en) Method of directionally cooling using a fluid pressure induced thermal gradient
US20040007044A1 (en) Superplasticity forming mould and mould insert
US6662852B2 (en) Mold assembly and method for pressure casting elevated melting temperature materials
US5002115A (en) Centrifugal casting of metal matrix composites
US3695335A (en) Process for making composite materials from refractory fibers and metal
EP0328805A1 (de) Herstellung von Verbundwerkstoffen mit Metallmatrix
US5255729A (en) Matched CTE casting for metal matrix composites
EP0728849A1 (de) Herstellung von Verbundmaterialen
US5509459A (en) Pressure cast alumina tile reinforced aluminum alloy armor and process for producing the same
JP2000042718A (ja) 複合用材料が鋳込まれた鋳造品の鋳造方法
JPS58215263A (ja) 複合材料の製造方法
US5406029A (en) Electronic package having a pure metal skin
US4901906A (en) Method for forming composite metal articles
RU2151025C1 (ru) Способ изготовления горячедеформированных порошковых материалов
JPS62142733A (ja) 繊維強化金属複合材の製造方法
JPH03275268A (ja) 繊維強化金属薄板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19900123

17Q First examination report despatched

Effective date: 19911002

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920213

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LLOYD, DAVID JAMES

Inventor name: GALLERNEAULT, WILLARD MARK TRUMAN