EP0267870B1 - Lightning protection device - Google Patents

Lightning protection device Download PDF

Info

Publication number
EP0267870B1
EP0267870B1 EP87810532A EP87810532A EP0267870B1 EP 0267870 B1 EP0267870 B1 EP 0267870B1 EP 87810532 A EP87810532 A EP 87810532A EP 87810532 A EP87810532 A EP 87810532A EP 0267870 B1 EP0267870 B1 EP 0267870B1
Authority
EP
European Patent Office
Prior art keywords
lightning
lightning protection
conductive component
des
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87810532A
Other languages
German (de)
French (fr)
Other versions
EP0267870A1 (en
Inventor
Cesare Giulio Invernizzi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energie Froide International SA
Original Assignee
Energie Froide International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4275017&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0267870(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Energie Froide International SA filed Critical Energie Froide International SA
Publication of EP0267870A1 publication Critical patent/EP0267870A1/en
Application granted granted Critical
Publication of EP0267870B1 publication Critical patent/EP0267870B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps

Description

1/ Il est connu que les installations de protection antifoudre présentent de graves dangers car, quand une foudre les frappe, des décharges dites latérales, à haute énergie, éclatent entre les conducteurs de cuivre nu normalisés pour leur mise à la terre et des objets, ou des personnes, dans leur voisinage.1 / It is known that lightning protection installations present serious dangers because, when a lightning strikes them, so-called lateral, high-energy discharges burst between the bare copper conductors standardized for their earthing and objects, or people in their vicinity.

2/ Par l'élévation toujours plus grande des structures à protéger, les courants de foudre ne peuvent plus rester confinés dans les conducteurs nus de mise à la terre sans que des claquages se produisent avec des conséquences souvent désastreuses:

  • - incendies;
  • - foudroiement de personnes;
  • - destruction de matériel électrique et électronique;
  • - etc.
2 / By the ever increasing elevation of the structures to be protected, lightning currents can no longer remain confined in bare grounding conductors without breakdowns occurring with often disastrous consequences:
  • - fires;
  • - lightning strike of people;
  • - destruction of electrical and electronic equipment;
  • - etc.

3/ L'Auteur de la présente invention a déjà proposé un système de mise à la terre des foudres palliant à cet inconvénient majeur (US-A-3 919 956), consistant à prévoir autour du conducteur de mise à terre une gaine métallique maintenue à distance de ce conducteur par une couche de matériel isolant, cette gaine métallique étant elle aussi renfermée dans une couche isolante, l'ensemble étant mis à la terre.3 / The author of the present invention has already proposed a lightning earthing system which overcomes this major drawback (US-A-3,919,956), consisting in providing around the earthing conductor a metallic sheath maintained spaced from this conductor by a layer of insulating material, this metal sheath also being enclosed in an insulating layer, the assembly being earthed.

4/ C'est par des concepts propres aux techniques hautes tensions que les améliorations décrites dans la présente invention ont pu être faites -par rapport aux conducteurs conventionnels de mise à la terre -par rapport à toutes les installations antifoudres précédentes ne pouvant être intégrées en un ensemble électriquement hermétique, qui ne peut être consenti que si on dispose d'une structure coaxiale permettant l'herméticité -et, finalement, par rapport aux brevets du paragraphe 3/ ci-dessus.4 / It is through concepts specific to high-voltage techniques that the improvements described in the present invention have been made - compared to conventional grounding conductors - compared to all previous lightning protection installations that cannot be integrated into an electrically hermetic assembly, which can only be consented if there is a coaxial structure allowing the hermeticity -and, finally, compared to the patents of paragraph 3 / above.

5/ Des décharges latérales se produisent le long des conducteurs de mise à la terre nus ou isolés simplement quant le gradient de tension devient plus grand que la valeur de tenue. La valeur du champ électrique à la surface d'un conducteur cylindrique nu dépend de son diamètre et de l'environnement. La tension qui apparaît sur ce conducteur lors du passage d'un courant de foudre dépend de la résistance ohmique longitudinale en courant alternatif de ce dernier.5 / Lateral discharges occur along the bare or insulated earthing conductors simply when the voltage gradient becomes greater than the withstand value. The value of the electric field on the surface of a bare cylindrical conductor depends on its diameter and the environment. The voltage which appears on this conductor during the passage of a lightning current depends on the longitudinal ohmic resistance in alternating current of the latter.

6/ Cette résistance peut être calculée en résolvant les équations de Maxwell pour un conducteur cylindrique au moyen des fonctions de Bes- sel. Une vue représentative du phénomène est donnée par la notion de profondeur de pénétration. De cette façon, il est possible de mettre en évidence la "partie du conducteur effectivement utilisée". Le spectre des fréquences qui compose un courant de foudre s'étend de 20 à 100 kHz. Pour un conducteur cylindrique en cuivre, on obtient respectivement 0,48 mm et 0,21 mm de profondeur de pénétration. Donc, un conducteur cylindrique creux présente des avantages sur un conducteur plein de section équivalente.6 / This resistance can be calculated by solving the Maxwell equations for a cylindrical conductor using the Besel functions. A representative view of the phenomenon is given by the notion of penetration depth. In this way, it is possible to highlight the "part of the conductor actually used". The frequency spectrum that makes up a lightning current ranges from 20 to 100 kHz. For a cylindrical copper conductor, 0.48 mm and 0.21 mm of penetration depth are obtained respectively. Therefore, a hollow cylindrical conductor has advantages over a solid conductor of equivalent section.

Exemple:Example:

  • fil en cuivre nu de 6 mm Øbare copper wire 6 mm Ø
  • Rca = 2,1 mn/m ( 20 kHz)R ca = 2.1 min / m (20 kHz)
  • Rca = 4,6 mΩ/m (100 kHz)R ca = 4.6 mΩ / m (100 kHz)
  • câble spécial EFspecial EF cable
  • Rca = 0,9 mn/m ( 20 kHz)R ca = 0.9 min / m (20 kHz)
  • Rca = 2,2 mn/m (100 kHz)R ca = 2.2 min / m (100 kHz)
Facteur d'amélioration env. 2.Improvement factor approx. 2.

Les valeurs ci-dessus ont été calculées avec des formules classiques tirées des 3 références suivantes:

  • (1) Hochspannungsfelder H. Prinz Verlag Olden- burg
  • (2) Hochspannungstechnik Vorlesung Prof. Dr K. Berger
  • (3) Wirbelstrôme und Schirmung in der Nach- richtentechnik Dr phil. H. Kaden Springer Verlag 7/ Pour la structure objet de la présente invention, ces valeurs ont été vérifiées par des mesures de laboratoire. Les résultats ont été les suivants:
    • il Lorsque la couche intermédiaire isolante est correctement dimensionnée, il ne se produit jamais de décharges latérales et on ne constate aucun endommagement de la structure -même si des surtensions sont produites dans le conducteur central;
    • ii/ Ce que l'on observe lors de ces surtensions ce sont des effluves de très basse énergie qui peuvent apparaître autour de la structure sans l'endommager. Ces décharges avaient été observées déjà par Tesla, il y a un siècle, lors de ses expériences sur des courants à haute fréquence.
  • 8/ Etant donné que la valeur des surtensions dans un conducteur de foudre dépend de la valeur de crête et de la forme d'onde des décharges -pour étudier le comportement de la mise à la terre du système objet de la présente invention et en définir les caractéristiques, l'Auteur a pu bénéficier des données très complètes d'impulsion des courants de foudres présentées récemment par Anderson et Eriksson. La présente invention permet une mise à la terre capable de supporter tous les courants de foudre. L'invention concerne une descente de protections antifoudres telle pue décrite dans la revendication 1 ainsi qu'un système de protections antifoudres conforme à la revendication 3. 9/ L'étude approfondie de tous ces paramètres a mis en évidence que l'impédance, c'est-à-dire la résistance ohmique et l'inductance du conducteur de foudre et de la gaine métallique, a un effet défavorable, d'où l'avantage de la réduire au maximum. Or, les câbles blindés utilisent un élément conducteur central constitué par un ensemble de fils métalliques enroulés en hélice autour d'un noyau central en matière isolante et on réalise le blindage métallique pareillement au moyen de fils ou de bandes métalliques enroulés en hélice sur la couche isolante entourant l'élément conducteur intérieur.
  • 10/ Le résultat est que, même si les spires formant l'élément conducteur interne et la gaine sont jointives, ou même chevauchantes (s'il s'agit non pas de fils mais de bandes métalliques), l'inévitable couche d'oxyde sur ces fils ou bandes fait que le courant suit un parcours hélicoïdal et non pas rectiligne, d'où résistance ohmique et inductance accrues.
  • 11/ En utilisant des fils ou bandes métalliques parallèles à la ligne centrale du câble, on réduit très sensiblement l'impédance et on améliore les performances d'un conducteur de foudre dans le sens de la présente invention.
  • 12/ Le dessin annexé représente un exemple d'exécution de ce conducteur de foudre. La Figure 1 est une vue latérale partielle, avec des arrachements montrant sa structure interne. La Figure 2 est une vue en coupe transversale suivant 2-2 de la Figure 1.
  • 13/ Ce conducteur de foudre est une structure dont on voit en 1 l'âme de section circulaire en matière isolante autour de laquelle sont disposés de façon jointive des fils métalliques 2 s'étendant parallèlement à la ligne centrale 3, qui est l'axe de cet ensemble s'il est rectiligne. L'ensemble de ces fils 2 constitue un premier organe de mise à terre d'une installation antifoudre depuis la pointe (non représentée) de l'installation jusqu'à la prise de terre (non représentée). En raison de l'effet pelliculaire propre au courant haute tension, il est inutile que l'espace occupé par le noyau isolant 1 soit rempli par les fils conducteurs 2.
  • 14/ On voit en 4 une couche de matière isolante entourant la couche de fils 2 est dont l'épaisseur et la qualité sont étudiées pour résister aux surtensions se produisant dans l'élément 2 lorsque le courant de foudre le parcourt. En 5 est disposé un 2ème série de fils métalliques jointifs s'étendant eux aussi parallèlement à l'axe central 3. L'ensemble de ces fils 5 constitue une 2ème conducteur, qui entoure complètement la gaine isolante 4 et, par conséquent, aussi le premier élément conducteur 2. Cet ensemble de fils 5 constitue un blindage électrique pour les fils 2 et est mis à la terre à son extrémité inférieure (non représentée).
  • 15/ Autour de la couche de fils conducteurs 5 est disposée une gaine de protection 6 en matière isolante convenablement dimensionnée. Les fils 5 pourraient être des bandes métalliques parallèles chevauchantes, pour que leur ensemble forme un véritable tube conducteur.
  • 16/ On pourrait imaginer que le 2ème élément conducteur (5) soit réellement tubulaire -mais cela aurait le grave défaut de rendre difficile d'enrouler cette structure sans l'endommager et la mettre sur une bobine comme c'est l'usage pour le stockage et le transport des câbles. En prévoyant un tube ondulé, on faciliterait cet enroulement mais on augmenterait la résistance ohmique et, surtout, l'inductance, puisque dans ce cas le courant dans cet élément suivrait un parcours ondulé.
  • 17/ La sollicitation électrique de l'isolation doit être définie sur toute la longueur de la structure, indépendamment des conditions extérieures - d'où la nécessité, comme dans les câbles haute tension, d'utiliser un écran conducteur concentrique. Ainsi, ce conducteur de foudre pourra être posé près de pointes ou d'arêtes métalliques sans effet négatif sur sa tenue électrique.
  • 18/ L'isolation haute tension doit être protégée mécaniquement, pour éviter tout risque d'endommagement lors du transport, du montage et de la mise en service. L'ensemble métallique robuste et une gaine résistante à des conditions climatiques extrêmes, remplit parfaitement ce rôle.
  • 19/ Finalement, grâce à l'écran protecteur, il est possible de vérifier, à tout moment, l'état de l'isolation à haute tension par deux simples essais électriques.
  • 20/ Toutes ces considérations ont permis de réaliser une descente de protection antifoudre qui répond aux exigences du Monde Moderne, avec un risque de claquages latéraux de 45 à 90 fois inférieur à celui d'un conducteur nu. Les expériences de laboratoire et les valeurs calculées confirment le bien-fondé de ce concept. 21/ Disposant d'une structure coaxiale -mais qui n'est ni fabriquée, ni employée comme les câbles coaxiaux conventionnels-l'Auteur de la présente invention a eu pour la première fois la possibilité de se rendre compte en laboratoire, par des modèles mathématiques et par une vaste expérience dans la Nature, que la protection antifoudre ne pouvait être effective que si elle n'électrisait pas les structures. Pour cette réalisation fondamentale, il a conçu un terminal haute tension grâce auquel le présent système peut conduire les foudres à terre sans électrisation des structures.
The above values were calculated with conventional formulas taken from the following 3 references:
  • (1) Hochspannungsfelder H. Prinz Verlag Oldenburg
  • (2) Hochspannungstechnik Vorlesung Prof. Dr. K. Berger
  • (3) Wirbelstrôme und Schirmung in der Nach- richtentechnik Dr phil. H. Kaden Springer Verlag 7 / For the structure which is the subject of the present invention, these values have been verified by laboratory measurements. The results were as follows:
    • When the insulating intermediate layer is correctly dimensioned, lateral discharges never occur and there is no damage to the structure - even if overvoltages are produced in the central conductor;
    • ii / What we observe during these overvoltages are very low energy scents which can appear around the structure without damaging it. These discharges had already been observed by Tesla, a century ago, during its experiments on high frequency currents.
  • 8 / Since the value of the overvoltages in a lightning conductor depends on the peak value and the waveform of the discharges - to study the behavior of the earthing of the system object of the present invention and to define it characteristics, the Author was able to benefit from the very comprehensive data of impulse of lightning currents presented recently by Anderson and Eriksson. The present invention provides a grounding capable of withstanding all lightning currents. The invention relates to a descent of lightning protection devices such as described in claim 1 as well as a protection system Arresters according to claim 3. 9 / The in-depth study of all these parameters has shown that the impedance, that is to say the ohmic resistance and the inductance of the lightning conductor and the metallic sheath, has an unfavorable effect, hence the advantage of minimizing it. However, the shielded cables use a central conductive element constituted by a set of metallic wires wound in a helix around a central core made of insulating material and the metallic shielding is likewise carried out by means of metallic wires or bands wound in a helix on the layer. insulation surrounding the inner conductive element.
  • 10 / The result is that, even if the turns forming the internal conductive element and the sheath are contiguous, or even overlapping (if it is not wire but metal strips), the inevitable oxide layer on these wires or strips means that the current follows a helical and not straight path, hence increased ohmic resistance and inductance.
  • 11 / By using metallic wires or bands parallel to the central line of the cable, the impedance is very substantially reduced and the performance of a lightning conductor is improved in the sense of the present invention.
  • 12 / The appended drawing represents an example of execution of this lightning conductor. Figure 1 is a partial side view, with parts broken away showing its internal structure. Figure 2 is a cross-sectional view along 2-2 of Figure 1.
  • 13 / This lightning conductor is a structure of which we see in 1 the core of circular section made of insulating material around which metallic wires 2 are contiguously arranged extending parallel to the central line 3, which is the axis of this set if it is rectilinear. All of these wires 2 constitute a first earthing member of a lightning protection installation from the tip (not shown) of the installation to the earth connection (not shown). Due to the film effect inherent in high voltage current, it is unnecessary for the space occupied by the insulating core 1 to be filled by the conducting wires 2.
  • 14 / We see in 4 a layer of insulating material surrounding the layer of wires 2 is whose thickness and quality are studied to resist overvoltages occurring in element 2 when the lightning current travels through it. At 5 is disposed a 2nd series of contiguous metallic wires also extending parallel to the central axis 3. All of these wires 5 constitute a 2nd conductor, which completely surrounds the insulating sheath 4 and, consequently, also the first conductive element 2. This set of wires 5 constitutes an electrical shield for the wires 2 and is earthed at its lower end (not shown).
  • 15 / Around the layer of conducting wires 5 is a protective sheath 6 made of suitably sized insulating material. The wires 5 could be overlapping parallel metal strips, so that their assembly forms a real conductive tube.
  • 16 / One could imagine that the 2nd conductive element (5) is actually tubular - but this would have the serious defect of making it difficult to wind this structure without damaging it and put it on a reel as is the custom for storage and transportation of cables. By providing a corrugated tube, this winding would be facilitated but the ohmic resistance and, above all, the inductance, would be increased, since in this case the current in this element would follow a wavy path.
  • 17 / The electrical stress on the insulation must be defined over the entire length of the structure, regardless of the external conditions - hence the need, as in high-voltage cables, to use a concentric conductive screen. Thus, this lightning conductor can be placed near spikes or metal edges without negative effect on its electrical resistance.
  • 18 / The high voltage insulation must be mechanically protected to avoid any risk of damage during transport, assembly and commissioning. The robust metal assembly and a sheath resistant to extreme climatic conditions, perfectly fulfills this role.
  • 19 / Finally, thanks to the protective screen, it is possible to check, at any time, the state of the high-voltage insulation by two simple electrical tests.
  • 20 / All these considerations have made it possible to achieve a lightning protection descent which meets the requirements of the Modern World, with a risk of lateral breakdowns 45 to 90 times lower than that of a naked conductor. Laboratory experiments and calculated values confirm the validity of this concept. 21 / Having a coaxial structure - but which is neither manufactured nor used like conventional coaxial cables - The Author of the present invention had for the first time the possibility of realizing in the laboratory, by models mathematics and a vast experience in Nature, that lightning protection could only be effective if it did not electrify structures. For this fundamental achievement, he designed a high voltage terminal thanks to which the present system can conduct lightning strikes to the ground without electricity. tion of structures.

Claims (3)

1. Lightning protection downconductor (Fig. 1) comprising a first lightning conductive component (2), an insulating sheath (4) surrounding this first conductive component, and a second conductive component (5) completely surrounding this insulating sheath, said second conductive component being earthed at its lower end, characterized in that each of the two said conductive components (2 and 5) are formed by an assembly of metallic conductors, which are contiguous in the shape of wires or strips all extending in a direction parallel to the central line (3) of the assembly formed by said two conductive components (2 and 5) and the intermediate insulating sheath (4).
2. Lightning protection downconductor according to claim 1 (Fig. 2) characterized in that the second conductive component (5) is formed by overlapping strips so that together they form a metallic cylinder.
3. Lightning protection system using a lightning downconductor according to claim 1 and 2, characterized in that its upper part is fitted with a high voltage terminal (Fig. 3) thus making it possible that all the components of this system constitute an electrically hermetic lightning protection.
EP87810532A 1986-11-01 1987-09-16 Lightning protection device Expired - Lifetime EP0267870B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4379/86A CH669482A5 (en) 1986-11-01 1986-11-01
CH4379/86 1986-11-01

Publications (2)

Publication Number Publication Date
EP0267870A1 EP0267870A1 (en) 1988-05-18
EP0267870B1 true EP0267870B1 (en) 1991-12-11

Family

ID=4275017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87810532A Expired - Lifetime EP0267870B1 (en) 1986-11-01 1987-09-16 Lightning protection device

Country Status (13)

Country Link
US (1) US4816611A (en)
EP (1) EP0267870B1 (en)
JP (1) JPS63126121A (en)
KR (1) KR960000924B1 (en)
CN (1) CN1034200C (en)
AU (1) AU591357B2 (en)
CA (1) CA1281089C (en)
CH (1) CH669482A5 (en)
DE (1) DE3775174D1 (en)
ES (1) ES2028910T3 (en)
GR (1) GR3004030T3 (en)
HK (1) HK29693A (en)
PT (1) PT85932B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2016130A1 (en) * 1989-05-04 1990-11-04 Larry W. Oden Flexible cord with high modulus organic fiber strength member
DE4004802A1 (en) * 1990-02-13 1991-08-14 Siemens Ag ELECTRIC CABLE WITH TRAGORGAN AND TWO CONCENTRICALLY LADERS
US5166477A (en) * 1991-05-28 1992-11-24 General Electric Company Cable and termination for high voltage and high frequency applications
US5149915A (en) * 1991-06-06 1992-09-22 Molex Incorporated Hybrid shielded cable
US5313020A (en) * 1992-05-29 1994-05-17 Western Atlas International, Inc. Electrical cable
US5365398A (en) * 1992-07-24 1994-11-15 Richard Briet Lightning protection system
US5393933A (en) * 1993-03-15 1995-02-28 Goertz; Ole S. Characteristic impedance corrected audio signal cable
DE9310993U1 (en) * 1993-07-22 1994-11-17 Gore W L & Ass Gmbh Broadband radio frequency-compatible electrical coaxial cable
US6140587A (en) * 1997-05-20 2000-10-31 Shaw Industries, Ltd. Twin axial electrical cable
JP2002530038A (en) 1998-10-29 2002-09-10 ナショナル ライティング プロテクション コーポレイション Safe lightning rod and alarm system
US7622678B2 (en) * 2007-12-14 2009-11-24 Commscope Inc. Of North Carolina Coaxial cable including tubular bimetallic outer layer with folded edge portions and associated methods
US7569766B2 (en) * 2007-12-14 2009-08-04 Commscope, Inc. Of North America Coaxial cable including tubular bimetallic inner layer with angled edges and associated methods
US7687719B2 (en) 2007-12-14 2010-03-30 Commscope Inc. Of North Carolina Coaxial cable including tubular bimetallic outer layer with angled edges and associated methods
US7569767B2 (en) * 2007-12-14 2009-08-04 Commscope, Inc. Of North Carolina Coaxial cable including tubular bimetallic inner layer with folded edge portions and associated methods
US7687718B2 (en) * 2007-12-14 2010-03-30 Commscope Inc. Of North Carolina Coaxial cable including tubular bimetallic outer layer with bevelled edge joint and associated methods
US7687717B2 (en) 2007-12-14 2010-03-30 Commscope Inc. Of North Carolina Coaxial cable including tubular bimetallic inner layer with bevelled edge joint and associated methods
SE0900565A1 (en) * 2009-04-27 2010-09-28 Fredrik Dahl Grounding device
EP2365218A1 (en) * 2010-03-08 2011-09-14 Lm Glasfiber A/S Wind turbine blade with lightning protection system
US9520705B2 (en) * 2012-09-04 2016-12-13 The Boeing Company Lightning protection for spaced electrical bundles
US9036323B1 (en) 2012-09-04 2015-05-19 The Boeing Company Power feeder shielding for electromagnetic protection
US9112343B1 (en) * 2012-09-04 2015-08-18 The Boeing Company Power feeder shielding for electromagnetic protection
CN103441483A (en) * 2013-08-29 2013-12-11 宝鸡石油机械有限责任公司 Lightning arrester device
DE102015009426A1 (en) * 2015-03-11 2016-09-15 Dehn + Söhne Gmbh + Co. Kg Method for condition determination and fault location on installed isolated leads in external lightning protection
CN115483612B (en) * 2022-09-29 2023-06-06 张健 Lightning protection device for high-tower electronic equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB685365A (en) * 1948-03-13 1953-01-07 Standard Oil Dev Co Improvements in or relating to method and apparatus for handling finely divided solid materials
DE1130754B (en) * 1957-04-20 1962-05-30 Siemens Ag Device for conveying fine-grained goods to a higher level
DE1151676B (en) * 1961-03-07 1963-07-18 Wolfgang Bartsch Dipl Ing Dr I Process and device for the metered removal of solid, grainy or dust-shaped conveyed goods
US3380780A (en) * 1965-12-23 1968-04-30 Kenneth M. Allen Pneumatic conveying systems
GB1248614A (en) * 1968-10-02 1971-10-06 Nat Res Dev Apparatus for the conveyance of cohesive particulate material
BE731528A (en) * 1969-04-15 1969-09-15
CH521677A (en) * 1971-03-18 1972-04-15 En Froide Internat S A Lightning protection installation for buildings and boats
US3790697A (en) * 1972-10-30 1974-02-05 Okonite Co Power cable shielding
US4002372A (en) * 1975-12-01 1977-01-11 General Shale Products Corporation Pulverulent material metering and delivery system and method
JPS5344016A (en) * 1976-09-25 1978-04-20 Mitsubishi Paper Mills Ltd Halogenated silver photographic emulsion
CH620059A5 (en) * 1978-02-03 1980-10-31 Energie Froide Int Sa
DE2914238C2 (en) * 1979-03-02 1981-04-23 Schweizerische Aluminium AG, 3965 Chippis Device for the continuous feeding of alumina by means of a metering device
DE3125096C2 (en) * 1981-06-15 1985-10-17 Schweizerische Aluminium Ag, Chippis Device and method for feeding bulk material in portions
US4480146A (en) * 1982-06-03 1984-10-30 Energie Froide International Sa Lightning protector assembly

Also Published As

Publication number Publication date
JPS63126121A (en) 1988-05-30
CN1034200C (en) 1997-03-05
CA1281089C (en) 1991-03-05
US4816611A (en) 1989-03-28
CH669482A5 (en) 1989-03-15
EP0267870A1 (en) 1988-05-18
AU591357B2 (en) 1989-11-30
PT85932A (en) 1988-12-15
PT85932B (en) 1993-08-31
GR3004030T3 (en) 1993-03-31
KR960000924B1 (en) 1996-01-15
CN87107192A (en) 1988-06-01
AU8051487A (en) 1988-05-05
KR880006811A (en) 1988-07-25
ES2028910T3 (en) 1992-07-16
HK29693A (en) 1993-04-02
DE3775174D1 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
EP0267870B1 (en) Lightning protection device
US8553386B2 (en) Surge suppression device having one or more rings
EP0228321B1 (en) Lightning protection process, means for carrying out this process and lightning protection device
EP0056275B1 (en) Device for protecting an electric line from very steep edge disturbances
CA2109365C (en) Lightning conductor with initiator device in which the electric discharge slides along a dielectric
EP1705772A2 (en) Synthetic cable end for D. C. cable
JP5876845B2 (en) Grounding device
WO1989006805A1 (en) Device for injecting an electromagnetic signal into an electric lead
DE10233528A1 (en) Lightning conductor for electrically connecting collector to earthing system for external lightning protection has conductive casing with sections of different conductivities over its length
JP4103259B2 (en) Lightning protection lead and lightning protection system
RU132633U1 (en) DEVICE FOR SUPPRESSING HIGH FREQUENCY OVERVOLTAGE
FR3065834B1 (en) ELECTRIC CABLE FOR WIRING OF PARAFOUDRE
EP3259969B1 (en) Magnetic shield for the end of a multiwire cable
CN1034200Y (en) Lightning current transmission device
WO2018138431A1 (en) Conductive component that attenuates very fast overvoltages, for very high-voltage electrical substations
RU214353U1 (en) DEVICE FOR PROTECTION AGAINST HIGH-FREQUENCY OVERVOLTAGE
SE513745C2 (en) Apparatus for generating electric square pulses
JP6925290B2 (en) Shielded cable
EP3146350B1 (en) High-voltage dry apparatus provided with a continuous monitoring device
JP5623506B2 (en) Equipment for grounding
EP0219494B1 (en) Arrangement for protection of delicate electric installations against lightning effects and devices provided therefor
JP5437722B2 (en) lightning rod
FR2554284A1 (en) Method of protecting electrical or electronic installations from lightning.
FR2782580A1 (en) Protection of electrical and electronic equipment from over-voltages arising from lighting strikes on distribution circuits
BE379980A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB GR IT LI SE

17P Request for examination filed

Effective date: 19880614

17Q First examination report despatched

Effective date: 19900918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB GR IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911211

REF Corresponds to:

Ref document number: 3775174

Country of ref document: DE

Date of ref document: 19920123

ITF It: translation for a ep patent filed

Owner name: MANZONI & MANZONI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2028910

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: GUMLEY, JOHN RICHARD

Effective date: 19920908

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3004030

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19941022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980813

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981201

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19990831

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990921

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

BERE Be: lapsed

Owner name: S.A. ENERGIE FROIDE INTERNATIONAL

Effective date: 19990930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000927

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060919

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070915